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Abstract 30 

Rain fed granite rock basins are ancient geological landforms of worldwide distribution and 31 
structural simplicity. They support habitats that can switch quickly from terrestrial to aquatic along 32 

the year. Diversity of animals and plants, and the connexion between communities in different 33 
basins have been widely explored in these habitats, but hardly any research has been carried out on 34 
microorganisms. The aim of this study is to provide the first insights on the diversity of eukaryotic 35 
microbial communities from these environments. Due to the ephemeral nature of these aquatic 36 
environments, we predict that the granitic basins should host a high proportion of dormant 37 

microeukaryotes. Based on an environmental DNA diversity survey, we reveal diverse 38 
communities with representatives of all major eukaryotic taxonomic supergroups, mainly 39 
composed of a diverse pool of low abundance OTUs. Basin communities were very distinctive, 40 
with alpha and beta diversity patterns non-related to basin size or spatial distance respectively. 41 
Dissimilarity between basins was mainly characterized by turnover of OTUs. The strong microbial 42 

eukaryotic heterogeneity observed among the basins may be explained by a complex combination 43 

of deterministic factors (diverging environment in the basins), spatial constraints, and randomness 44 
including founder effects. Most interestingly, communities contain organisms that cannot coexist at 45 

the same time because of incompatible metabolic requirements, thus suggesting the existence of a 46 
pool of dormant organisms whose activity varies along with the changing environment. These 47 
organisms accumulate in the pools, which turns granitic rock into high biodiversity microbial 48 

islands whose conservation and study deserve further attention. 49 

 50 

Keywords Granite rock basins ∙ Microbial reservoirs ∙ Protists ∙ Fungi ∙ Dormancy ∙ Conservation 51 
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Introduction 54 

Biodiversity is a crucial component in the functioning of ecosystems. The more diverse 55 
biological communities are, the more stable, productive and resilient to perturbations the 56 
ecosystems are thought to become [1]. Microbial eukaryotic communities are an essential 57 

component of all ecosystems. They are actively involved in biogeochemical cycles because 58 
of their wide taxonomic and metabolic versatility as autotrophs, heterotrophs (predators, 59 
decomposers and parasites) and mixotrophs [2,3]. Protists are actively involved in nutrient 60 
turnover in ecosystems and are therefore essential to the microbial loop. The photosynthetic 61 
representatives (i.e. eukaryotic microalgae) are, together with cyanobacteria, thought to 62 

account for around 40% of the primary productivity in oceans [4]. Non-photosynthetic 63 
protists are the main consumers of bacteria in aquatic and terrestrial environments, 64 
transferring carbon to higher levels of the food chain [5]. Microscopic fungi drive the soil 65 
carbon cycling and plant nutrition [6]. Both microbial groups include numerous taxa that 66 

produce resistance structures through which they stay in the habitats under metabolic 67 
dormancy surviving this way the environmental stress [7]. Evaluating microbial eukaryote 68 
diversity is of major importance for understanding key ecological processes occurring in all 69 

environments on Earth.  70 
The development of molecular tools has provided new approaches for the study of 71 

microbial diversity and distribution [8,9]. High-throughput sequencing (HTS) has become a 72 
powerful tool to undertake large-scale environmental inventories of microorganisms [10]. 73 

Taking advantage of the volume of data provided, metabarcoding approaches have become 74 
very effective in the analysis of microbial biodiversity [11].  Several genetic markers exist 75 
for eukaryotic microorganisms, the 18S rDNA V4 and V9 variable regions being among the 76 

most commonly used [12, 13]. Molecular surveys have estimated that the microbial 77 
eukaryotic diversity could be by several orders of magnitude greater than the retrieved by 78 

exclusively morphological approaches [14]. However, some researchers are recently 79 

suggesting that modern genetic methods may be overestimating diversity, at least for 80 

protistan groups, and claim for investigating intraspecies sequence variability [15]. The 81 
refinement and implementation of metabarcoding approaches have allowed the 82 

identification of cryptic, invasive or toxic species, and the discovery of hitherto unknown 83 
lineages and unexpectedly diverse microbial communities [16, 17]. 84 

Microbial biodiversity debates are presently focused on the description of 85 

biogeographical gradients at global scale [8, 18], as well as to reveal the local and regional 86 
diversity and spatial distribution patterns of the microorganisms [19-22]. Understanding the 87 

drivers of microbial diversity and distribution is still a challenging aspect to understand the 88 
functioning of ecosystems [23]. Several factors have been studied as responsible of the 89 
spatial heterogeneity in ecosystems: local adaptation by changing environment (biotic and 90 
abiotic) [24], dispersal limitation by spatial constraints [25], and random placement of 91 
species [26], including founder effects [27]. Recently, geogenic factors (e.g. landform and 92 

underlying lithology) have been also revealed as important drivers of microbial (bacterial) 93 
diversity [28]. The drivers of microbial eukaryotic diversity remain however largely under-94 

studied in many environments. The factual diversity, spatial distribution and ecological 95 
meaning of many lineages and taxa, has not been yet deciphered [10]. 96 

  Ephemeral, shallow freshwater systems are among the still under-sampled 97 
environments for microorganisms [29, 30]. The organisms inhabiting these systems must 98 
face relatively long periods of unsuitable conditions (such as drought, freezing, lack of light 99 

in winter, or varying levels of oxygen), and active communities vary strongly along the year 100 
[31]. Still, the communities encountered in these systems are surprisingly diverse and 101 
heterogeneous, including clades that were previously thought to occur only in the ocean [29]. 102 



   
 

4 

 

Sensitivity: Internal 

It has been argued that the coexistence of these organisms is made possible by their capacity 103 

of entering dormancy and activating when conditions are suited [30]. 104 
 Rain-fed (ombrotrophic) granite rock basins represent one of the most variable habitats 105 

in terms of environmental parameters. Rock basins are hollows eroded on horizontal surfaces 106 
by weathering and dissolution of the granite [32,33]. The leftover sandy sediment often 107 
harbours light development of soil, organic crust, bryophytes and vascular plants. In 108 
ombrotrophic basins, rainfall is the only source of water, creating temporary pools on the 109 
rocks [34]. Basins undergo several cycles of inundation-desiccation throughout the year. 110 

Temperature, humidity, pH and availability of nutrients, beside of changing seasonally 111 

−sometimes erratically− may have drastic fluctuations throughout the day due to the 112 

variation in the intensity of diurnal insolation on the basins [34]. The high variability of these 113 
factors may determine the nature of the biological communities occupying these habitats. 114 
Research on eukaryotic microorganisms colonizing ombrotrophic rock basins has been very 115 
scarce and focused on phytoplankton [35]. Barely anything is known on the presence of 116 

heterotrophic protists and fungi in these habitats [36-38]. To our knowledge, there are not 117 
previous molecular studies addressing the study of microbial communities in rock basins.  118 

The aim of this work is to describe the occurrence, diversity, and distribution patterns of 119 

microbial eukaryotic OTUs retrieved from the sediments of rain-fed rock basins by HTS. 120 
Based on the few previous studies on ephemeral aquatic environments [29-31] we predict 121 
that our granitic basins should host many dormant organisms. Separating the dormant from 122 
the metabolically active fraction of the population is not possible based on environmental 123 

DNA sequencing, nor with RNA [39]. However, there are several hints that can indicate the 124 
existence of an important dormant community: (1) the presence of microorganisms that 125 

cannot be active at the same time (for instance because of different oxygen optima) can be 126 
an indirect proof for the existence of a dormant population (2) rare (very low abundant) 127 
OTUs should constitute the greatest part of the diversity and (3) because of the strong 128 

influence of stochastic processes in building communities, inherited from ancient individual 129 

history of each basin, communities should not share a high number of OTUs, and that beta 130 
diversity is mostly characterised by a turnover of communities. 131 

 132 

 133 

Materials and Methods 134 

 135 

Study Area 136 

 137 

Sampling sites are located in La Pedriza del Manzanares (UTM: 30N 425279 4511417. 138 

DATUM: ETRS89), a preserved area within the National Park Sierra de Guadarrama. La 139 
Pedriza has an average annual rainfall of 850 mm with an average annual temperature of 12 140 
°C between 800 and 1200 m. At high altitudes (1200 to 1800 m) rainfall and average annual 141 

temperature is 1250 mm and 9 °C respectively. The climate of the zone is Mediterranean 142 
temperate-cold, humid [40]. Our scale of study is the granitic basin, the emblematic minor 143 
geoform of La Pedriza. The basins are developed on medium to coarse grain size 144 
leucogranites, formed by quartz crystals, orthoses, microcline, plagioclase and biotite [41]. 145 

Granite texture is equi-granular without phenocrysts.  146 
 147 

 148 

Selection and Morphometric Analysis of Granitic Rock Basins 149 

 150 
We conducted a random sampling of 21 basins, of which 20 were active and 1 was a non-151 
active basin (i.e. where water does not accumulate because of its morphology).Photographs 152 
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of all studied basins were taken before sampling (Supplementary Fig. 1). The identification 153 

criteria for an active basin were: (i) not to present any fractures that prevent water to be 154 
retained; (ii) not to be completely covered by lichens, mosses or vascular plants [42].  All 155 

the chosen basins had standard forms, and those with complex morphology were not 156 
considered for sampling. The non-active basin was chosen as control, as it has a depth equals 157 
0 and therefore it cannot retain water.  In order to facilitate the study of metapopulation 158 
connectivity among the basins, the sampling area (0.2 km2) was limited to a maximum distance 159 
between basins of 1.02 km and minimum distance of 1 m. Altitude variation in the area ranged 160 

from 1080 m to 1250 m above sea level. The major and minor basin axes (length and width of 161 
the basins), the maximum (h) and the minimum (u) depth were measured. The area (A) and 162 
the volume (V) were estimated using the most similar geometric figure: ellipsoid (in 18 163 
basins) and spheroid (in 3 basins). Basin volume capacity ranged from 623.1 cm3 to 18899.8 164 
cm3. Basins were grouped into two rather homogeneous groups according to their Area/Volume 165 

ratio: those with A/V ≥1 (12 basins) and those with A/V <1 (8 basins). The higher this ratio is, the 166 

faster the basin should dry since more surface is exposed to water loss by evaporation and 167 

insolation. (Supplementary Table 1). 168 
 169 

Collection of Samples  170 

 171 
Samples of the sediments were taken after the summer period (September-October) when 172 

the basins were dry and before the first autumn rains. The sediment of each basin (aprox. 4 173 
g) was manually homogenized with a spatula and one sample per basin was collected in 174 

sterile polypropylene containers. In the laboratory sediments were spread on sterile Petri 175 

dishes protected from light and left to completely dry at room temperature (20 ⁰ C ± 0.2) 176 

until further analysis. 177 
 178 

 Chemical Analysis  179 

 180 
 Elemental composition of sediments was determined for total organic carbon (TOC) (by 181 

combustion method and nondispersive infrared analysis), Kjeldahl nitrogen (N) (by Kjeldahl 182 

method) and total phosphorous (P) (by inductively coupled plasma‐optic emission 183 

spectrometry – ICP‐OES).  184 

 185 

Extraction of DNA, Amplification and Sequencing of 18rDNA  186 

 187 
Aliquots of approximately 1 g of dry sediment from each basin were mixed with 500 ml of 188 

LifeGuard soil Preservation SolutionTM (MoBIO, Carlsbad, CA, USA)) to preserve nucleic 189 

acids. DNA was extracted within a month using the PowerSoil ® DNA Isolation Kit 190 

(MoBIO, Carlsbad, CA, USA) according to the manufacturer´s instructions. The V4 variable 191 

region of the 18S rRNA genes was amplified using the primers V4F 192 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAGCASCYGCGGTAATTCC193 

)  and V4R 194 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTTCGTTCTTGATYRAT195 

GA) [13]. PCR amplifications were conducted in a total reaction volume of 20 µl, using 196 

Promega’s GoTaq® PCR kit (Promega, Wood’s Hollow, WI, USA). Amplification was 197 

carried out for 30 cycles. Amplicons from independent PCR amplifications for each sample 198 

were pooled together. Each pool was then purified using Wizard® SV Gel and PCR Clean-199 

Up System purification Kit (Promega, Wood’s Hollow, WI, USA) according to the 200 

manufacturer´s instructions. ~ A DNA library was prepared from the pools using the TruSeq Nano 201 
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PCR-free Library Preparation kit and the paired-end 2x300 bp sequencing was done on an Illumina® 202 
MiSeq at the University of Geneva (Molecular Systematics & Environmental Genomics Laboratory) 203 

[43]. 204 

 205 

Bioinformatics  206 

 207 
The reads obtained were analysed following the pipeline by de Vargas et al [16], to delete 208 
sequencing errors, sequences without rDNA reads, detect chimeras and other pollutant 209 
sequences. Singletons were also eliminated [44]. The remaining sequences were allocated to 210 

each sample and taxonomically classified by global sequence alignment using the GGSearch 211 
algorithm [45] versus the sequences of the curated ribosomal eukaryotic database PR2 [46]. 212 
Sequences were also aligned against the SILVA bacterial and archaeal database to remove 213 
possible prokaryotic OTUs. Dereplicated sequence readings (metabarcodes) were grouped 214 

into operating taxonomic (OTUs) or phylotypes by the Swarm algorithm v2 [47]. OTUs were 215 
numbered from the least to the most abundant, and a database was generated with a sequence 216 
similarity threshold (OTUs vs PR2) ≥ 90% for microbial eukaryotes (MEk), that is all 217 

sequences but Metazoa and Embryophyta. Sequences will be made available upon acceptance 218 
of the manuscript. 219 
 220 

Statistical Analysis 221 

 222 

Statistical analysis was conducted using the R software (R Development Core Team, 2013) (vs 223 
3.5.0).  To determine whether the sampling performed was sufficient to get a reasonable estimate 224 
of OTU richness, the non-parametric estimator Chao 1 [48] was calculated (R package iNEXT 225 

2.0.14). Rarefaction curves were plotted to make comparable the OTUs richness of each basin 226 

with that of the others, by referring to the lowest OTU abundance value found among the basins 227 
[49] (R package iNEXT 2.0.14). Kruskal-Wallis (K-W) test was used to compare the differences 228 
among phylotype abundances in the basins, and Pearson Chi-square test to test whether the relative 229 

OTUs richness were homogeneous or not among basins. To correlate OTUs richness to the number 230 
of times they appear in the basins, multiple regression analysis were used adjusting the phylotype 231 

occurrence to an inverse exponential model (𝑦 = 𝑒𝑎+𝑏𝑥
−1

). 232 

Diversity estimates were computed based on raw reads and OTUs using the R packages Vegan 233 
2.5-2 for alpha diversity and Beta part 1.5.0 for beta diversity. Alpha diversity indexes used were 234 
Gini-Simpson (D = 1 – Σ pi

2) [50], Shannon- Weaver (H = – Σpi × ln (pi) [51] and Evenness 235 
(E=H/lnS) [52]. To assess the correlation between OTUs richness, alpha diversity indexes and 236 
geomorphological variables, Spearman rank correlations were calculated. Mann Whitney-237 

Wilcoxon test (U) was used to compare the alpha diversity indexes and richness in the two 238 
Area/Volume ratio groups of basins (A/V ≥1 or A/V <1). Non-metric MultiDimensional Scaling 239 

(NMDS, package Vegan 2.5-2) was applied to visualise comparatively the OTUs abundances in 240 
function of the two A/V basin groups. Ellipses were drawn on NMDS plots using the R package 241 

(envfit function in vegan package vers. 2.3-1 [53]. Beta diversity indexes were calculated using 242 
the Sorensen index (βsor) for the occurrence of OTUs and the Bray-Curtis index (βBC) for the 243 
abundance-based dissimilarity. In both cases the diversity was separated into the two independent 244 

components: species turnover (βsim) and nestedness (βsne (βsor – βsim)) [54], and balanced variation 245 
in abundance (βBC.BAL) and abundance gradient (β BC.GRA (β BC – β BC.BAL)) [55]. To evaluate if the 246 

differences in any of the components of the beta diversity between the basins were dependent on 247 
the geographic distances, we used the function ‘decay.model’ of the package Beta part 1.5.0. The 248 
function adjusted a GLM (exponential decay model) with dissimilarity as response variable, spatial 249 
distance as predictor, log link and Gaussian error [56].  250 
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 251 

Results 252 

 253 

Overall Taxonomic Affiliation of OTUs 254 

 255 

A total of 2,090,236 quality-filtered reads of the V4 regions of the 18S rRNA gene were 256 
obtained, 51% (1,059,658) belonging to microorganisms. The reads grouped into 4,153 OTUs of 257 
which 66% (2,761) were microbial OTUs (Supplementary Data 1). The most representative 258 

non-microbial OTUs (Metazoa and Embryophyta) in the basins belonged to the eutardigrade 259 
Ramazzottius oberhauseri species complex, to several species of rotifers including both 260 
bdelloids and monogononts (impossible to differentiate based on 18S rRNA sequences [57]), 261 
to the oribatid mite Scutovertex sculptus, and to the bryophytes Grimmia sp. and 262 

Ptychomitrium gardneri. The phylogenetic spectrum of microbial OTUs covered all current 263 
eukaryotic supergroups [58]: Amoebozoa, Archaeoplastida, Excavata, Opisthokonta, and 264 
SAR (Stramenopiles–Alveolata–Rhizaria) (Fig. 1a). In terms of number of OTUs the richest 265 

supergroup was the Rhizaria, represented by Cercozoa (37.2% of all OTUs), followed by the 266 
Opisthokonta (22.1%), of which the fungi Chytridiomycota (9.7%) and Ascomycota (7.3%) 267 
were the most diverse. Alveolata represented 19.9% of all OTUs, most of them belonging to 268 
Ciliophora (12.5%) and Dinophyta (6.1%). Archaeoplastida constituted 11.1% of all OTUs, 269 

of which Chlorophyta were the most rich in OTUs group (9.4%). Some OTUs belonging to 270 
less represented taxa were the Cryptophyta and Centroheliozoa (0.80% of all OTUs each), 271 
Katablepharophyta (0.33%) and Apusomonads (0.25%).  A few OTUs (less than 0.9% of the 272 

total) representing deep-branching lineages (Rozellida, Colpodellida) in the eukaryotic tree 273 
were also found. Also, 13 OTUs belonging to the Marine Stramenopiles (MAST-12 lineage) 274 

were also present in our dataset  275 

This order of importance changed noticeably when considering the abundances of the reads 276 

(Fig. 1b). The most abundant groups were the Archaeoplastida (46.2% of all reads, of which 277 
38.8% were Chlorophyta), Alveolata (27.2%, of which Ciliophora represented 25.2%), and 278 

Opisthokonta (9.9%, of which Chytridiomycota reached 8.5%). The species rich Cercozoa 279 
only represented 2.9% of the total 18S rDNA reads. When analyzed per individual basin, the 280 
protistan groups Chlorophyta (in 10 basins) and Ciliophora (in 9 basins) were also the most 281 

abundant microbial eukaryotes (Fig. 2). 282 
 283 

Distribution of the Abundance and Richness of OTUs  284 

 285 

A large proportion of the microbial OTUs (95%) had an abundance distribution in the rock basins 286 
between 1 and 512 reads (Supplementary Fig. 2). Moreover, 55% of the OTUs occurred only in 287 
two of the 21 basins studied (Supplementary Fig. 3). Phylotype occurrences adjusted significantly 288 

to an inverse exponential distribution curve when relating the OTUs to the number of times they 289 
appeared in the basins.  290 

The abundance and richness of OTUs were not distributed homogeneously among the basins 291 
(Kruskal-Wallis OTUs abundances, K-W = 1934.6; df = 20; p-value < 10-4; Chi-square OTUs 292 

richness, χ² = 1526.3; df = 20; p-value < 10-4).  The lowest number of rDNA reads (1229) and 293 
OTUs (267) was found in the the non-active basin 9 (Supplementary Fig. 4), used as control for 294 
our study. Rarefaction curves in combination with Chao 1 estimator showed that the OTUs 295 
richness was not retrieved for any of the samples. No rarefaction curves of any of the basins 296 
reached saturation (Fig. 3). Also, the sampling depth and sequencing coverage was different for 297 
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each basin. The retrieved microbial OTUs represented a percentage of Chao1 estimator that ranged 298 

from a minimum of 42.7% to a maximum of 71.8% (Supplementary Fig. 5). 299 
The OTUs were classified according to their relative abundance in the basins [18]: Rare (R): 300 

OTUs with abundance values ≤ 0.01%; Abundant (A): OTUs with abundance values ≥ 1%; Non 301 
Rare Non Abundant (NRA): OTUs with abundance values > 0.01% and < 1%. Figure 4 represents 302 
comparatively the distribution among basins of reads and richness of OTUs within each of the 303 
three abundance categories. Within each category, both the DNA reads (Kruskall-Wallis test; p-304 
value < 0.001) and the richness of OTUs (Chi-Square test; p-value < 0.05) were neither evenly 305 

distributed among the basins.  306 
A clear partitioning of the microbial abundance was observed in the rock basins (Table 307 

1). There were not exclusively Abundant (A) OTUs (OTUs that appeared only as Abundant 308 
in the basins), while the exclusively Rare (R) OTUs represented 52.3% of all OTUs. The 309 
OTUs appearing exclusively in the intermediate category (NRA) represented 1.9% of the 310 

total. No OTUs found to be Rare was ever detected as Abundant or viceversa. However, 311 

41.9% of the OTUs were found with abundances in the basins ranging between R and NRA 312 

categories. In terms of occurrence (Table 1), there were no OTUs exclusively A, R or NRA that 313 
occurred in all the rock basins. The basins only shared 2.1 % of the total microbial eukaryotes. 314 
(Supplementary Table 2).These common OTUs were present in a different abundance 315 
category depending on the basin.  316 

Only 105 OTUs were at least once an Abundant OTU in a basin. These OTUs covered 317 
more than 70 % of the total reads of each basin (representing more than 90% of the reads in 318 

four of the basins), excepting for the control basin where the Abundant OTUs represented 319 
only half (50.3%) of the total number of sequences. By contrast, a high number of OTUs 320 
(2,680) were at least once a Rare OTU in a basin. However, for most of the basins the Rare 321 

OTUs meant less than 2% of the abundance. The control basin did not have Rare OTUs. The 322 
maximum representation of the Rare OTUs was 4.0% of the basin total reads and only 323 

occurred in one basin (basin 17) (Supplementary Table 3). 324 

 325 

Analysis of Alpha and Beta Diversity  326 

 327 

Clear differences in the values of the alpha diversity indexes (Shannon (H), Simpson-Gini (D) and 328 
Evenness-Pielou (E)) indexes were found among the basins. For all indexes the basin 9 (control) 329 
had the highest values of alpha diversity (Supplementary Table 4). Correlation analysis revealed 330 
strong association among the three diversity indexes (Spearman Rho > 0.90). The correlation 331 

between the OTUs richness and the alpha diversity indexes was lower (Spearman Rho < 0.70) 332 
although statistically significant in all cases (Supplementary Table 5).  333 
No statistically significant correlations were found between alpha diversity indexes and any of the 334 
morphometric descriptors of the basins (Fig. 5). Alpha diversity indexes were also compared in 335 
basins grouped in function of their A/V ratios as an indirect measure of the likelihood of basin 336 

desiccation. Significant differences were not found (p-value > 0.05 in Mann-Whitney (Wilcoxon) 337 

W-test; results not shown). Spearman tests were used to test for significant correlations between 338 

microbial diversity metrics and OTUs richness to the TOC, N and P profile in the basins. 339 
Positive correlations existed between Shannon and Evenness indexes and both nutrients (N 340 
and P) (Supplementary Table 6). 341 

Multiple-sites dissimilarity measures of beta diversity revealed high differences in the 342 
OTU composition between basins. The variation in OTU composition was mainly 343 

characterized by a turnover of OTUs (βsim) rather than by OTU nestedness (βsne) (Table 2). 344 
Regarding abundance-based dissimilarity (βBC), most of the dissimilarity was due to 345 
balanced variation in abundance (βBC.BAL), that is, individuals of some OTUs in one basin 346 

are substituted by the same number of individuals of different OTUs in another basin. 347 
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Abundance gradient contribution (βBC.GRA), that implies the loss of some individuals of a 348 

given OTU from one basin to another, was very small (Table 2).  349 
Pairwise comparison of beta diversity (Fig. 6) showed no significant response to distance 350 

(p-value > 0.1) for any of the GLM distance-decay similarity models of beta diversity components. 351 
Additionally, the abundance-based values of beta diversity in the basins (Bray-Curtis distances) 352 
were ordinated by Non-Metric MultiDimensional Scaling (NMDS). Analysis were 353 
performed for the total OTUs abundance, and for their partitioning into the three different 354 
abundance categories (Abundant, Rare and NRA OTUs). In all cases, basins were neither 355 

discriminated (stress values < 0.1) in function of their A/V ratio, as indicated by the 356 
overlapped Ordihull convex ellipses for both groups of basins (Fig. 7 and Supplementary 357 
Fig. 6). 358 
 359 
 360 

Discussion 361 

 362 
Surveys on microbial communities from small and transient inland ecosystems are scarce when 363 
compared to those on large freshwater or marine environments [29,30,59]. The structural 364 
simplicity, isolated nature, global distribution, and permanence in geological time of rain-365 

fed granite rock basins posit them as archetypes for testing a wide variety of ecological, 366 

biogeographic and evolutionary hypotheses on the metacommunities inhabiting these 367 
habitats [60]. There are very few studies that describe the presence of microorganisms in rain-fed 368 
granitic basins, and they have only addressed the morphological characterization of some genera of 369 

free-living protists [35,37,38,61] and obligate parasitic fungi (Microsporidia) [62]. The present 370 
work on ombrotrophic granite basins located within a National Park is the first comprehensive 18S 371 

rDNA gene study of eukaryotic microbial communities in these habitats.  372 
 373 

Description of the Communities 374 

 375 
Our results revealed rich and diverse microbial communities in the sediments of the granitic basins. 376 
These communities represented more than half of the abundance and number of the eukaryotic 377 

OTUs retrieved. The large OTUs richness found is potentially encompassed by a wide range 378 

of ecological functions, which supports the diverging conditions generated even in a single 379 
basin in function of biotic and abiotic factors and temporal availability of water. Cercozoa, 380 
by a lot the richest group in number of OTUs in these habitats, are a broad Phylum of 381 
physiologically and morphologically diverse protists [63,64]. Cercozoa are found 382 
abundantly in terrestrial, marine and freshwater habitats [65]. Encountered OTUs belong in 383 

majority to Glissomonadida, a species-rich assemblage of small gliding flagellates living in 384 
soils and formerly largely grouped into the morphospecies Heteromita globosa [66]. These 385 
organisms have typically high growth rates and very efficient encystment capacities [67]. 386 

They appeared as rare OTUs in most basins, which corroborates the hypothesis that most 387 
remain dormant waiting for appropriate conditions to develop. We found also abundant reads 388 
from a specialized parasitoid genus, Viridiraptor (OTU 154), whose abundance pattern 389 
seemed to be similar with the chlorophyte Desmodesmus (OTU 14) [68]. Likewise, several 390 

small testate amoebae more or less specialized on algae (genera Rhogostoma and Trinema) 391 
were represented in most of the basins [69]. In spite of being the richest protist group in the 392 
study, Cercozoa reads were typically present in low abundances unlike what it was found in 393 
other ephemeral shallow freshwater ecosystems [29,30].  394 

By contrast, Chlorophyta were the most abundant microorganisms but were represented 395 
by four times less OTUs than Cercozoa. A plausible explanation to these results is related to 396 
the diurnal insolation cycle on the basins. During some periods of the day it was common to 397 
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observe blooms of Chlorophyta in the aquatic phases, whose resting stages accumulated in 398 

the sediments and were therefore retrieved by the 18S rDNA sequencing. This is the case of 399 
the planktonic species Stephanosphaera pluvialis, a relatively little known protist and the 400 

only species described for the genus which we isolated from the aquatic phase of some of 401 
the basins of this study. S. pluvialis has been observed in garden birdbaths [70] and rain 402 
pools [71]. For this reason, it is thought the species might be transferred from place to place 403 
on bird plumage (phoresis). This species is very likely to be represented in the sediment for 404 
the OTU 2, the most abundant microbial in our study that had a 100% homology in PR2 with 405 

the Chlorophyta Stephanosphaera sp. In freshwater systems, strict phototrophs like the 406 
Chlorophyta are often found in nutrient-rich environments (eutrophic), while less productive 407 
water bodies are rather dominated by mixotrophs such as Chrysophyta [72], which were 408 
scarce in the present study. Our sediments had variation coefficients around 50% or higher for 409 
TOC and nutrients (N and P) values (Supplementary Table 7, showing the heterogeneity of the 410 

basins regarding the CNP content). P is considered the main responsible element of eutrophication 411 

in freshwaters [73]. The sediments were generally characterised by over-enrichment of nutrients 412 

in particular by P, which had values equivalent to those considered within hypereutrophic levels 413 
in water samples [74]. The abundant presence of animal droppings (birds, plus a thriving 414 
population of Capra pyrenaica) may explain the high P and N values measured in many of 415 
the sediments, which were otherwise only fed by rainfall.  416 

Also, high levels of primary productivity in the basins, provoked by the blooms of 417 
Chlorophyta, may ultimately lead to hypoxia (or anoxia). This would also explain the presence in 418 

our survey of several protistan taxa associated to low oxygen conditions. OTUs were associated 419 
with sequences belonging to MAST-12 lineage, a group originally thought to be exclusively 420 
marine but now being increasingly detected in a variety of ecosystems,  including ephemeral 421 

small freshwater systems [29], and often characterized by low oxygen amounts [75-77]. 422 
Other typical anaerobic/microaerophilic organisms were also encountered, such as 423 

sequences related to the flagellate Trimastix [78], and the ciliates Brachonella galeata and 424 

Metopus violaceus within the Armophorida [79]. These ciliates are known to enter dormancy 425 

under high oxygen pressure, awaiting anoxia [80]. Other ciliate taxa, such as Halteria 426 
grandinella (OTU 8) and Oxytrichidae (OTUs 4,16 and 27, among many others) are well-known 427 
aerobes that may respond to adverse anaerobic conditions by encysting. These organisms probably 428 

activate when respiration increases and depletes locally oxygen, for instance when nutrient pulses 429 

occur (for instance with animal droppings). However, given the size and depth of the granitic pools, 430 
and the fact that they dry out regularly, the existence of permanent anoxic microniches can be 431 
practically ruled out. This suggests the existence of two communities present in a single 432 
environment that can be active at different times and the existence of a dormant pool of encysted 433 
organisms. 434 

The most likely explanation for the resilience of microbial communities in these rather extreme 435 
and drought-prone habitats, is therefore their capacity to go into metabolic dormancy [59]. 436 
Dormancy reflects a selected reservoir of metabolically-quiescent organisms, which can be revived 437 

under different environmental conditions [7]. This microbial encysted pool may help in explaining 438 
ecological events such as microbial bloom dynamics, biogeographical patterns, and microbial 439 
resilience under cyclical and drastic environmental perturbations [7], as occurred in the rock basins 440 
habitats here studied. The fact that the basins act as natural receptacles, together with the existence 441 

of dormant microorganisms that may activate at different moments, would explain the wide variety 442 
of microbial sequences encountered in the granitic pools sediments, as microorganisms can be 443 
progressively added to the basins without any effect from competition. In agreement with this 444 
hypothesis, inactive basin 9 (effectively a soil sample where a “wash-away” of populations by 445 
water happens) hosted significantly lower richness of OTUs, and no rare sequences appeared. 446 
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These results suggest that the lack of a washing-away effect occurring in the granitic basins 447 

resulted in high levels of microbial richness. 448 
 449 

Patterns of Abundance and Diversity of OTUs 450 

 451 
Our results show that basin populations were mainly constituted by a high richness of OTUs 452 
which generally were present at low abundances. The pool of exclusively rare OTUs was never 453 
detected as abundant OTUs. Moreover, about 50% of the rare OTUs were found only in two 454 
basins, but hardly ever in the same two. Our study was based in a single sample taken per 455 

basin, and although it was collected as a composite (homogenised) sample of all the sediment 456 
occupying the bottom of each basin, the rarefaction curves did not reach saturation in any of 457 
the basins. Therefore, β diversity may have been overestimated, especially in its turnover 458 
component. In addition, it is plausible and cautious to think that some of the a priori absent 459 
rare OTUs may have been overlooked in our sampling because organisms were too rare to 460 

be detected by our approach. Taking this in mind, our results are globally in line with the recent 461 
molecular studies carried out in other microbial habitats [44,81], which show that communities are 462 

dominated by a very infrequent and low abundant microbial community that has been termed "rare 463 
biosphere" [82-84]. Some hypotheses have been proposed on the nature and function of this “rare 464 
biosphere”: an active microbial reservoir, a dormant seed bank, including to an unknown extent 465 
extracellular DNA and dead organisms [18,85,86]. It has been acknowledged that certain protist 466 

lineages can present different copies of the 18S rRNA in a single genome. This is most likely to be 467 
observed in organisms where ribosomal genes include many insertions in comparison with those of 468 

canonical eukaryotes, like foraminifera [87] and amoebozoa [88], but it has also been detected in 469 
other groups such as dinoflagellates [89]. Intra-genomic polymorphism within genomes should 470 
nevertheless be infrequent, as concerted evolution of the different copies is quickly eliminated in 471 

evolutionary times [90]. As a consequence, rare sequence should correspond, most of the times, to 472 
organisms present in low numbers in samples. However, the ecological significance, if any, of this 473 

pool of rare OTUs is still to be understood. Unravelling the real microbial diversity and the 474 
ecological role of rare microorganisms remains a current challenge in microbial ecology 475 

[18].Whether, as we hypothesized, at least some of the rare OTUs found in the dried sediments in 476 
this study have the potential to become dominant OTUs in response to returning water availability 477 
or if they prevail as chronically rare after rewetting, are questions still to be explored that will add 478 
valuable information to the nature and function of the rare microbial pool.  479 

A relevant characteristic showed by the eukaryotic microorganisms of the rain-fed granitic 480 
basins studied is their stochastic and heterogeneous population dynamics, which is reflected by the 481 
high levels of beta diversity dissimilarity between basins. Most of the dissimilarity we found among 482 
the populations was due to species spatial turnover. The contribution of nestedness was minimal, 483 
which shows that  there was a high degree of OTUs replacement, and the basins having less number 484 

of OTUs were not just subsets of the most diverse basins (βsne and βBC.GRA very low; [54-56]. A 485 
striking large among-basin variation in OTUs identity was found; only 59 OTUs (2.1%) were 486 

shared by the basins. That is, most OTUs were replaced while very few OTUs co-occurred 487 
regardless of the spatial closeness between the basins, highlighting the small level of 488 
connectivity among the populations of the metacommunity.  489 

The high species turnover observed can be explained by the joint effects of fine-scale local 490 
adaptation to the diverging environment characterising the basins, and also random processes, may 491 

these last include resilient founder effects [27, 91, 92]. Local adaptation in response to changing 492 
of environmental variables is an important mechanism for population differentiation [24]. 493 
As environmental variables shape habitats at a very fine scale, adaptation allows closely 494 
related microbial populations to coexist providing high levels of biodiversity, as we found 495 
here. Moreover, the observed microbial heterogeneity among the basins may also be caused 496 
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by resilience of founder events [27]. Ombrotrophic rock basins are discrete (spatially 497 

isolated) habitats, and the colonisation by passive dispersers ‒as microorganisms are ‒ must 498 
be constrained to chance (transportation by air, or via vectors such as invertebrates, birds or 499 

mammals).  After initial colonisation, microbial eukaryotes may establish rapidly a large 500 
population by cell division. Random genetic drift owing to founder effects in spatial isolated 501 
habitats, between which gene flow is restricted, may create bottlenecks that lead to high 502 
genetic divergence among populations [93] resulting in a very high number of different 503 
OTUs.    504 

The partitioning of beta diversity into its two components, nestedness and spatial 505 
turnover, may also be very informative for habitat conservation strategies [54]. A pattern of 506 
OTUs subsets (nestedness) would theoretically allow selecting a small number of the richest 507 
basins for preserving most of the biodiversity of the habitats, while a pattern of OTUs 508 
substitutions dominated by turnover, as the one observed in our study, involves conservation 509 

efforts devoted to a larger assemble of basins, not only the species richest ones.  510 

The influence of the basin morphometry on the biodiversity has been often defined following 511 

the known principle of species- area relationship [94]. Research on invertebrate communities in 512 
rock basins has shown that a larger basin size determines a greater diversity of these communities 513 
[35,95]. In our study, depth, volume or area are not useful predictors of the diversity at the microbial 514 
eukaryote level. These results concur with those found for phytoplankton in rock pools [60] and by 515 

Soininen and Luoto [96] in lakes. Our findings may look surprising because larger habitats are 516 
intuitively related to higher heterogeneity and, therefore, to the possibility of new resources to be 517 

exploited by a more diverse number of microorganisms. Results may be explained for the 518 
permanent reservoir of dormant OTUs which, even in the smaller basins, may allow the coexistence 519 
of multitude of similar physiological types through a different temporal excystation or return to 520 

active state. Some authors have also proposed that a higher likelihood of basin desiccation 521 
determines less diversity for the biological communities [97]. Our study is the first that explores 522 

this hypothesis in microorganisms, using the A/V as a proxy of basin desiccation (the higher A/V 523 

ratio, the greater the likelihood of desiccation or evaporation rate). Contrary to expected, the results 524 

show no significant differences for diversity indexes or abundance of OTUs on the basis of the A/V 525 
ratio. It should be pointed out that we measured desiccation rate indirectly. The extent to which our 526 
results mean that the rate of desiccation does not influence the distribution of the microbial 527 

populations in the sediments should be confirmed in future research by in situ hydroregime 528 

measurements on a temporal scale. 529 
 530 

Distances Between Basins  531 

 532 
The negative relationship between biological similarity and spatial distance is a common 533 
macroecological pattern [98]. To further investigate the dissimilarity of the microbial 534 

communities in relation to the distance separating the basins, we produced distance-535 
similarity decay models [56]. Our results show that spatial distance between the basins did 536 

not explain the differences observed in the beta diversity values for any of the components. 537 
These results agree with those found by Simon et al  [29]  also in ephemeral habitats, but 538 
differ from Lepère et al [20], who did found distance–decay patterns for rare and dominant 539 
taxa of small protists in lacustrine ecosystems. Results obtained are in agreement with the 540 
hypothesis that each basin has an independent history of colonization, localized events that 541 

provide individuality to the basins. Our similarity decay-models results support the 542 
idiosyncrasy of these habitats.  Rain-fed granite basins are already so microbially unique that 543 
distance between them does not provide more variability to the innate microbial dissimilarity 544 
they hold.  545 
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Altogether, our results suggest that ombrotrophic granite rock basins may be hotspots of 546 

regional/local microbial diversity in the ecosystems. Because of drastically (and independently) 547 
changing environmental conditions, each ombrotrophic basin can host distinctive and unique 548 

communities, which may co-exist under different metabolic states. Each basin can be 549 
considered as a repository of the accumulated diversity of protists that were once active with 550 
the potential of blooming again, provided that conditions become suitable. This emphasises 551 
the biological value of these habitats and the interest to delve into their study and 552 
conservation. 553 
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Figure captions 850 

 851 
Fig. 1 Distribution of the number of microbial eukaryotic OTUs (a) and reads (b) among the 852 
taxonomic groups present in the basins. Red line represents the cumulative percentage (%) of 853 
OTUs (a) and reads (b). Only groups with abundances   ≥ 0.1 % of the total were represented 854 

in b 855 
 856 
Fig. 2 Distribution of the abundance of main taxonomic groups of Protists and Fungi at each 857 
basin. Only groups with abundances  ≥ 0.1 % of the total were represented  858 
 859 

Fig. 3 Rarefaction curves of the number of microbial eukaryotic OTUs for each granite rock 860 
basin with extrapolation (dashed line) to the asymptotic Chao1 value  861 
 862 

Fig. 4 Variation of the reads (median and standard error) and total OTUs number (black 863 

squares) in the basins for each OTUs abundance category. Abundant (a); Rare (b); Non Rare 864 
non Abundant (c). See Results section for a detailed description of the categories 865 
 866 
Fig. 5 Spearman correlations between the diversity indexes, OTUs richness and 867 

geomorphology indicators. Circles with asterisks represent significant correlations; * p-value 868 

≤ 0.05; ** p-value ≤0.01; *** p-value ≤0.001. A: Basin Area; V: Basin Volume; H: Shannon 869 
diversity index; D: Simpson diversity index; E: Pielou evenness index; R: Richness of OTUs; 870 

Ek: Eukaryotes; MEk: Microbial Eukaryotes; L: Length of the basins; W: Width of the basins; 871 
h: Maximum basin depth (h); u: Minimum basin depth 872 
 873 

Fig. 6 Relationship (exponential decay model [56]) between Beta diversity components and 874 
the spatial distance among basins. Adjusted regression lines are represented in red; a: Beta 875 

Simpson (βsim); b: Beta balanced Bray-Curtis(βBC.BAL); c: Beta nestedness (βsne); d: Beta 876 

Gradient Bray-Curtis (βBC.GRA). See Materials and Methods section for a detailed description 877 

of Beta diversity components 878 
  879 

Fig. 7 Bray-Curtis based non-metric multidimensional scaling (NMDS) plot for the total 880 
OTUs (a) and the three abundance categories (b, c, d). Blue (1) represents basins with A/V 881 
ratio ≥1 and red (0) represents basins with A/V ratio <1  882 
 883 


