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Abstract

Fractional order system is playing an increasingly important role in terms of both theory
and applications. In this paper we investigate the global existence of Filippov solutions and the
robust generalized Mittag-Leffler synchronization of fractional order neural networks with dis-
continuous activation and impulses. By means of growth conditions, differential inclusions and
generalized Gronwall inequality, a sufficient condition for the existence of Filippov solution is ob-
tained. Then, sufficient criteria are given for the robust generalized Mittag-Leffler synchronization
between discontinuous activation function of impulsive fractional order neural network systems
with (or without) parameter uncertainties, via a delayed feedback controller and M-Matrix theory.
Finally, four numerical simulations demonstrated the effectiveness of our main results.

Keywords. Generalized Mittag-Leffler synchronization; Discontinuous neural networks; Filippov
solutions; Delayed feedback controller; Parameter uncertainties;.

1 Introduction

In recent years, fractional order dynamical system has aroused interest of many researchers in the
field of nonlinear science and technology. Fractional-order calculus, which generalized the classical
calculus developed in the 17th century (Podlubny, 1999 & Kilbas et al.,2006). Fractional calculus
investigates primarily the properties of derivatives and integrals of non-integer order. In particular,
the differential equations involving fractional derivatives have important geometric interpretations.
For this reason, fractional calculus is currently a rapidly growing field, in terms of both theory and
applications to real world problem. More precisely, fractional calculus has been applied in various
branches of science and engineering, including electromagnetic waves (Heaviside, 1971) and bioengi-
neering (Magin et al.,2008). Compared to integer order calculus, fractional order one has infinite
memory and more degrees of freedom (Chen et al.,2010). Moreover, fractional order is also said to
be “more authentic” (Hilfer, 2000). Nowadays, the dynamical system of synchronization or stability
of fractional order neural networks was found to play an important role in applications, such as in-
formation theory, pattern recognition, cryptography or secure communication (Milanovic et al.,1996;
Y ang et al.,2012;Ren et al.,2015).

Since the formulation of drive-response synchronization concept in 1990s by Carroll and Pecora,
which means dynamical behaviors of a coupled system that realizes convergence to the matching
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spatial state, has become an important research topic in various areas. Still now, there are numer-
ous types of synchronization concepts known in the literature, including complete synchronization
(Ding et al.,2016; Y ang et al.,2014;Lu et al.,2012), anti-synchronization (Dessoky, 2010), lag syn-
chronization (Zhan et al.,2002), phase synchronization (Rosenblum et al.,1996) and others. However,
few practical network systems can be synchronized directly. To address this problem, several control
schemes have been introduced, such as feedback control (Li et al.,2017; Cao et al.,2017), linear feed-
back control (Xiao et al.,2016), observer based control (Jiang et al.,2006) and impulsive control
(Y ang et al.,2007).

Generally, time delay of the signal between the driver and response system is unavoidable be-
cause of the network traffic congestion as well as finite switching speed of signal transmission over
the links, which may leads to instability, chaos, oscillation or other performance of network models
(Li et al.,2017). Moreover, time delays are more complicated compared to other networks (Chen et al.,
2013; Li et al.,2016). Impulses, i.e., abrupt changes in state at certain times also affect the stability of
the systems (Li et al.,2017, 2015). Generally, impulsive systems belong to two major types: first is the
constant impulsive system, while the other one is time varying impulsive system. Due to measurement
errors, parameter fluctuations as well as external disturbance, parameter uncertainty is unavoidable,
which has important effects on the stability and synchronization capability of most real world dy-
namical systems. Additionally, the main application of this dynamical problem is used to secure
communication, only if the drive and response systems realize synchronization can the transmitted
signal be fingered out. Therefore, it is necessary to study fractional order complete synchronization
of neural networks with discontinuous activations. Firstly, the global convergence of general neural
networks with discontinuous activations were considered in (Forti. M and Nistri.P, 2003), while
Forti et al.,2005 discussed the infinite gain of neural discontinuous activations. Besides, these acti-
vations are mainly applied to systems oscillating under earthquake, dry friction, power circuits and
so on. Several results with respect to synchronization of discontinuous neural networks have been
reported in the literature(Lu et al.,2005, Xiao et al.,2006, Liu et al.,2011, Liu et al.,2014). On the
other hand, Wang et al.,2016, some parameter uncertain models of integer order delayed neural net-
works with discontinuous activations are discussed, while Ding et al.,2016 investigated Mittag-Leffler
synchronization of neural networks with discontinuous activation functions by using M-matrix theory
and non smooth analysis. However, there are few results of synchronization of fractional neural net-
works with discontinuous activation. To our best of knowledge, there is no results published in robust
generalized Mittag-Leffler synchronization of delayed neural network systems (GMSDNNs) with (or
without) parameter uncertainties. This model is more general and can be extended beyond the study
of integer order discontinuous dynamical systems.

Inspired by the above analysis and discussions, our main aim in this paper, is to study the
generalized Mittag-Leffler synchronization of delayed fractional order neural networks(GMSDNNs)
with discontinuous activations. The crucial novelty of this paper is further summarized as follows:

• In the sense of Caputo fractional order derivative of 0 < α < 1, based on the growth condition
and non smooth analysis, we have proved the global existence of Filippov solution.

• A delayed feedback controller is designed which includes the constant time delay terms and
discontinuous term.

• By means of M-matrix theory, Lyapunov stability theory and proposed discontinuous control
scheme, the algebraic sufficient condition for generalized Mittag-leffler synchronization is ad-
dressed, and we improved the fractional order continuous activation synchronization methods.
Moreover, an important feature presents in our paper is that the improved result is still true for
integer order robust exponential synchronization of delayed neural networks with discontinuous
(continuous) activations with impulses.

The rest of the paper is organized as follows. In Section 2, some basic definitions and preliminaries
are given including the problem formulation are introduced. In Section 3, The existence of Filippov
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solution is provided and derive the sufficient criteria for the robust generalized Mittag-Leffler synchro-
nization between drive and response neural network systems. Section 4 consider the four numerical
examples to validate the theoretical obtained results, conclusions are drawn in Section 5.

2 Model Description and Preliminaries

Notations: Throughout this paper, R is the space of real number, N+ is the set of positive integers and
C is the space of complex numbers. For a vector x ∈ Rn, we shall use the norm ∥x∥ = ∥.∥1 =

∑n
i=1 |xi|.

The signum function applied for a vector sgn(x) = [sgn(x1), sgn(x2), ...., sgn(xn)]T is given by

sgn(x) =





1, x > 0

0, x = 0

−1, x < 0.

Also, Rn×n denotes the set of all n × n real matrices. For a square matrix A = (aij)n×n ∈ Rn×n, we
consider the absolute value given by the formula |A| = (|aij |)n×n ∈ Rn×n. In addition Cn([t0, +∞), R)
denotes the space consisting of n-order continuous differentiable functions from [t0, +∞) into R.
For our further presentation and convenience, we set the following notations:

D = diag(d1, d2, . . . , dn), âij = max{|aij |, |āij |}, b̂ij = max{|bij |, |b̄ij |},

K1 = diag(κ1,1, κ1,2, ......., κ1,n), K2 = diag(κ2,1, κ2,2, . . . , κ2,n), K3 = diag(κ3,1, κ3,2, . . . ..., κ3,n),

E1 = (âijpj)n×n, E2 =
(
(âij + b̂ij)pj

)
n×n

, E3 = (|aij |pj)n×n, E4 =
(
(|aij | + |bij |)pj

)
n×n

,

F1 = diag
{ n∑

j=1

b̂1jpj ,
n∑

j=1

b̂2jpj , . . . ..,
n∑

j=1

b̂njpj

}
,

F2 = diag
{ n∑

j=1

(â1j + b̂1j)qj ,

n∑

j=1

(â2j + b̂2j)qj , . . . .,

n∑

j=1

(ânj + b̂nj)qj

}
,

F3 = diag
{ n∑

j=1

â1jqj ,
n∑

j=1

â2jqj , . . . ....,
n∑

j=1

ânjqj

}
,

M1 = diag
{ n∑

j=1

|b1j |pj ,

n∑

j=1

|b2j |pj , . . . · · ·
n∑

j=1

|bnj |pj

}
,

M2 = diag
{ n∑

j=1

(|a1j | + |b1j |)qj ,
n∑

j=1

(|a2j | + |b2j |)qj , . . . ,
n∑

j=1

(|anj | + |bnj |)qj

}
.

In this section we recalled some key definitions, assumption and some basic lemmas.

Definition 2.1 (Kilbas, 2006 & Podlubny, 1999). The Caputo fractional-order derivative of order α
for a function x(t)∈ Cn([t0, +∞)) is defined as

Dαx(t) =
1

Γ(n − α)

∫ t

t0

xn(s)

(t − s)α−n+1
ds,

where t ≥ t0 and n is the positive integer such that n − 1 < α < n.
Particularly, when 0 < α < 1,

Dαx(t) =
1

Γ(1 − α)

∫ t

t0

x′(s)
(t − s)α

ds.
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Definition 2.2 (Podlubny, 1999). The Laplace transform of Mittag-Leffler function is

L{tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
, (Re(s) > |λ| 1

α ),

where Eα,β(·) is the the two-parameter Mittag-Leffler function, which is defined by Eα,β(z) =
∑∞

k=0
zk

Γ(αk+β) ,

α > 0, β > 0, z ∈ C, while s is the variables in Laplace domain. Additionally, Eα,1(·) denote the
one-parameter Mittag-Leffler function and E1,1(·) represent the exponential function.

Consider an n-dimensional fractional order delayed system:

Dαx(t) = f(t, x(t − τ)), (1)

where α ∈ (0, 1), x(t) = (x1(t), x2(t), ......., xn(t))T ∈ Rn, f : [0, +∞) × Rn −→ Rn is piecewise
continuous on t. Its solution can be solved as

x(t) = ς(0) +
1

Γ(α)

∫ t

0

(t − s)α−1f(s, x(s − τ)) ds,

where x(s) = ς(s), s ∈ [−τ, 0] is the initial values of system (1). We consider a class of fractional
order impulsive delayed neural networks with discontinuous activations as follows:





Dαxi(t) = −dixi(t) +
∑n

j=1 aijhj(xj(t)) +
∑n

j=1 bijhj(xj(t − τj)) + Ii, t ̸= tk, t ≥ 0,

∆xi(tk) = xi(t
+
k ) − xi(tk) = Υik(xi(tk)), k = 1, 2, ....

xi(s) = ρi(s), s ∈ [−τ, 0],

(2)

and the vector form is




Dαx(t) = −Dx(t) + Ah(x(t)) + Bh(x(t − τ)) + I, t ̸= tk, t ≥ 0,

∆x(tk) = x(t+k ) − x(tk) = Υik(x(tk)), k = 1, 2, . . .

x(s) = ρ(s), s ∈ [−τ, 0],

where i = 1, . . . , n(n ∈ N+), Dα is the Caputo fractional derivative of order α (0 < α < 1); x(t) =
(x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector (t > 0); D = diag(d1, d2, . . . , dn) > 0, which
stands for self connection weight matrix; A = (aij)n×n ∈ Rn×n, where aij represents connection
weight matrix on the jth neurons to ith neurons; B = (bij)n×n ∈ Rn×n, where bij represents delayed
connection weight matrix on the jth neurons to ith neurons; h(x(t)) = ((h1(x1(t)), ...., (hn(xn(t)))T ∈
Rn is the neuron nonlinear activation function at time t > 0; τj ≥ 0 is constant time delay; Ii

corresponds to the constant external input; Υik : Rn −→ Rn is impulsive operator and the impulsive
moment tk, k = 1, 2, ... satisfying t0 < t1 < . . . and limk→+∞ tk = +∞; xi(t

−
k ) = limt→t−

k
x(t) and

xi(t
+
k ) = limt→t+k

x(t) express the left and right limits on impulsive moments at time t = tk. Without

loss of generality, the solution of network system (2) is left continuous at time tk. i.e., xi(t
−
k ) = xi(tk);

The uncertainties of network parameter is important factor that affects stability. In this paper, the
parameter matrices D = diag{d1, d2, ...., dn}, A = (aij)n×n, B = (bij)n×n of system (2) are assumed
to be norm-bounded within the following ranges:

DI = [D, D̄] = {diag(di) : 0 ≤ di ≤ di ≤ d̄i, i = 1, 2, ...., n}, (3)

AI = [A, Ā] = {diag(aij) : 0 ≤ aij ≤ aij ≤ āij , i = 1, 2, ...., n},

BI = [B, B̄] = {diag(bij) : 0 ≤ bij ≤ bij ≤ b̄ij , i = 1, 2, ...., n}.

Now the following assumptions about the discontinuous neuron activation function for system (2)
are considered:
A(1): (i) hj , j = 1, 2, . . . , n are piecewise continuous, i.e., hj are continuous in R except a countable
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set of jump discontinuous points and in every compact set of R has only a finite number of discontinuous
points.

(ii) hj , j = 1, 2, . . . , n are non decreasing and bounded.

Throughout this paper, we consider drive-response system of the corresponding system as follows:




Dαyi(t) = −diyi(t) +
∑n

j=1 aijhj(yj(t)) +
∑n

j=1 bijhj(yj(t − τj)) + Ii + θi(t), t ̸= tk, t ≥ 0,

∆yi(tk) = yi(t
+
k ) − yi(tk) = Υik(yi(tk)), k = 1, 2, .....

yi(s) = ϱi(s), s ∈ [−τ, 0],

(4)

and the vector form is



Dαy(t) = −Dy(t) + Ah(y(t)) + Bh(y(t − τ)) + I + θ(t), t ̸= tk, t ≥ 0,

∆y(tk) = y(t+k ) − y(tk) = Υik(y(tk)), k = 1, 2, ....

y(s) = ϱ(s), s ∈ [−τ, 0],

where i = 1, 2, ...., n (n ∈ N+) and y(t) = (y1(t), y2(t), ...., yn(t))T ∈ Rn is the state vector of the
system (4), the coefficients are same as ones of system (2) and θi(t) is a delayed feedback controller
which is defined by

θi(t) = −κ1,i(yi(t) − xi(t)) − κ2,i sgn(yi(t) − xi(t))
n∑

j=1

|yj(t − τj) − xj(t − τj)|

−κ3,i sgn(yi(t) − xi(t)), (5)

where i = 1, 2, ...., n (n ∈ N+) and constants κ1,i, κ2,i and κ3,i are three positive gain coefficients
and sgn(.) is a function defined as follows

sgn(yi(t) − xi(t)) =





1, yi(t) − xi(t) > 0

0, yi(t) − xi(t) = 0

−1, yi(t) − xi(t) < 0.

Since the activation functions hj (j = 1, 2, ...., n) are discontinuous, the definition of traditional so-
lution for differential equations does not exists. In this case, we introduce the concept of Filippov
solution for fractional order differential equation. Now, we consider the following fractional order
differential system in vector form as follows:

{
Dαx(t) = h(t, x)

x(0) = x0,
(6)

where h(t, x) are discontinuous in x. In the following, we apply the framework of Filippov in discussing
the solution of fractional order delayed neural network (2) .

Definition 2.3 (Filippov, 1988). Suppose E ⊂ Rn. Then x 7→ H(x) is called a set valued map from
E ↪→ Rn, if for each point x of a set E ⊂ Rn, there corresponds a nonempty set H(x) ⊂ Rn. A set
valued map H with nonempty values is said to be upper-semi-continuous at x0 ∈ E if for any open
set containing H(x0), there exists a neighborhood M of x0 such that H(M) ⊂ N. H(x) have closed
(convex, compact) image if for each x ∈ E, H(x) is closed (convex, compact).

Definition 2.4 (Filippov, 1988). A set valued map H : R × Rn −→ Rn is defined as

H(t, x) =
∩

δ>0

∩

m(N)=0

K[h(t, B(x, δ)/N)],

where K(E) is the closure of the convex hull of set E, B(x, δ) = {y : ∥y − x∥ ≤ δ}, and m(N) is the
lebesgue measure of a set N. A vector function x(t) defined on a non degenerate interval I ⊂ R is
called a Filippov solution of system (6), if it is absolutely continuous on any subinterval [t1, t2] of I
and for a.e t ∈ I, x(t) satisfies the differential inclusion: Dαx(t) ∈ H(t, x).
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Now we denote H(x) = [H(x)] = ([h1(x1)], ...., [hn(xn)]), where K[hi(xi)] = [min{hi(x
−
i ), hi(x

+
i )},

max{hi(x
−
i ), hi(x

+
i )}], for i = 1, 2, ...., n. As (yi(t) − xi(t)) is discontinuous at yi(t) − xi(t) = 0,

we denote the set valued map as follows

K[sgn(yi(t) − xi(t))] =





1, yi(t) − xi(t) > 0

[−1, 1], yi(t) − xi(t) = 0

−1, yi(t) − xi(t) < 0.

By using the theories of differential inclusions and set valued maps, from (2) it follows that





Dαxi(t) ∈ −dixi(t) +
∑n

j=1 aijK[hj(xj(t))] +
∑n

j=1 bijK[hj(xj(t − τj))] + Ii

∆xi(tk) = xi(t
+
k ) − xi(tk) = Υik(xi(tk)), k = 1, 2, ....

xi(s) = ρi(s), s ∈ [−τ, 0]

for a.a. t ≥ 0, i = 1, 2, . . . , n (or) there exists λj(t) ∈ K[hj(xj(t))] such that





Dαxi(t) = −dixi(t) +
∑n

j=1 aijλj(t) +
∑n

j=1 bijλj(t − τj) + Ii

∆xi(tk) = xi(t
+
k ) − xi(tk) = Υik(xi(tk)), k = 1, 2, ....

xi(s) = ρi(s), s ∈ [−τ, 0].

(7)

for a.a. t ≥ 0, i = 1, 2, . . . , n. From system (4), we have





Dαyi(t) ∈ −diyi(t) +
∑n

j=1 aijK[hj(yj(t))] +
∑n

j=1 bijK[hj(yj(t − τj))] + Ii − κ1,i(yi(t) − xi(t))

−κ2,i sgn(yi(t) − xi(t))
∑n

j=1 |yj(t − τj) − xj(t − τj)| − κ3,i sgn(yi(t) − xi(t)),

∆yi(tk) = yi(t
+
k ) − yi(tk) = Υik(yi(tk)), k = 1, 2, ....

yi(s) = ϱi(s), s ∈ [−τ, 0].

for a.a. t ≥ 0, i = 1, 2, . . . , n (or) there exists µj(t) ∈ K[hj(yj(t))] and ϵi(t) ∈ K[sgn(yi(t) − xi(t))]
such that





Dαyi(t) = −diyi(t) +
∑n

j=1 aijµj(t) +
∑n

j=1 bijµj(t − τj) + Ii − κ1,i(yi(t) − xi(t))

−κ2,iϵi(t)
∑n

j=1 |yj(t − τj) − xj(t − τj)| − κ3,iϵi(t)

∆yi(tk) = yi(t
+
k ) − yi(tk) = Υik(yi(tk)), k = 1, 2, ....

yi(s) = ϱi(s), s ∈ [−τ, 0]

(8)

for a.a. t ≥ 0, i = 1, 2, . . . , n. We now define the synchronization error zi(t) = yi(t) − xi(t).
According to (7) and (8), the error system can be founded by





Dαzi(t) = −(di + κ1,i)zi(t) +
∑n

j=1 aij(µj(t) − λj(t)) +
∑n

j=1 bij(µj(t − τj) − λj(t − τj))

−κ2,iϵi(t)
∑n

j=1 |zj(t − τj)| − κ3,iϵi(t)

∆zi(tk) = zi(t
+
k ) − zi(tk) = Υik(zi(tk)), k = 1, 2, ....

zi(s) = ϱi(s) − ρi(s) = Θi(s), s ∈ [−τ, 0].

(9)

for a.a. t ≥ 0, i = 1, 2, . . . , n.
Let us give the definition of generalized Mittag-Leffler synchronization for system (2) and (4).

Definition 2.5 For any solutions x(t) and y(t) of system (2) and (4) is said to be generalized Mittag-
Leffler synchronization with differential initial values denoted by x(0) and y(0) if there exists a two
constants Λ > 0 and Ω > 0 such that

∥y(t) − x(t)∥ ≤ Λ∥y(0) − x(0)∥t−ζEα,1−ζ(−Ωtα), t ≥ 0, α ∈ (0, 1), −α < ζ ≤ 1 − α.
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Remark 2.6 Let ζ = 0 from the above definition, it follows that ∥y(t)−x(t)∥ ≤ Λ∥y(0)−x(0)∥Eα(−Ωtα),
t ≥ 0. This is called the robust Mittag-Leffler synchronization.

Remark 2.7 Let Ω = 0 from the above definition, it follows that ∥y(t) − x(t)∥ ≤ Λ∥y(0) − x(0)∥t−ζ .
This is called the power-law synchronization.

The following lemma are useful in existence of Filippov solutions in next section.

Lemma 2.8 (Y e, et al.,2007). For a β > 0, suppose a(t) is a nonnegative, nondecreasing function
locally integrable on 0 ≤ t < T some (T ≤ +∞) and b(t) ≤ M is a nonnegative, nondecreasing
continuous function defined on 0 ≤ t < T , where M is a constant. If u(t) is nonnegative and locally

integrable on 0 ≤ t < T with satisfying u(t) = a(t) + b(t)
∫ t

0
(t − s)β−1u(s) ds on the interval, we have

u(t) ≤ a(t)Eβ(b(t)Γ(β)tβ).

Besides, the following Lemma plays an important role in the main results for robust generalized
Mittag-Leffler synchronization of a system (2) and (4). If J is an M -matrix, then there is a positive
vector β ∈ Rn such that βT J > 0.

Lemma 2.9 (Berman and Plemmons, 1979). Let J = (tij)n×n have non positive off-diagonal
elements. Each of the following condition is equivalent to that J is an M -matrix.
(i) All principal minors off J are positive.
(ii) All diagonal elements of J are positive and there exists a positive diagonal matrix P = diag(p1, p2, . . . , pn)
such that matrix JP is strictly diagonally row dominant. i.e.

tiipi >
n∑

j=1,j ̸=1

|tij |pj , j = 1, 2, . . . , n.

(iii) All diagonal elements of T are positive and there exists a positive diagonal matrix P = diag(p1, p2, . . . , pn)
such that PJ is strictly diagonally column dominant. , i.e.,

tjjpj >
n∑

i=1,i ̸=1

pi|tij |, j = 1, 2, . . . , n.

3 Main results

In this section, we prove the global existence of a Filippov solution of a system (2) on [0, +∞) and to
guarantee the global robust generalized Mittag Leffler synchronization criteria for such drive-response
error dynamical system based on a state feedback control strategy with or without delay.

Theorem 3.1 Suppose H satisfies a growth conditions (g.c): there exist a constants ki > 0 and ri

such that

|Hi(xi)| = sup
γ∈Hi(xi)

|γ| ≤ ki|xi| + ri, i = 1, 2, . . . , n (10)

then there exists at least one solution of system (2) for any initial value x(s) = ρ(s), s ∈ [−τ, 0] based
on assumption A(1).

Proof. Because the set valued map x(t) ↪→ −Dx(t) + AH(x(t)) + BH(x(t − τ)) + I is upper semi
continuous with non empty compact convex values, the local existence of a solution x(t) of equation
(7) can be guaranteed(Filippov, 1988). For a.e t ∈ [0, +∞), now we have

∥x(t − τ)∥ ≤ sup
−τ≤s≤t

∥x(s)∥

= sup
−τ≤s≤0

∥x(s)∥ + sup
0≤s≤t

∥x(s)∥

= ∥ρ(s)∥ + ∥x(t)∥
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According to equation (7) and (10), we obtain

∥ − Dx(t) + AH(x(t)) + BH(x(t − τ)) + I∥

≤ ∥D∥ ∥x(t)∥ + ∥A∥
(
K∥x(t)∥ + R

)
+ ∥B∥

(
K∥(x(t − τ)∥ + R

)
+ ∥I∥

≤ ∥D∥ ∥x(t)∥ + ∥A∥
(
K∥x(t)∥ + R

)
+ ∥B∥

(
K(∥ρ(s)∥ + ∥x(t)∥) + R

)
+ ∥I∥

≤ ∥D∥ ∥x(t)∥ + K∥A∥ ∥x(t)∥ + ∥A∥ R + K∥B∥ ∥ρ(s)∥ + K∥B∥ ∥x(t)∥ + ∥B∥ R + ∥I∥
≤

[
∥D∥ + K(∥A∥ + ∥B∥)

]
∥x(t)∥ +

[
(∥A∥ + ∥B∥)R + K∥B∥ ∥ρ(s)∥ + ∥I∥

]

≤ Φ∥x(t)∥ + Ψ,

where K = max{k1, . . . , kn}, R = max{r1, . . . , rn}, Φ = ∥D∥ + K(∥A∥ + ∥B∥),
Ψ = (∥A∥+ ∥B∥)R+K∥B∥∥ρ(s)∥+ ∥I∥. Based on the solution expression of fractional order system,
one has

∥x(t)∥ = ∥ρ(0)∥ + ∥ 1

Γ(α)

∫ t

0

(t − s)α−1[−Dx(s) + AH(x(s)) + BH(x(s − τ)) + I] ds∥

≤ ∥ρ(0)∥ +
1

Γ(α)

∫ t

0

(t − s)α−1∥[−Dx(s) + AH(x(s)) + BH(x(s − τ)) + I] ds∥

≤ ∥ρ(0)∥ +
1

Γ(α)

∫ t

0

(t − s)α−1(Φ∥x(s)∥ + Ψ) ds

= ∥ρ(0)∥ +
Ψ

Γ(α)

∫ t

0

(t − s)α−1 ds +
Φ

Γ(α)

∫ t

0

(t − s)α−1∥x(s)∥ds

= ∥ρ(0)∥ +
Ψ

Γ(α)

[−(t − s)α

α

]t

0
+

Φ

Γ(α)

∫ t

0

(t − s)α−1∥x(s)∥ ds

= ∥ρ(0)∥ +
Ψ

αΓ(α)
tα +

Φ

Γ(α)

∫ t

0

(t − s)α−1∥x(s)∥ds (11)

According to Lemma 2.8 and the inequality (11), we obtain

∥x(t)∥ ≤
(
∥ρ(0)∥ +

Ψ

αΓ(α)
tα

)
Eα

( Φ

Γ(α)
Γ(α)tα

)

∥x(t)∥ ≤
(
∥ρ(0)∥ +

Ψ

αΓ(α)
tα

)
Eα(Φtα).

Hence, since x(t) remains bounded on [0, +∞). Hence there exists at least one solution of system (2)
on [0, +∞). This completes the proof of theorem.

Remark 3.2 Existence of Filippov solution with fractional order discontinuous activation system but
without delays has been also proved in (Zhang et al.,2016).

The following two assumption are given to obtain robust generalized Mittag-Leffler synchronization
of an error system (9).
A(2). For all i = 1, 2, . . . , n, suppose there exist nonnegative constants pi and qi > 0 such that
λi(t) ∈ K[hi(xi(t))], µi(t) ∈ K[hi(yi(t))], the following inequality holds:

|λi(t) − µi(t)| ≤ pi|yi(t) − xi(t)| + qi.

A(3). The functions Υik are such that

Υik(zi(tk)) = −σikzi(tk), 0 < σik < 2, i = 1, 2, . . . ., n, k = 1, 2, . . . .
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Remark 3.3 Suppose there exist one discontinuous point in (A2), the constant pi > 0 for i =
1, 2, . . . , n when the activation functions are Lipschitz-continuous on R then qi = 0. In this case
we can choose the controller

θi(t) = −κ1,i(yi(t) − xi(t)). (12)

This implies that the results of the paper are also applicable to corresponding models with continuous
activation functions.

Theorem 3.4 Suppose A(1), A(2) and A(3) holds if P1 = D+K1−E1 is an M-matrix, P2 = nK2−F1

and P3 = K3 − F2 are two positive diagonal matrices, then the error system (9) is robust generalized
Mittag-Leffler synchronization based on the controller (5).

Proof. Assume that x(t) = (x1(t), . . . , xn(t))T and y(t) = (y1(t), . . . , yn(t))T are any solution of
a system (2) and (4) with initial values x(0) = (x1(0), . . . , xn(0))T and y(0) = (y1(0), . . . , yn(0))T ,
respectively. Since D + K1 − E1 is an M -matrix and nK2 − F1 and K3 − F2 are positive diagonal
matrices, there exist positive constants φi(i = 1, 2, . . . , n) by Lemma 2.9 such that

φi

(
(di + κ1,i) −

n∑

j=1

âjipi

)
> 0, (13)

φi

(
nκ2,i −

n∑

j=1

b̂ijpj

)
> 0, (14)

φi

(
κ3,i −

n∑

j=1

(âij + b̂ij)qj

)
> 0, (15)

Consider the following Lyapunov function

V (t) =
n∑

i=1

φi|zi(t)|, (16)

where zi(t) are complete synchronization of errors dynamical system (9).
Suppose zi(0) = 0, i = 1 . . . n, then Dα|zi(t)| = 0.
If zi(0) < 0, i = 1 . . . n, then

Dα|zi(t)| =
1

Γ(1 − α)

∫ t

0

|zi(t)|′
(t − s)α

ds = − 1

Γ(1 − α)

∫ t

0

z′
i(t)

(t − s)α
ds = −Dα|zi(t)|.

If zi(0) > 0, i = 1 . . . n, then

Dα|zi(t)| =
1

Γ(1 − α)

∫ t

0

|zi(t)|′
(t − s)α

ds =
1

Γ(1 − α)

∫ t

0

z′
i(t)

(t − s)α
ds = Dα|zi(t)|.

Hence, we know Dα|zi(t)| = sgn(zi(t))D
αzi(t).

9



When t = tk, t ≥ 0 and assumption A(3), we obtain

V (t+k ) =

n∑

i=1

φi|zi(t
+
k )|

=
n∑

i=1

φi|zi(tk) + Υik(zi(tk))|

=
n∑

i=1

φi|zi(tk) − σik(zi(tk))|

=
n∑

i=1

φi|1 − σik||zi(tk)|

<
n∑

i=1

φi|zi(tk)| = V (tk), k = 1, 2, ......

When t ̸= tk, t ≥ 0 for the time derivative of V(t) along the solution of error system (9), we obtain

DαV (t) =
n∑

i=1

φiD
α|zi(t)|

≤
n∑

i=1

φi sgn(zi(t))D
αzi(t)

=
n∑

i=1

φi sgn(zi(t))
{

−(di + κ1,i)zi(t) +
n∑

j=1

aij(µj(t) − λj(t)) +
n∑

j=1

bij(µj(t − τj)

−λj(t − τj)) − κ2,iϵi(t)
n∑

j=1

|zj(t − τj)| − κ3,iϵi(t)
}

. (17)

According to assumption (A2) and the above inequality (17) can be converted to

DαV (t) ≤
n∑

i=1

φi

[
−(di + κ1,i)|zi(t)| +

n∑

j=1

|aij |(pj |zj(t)| + qj)

+

n∑

j=1

|bij |(pj |zj(t − τj)| + qj) − κ2,i

n∑

j=1

|zj(t − τj)| − κ3,i

]

where ϵi(t) = sgn(zi(t)) if zi(t) ̸= 0, which ϵi(t) can be arbitrary chosen in [−1, 1], if zi(t) = 0.
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DαV (t) =

n∑

i=1

φi

[
−(di + κ1,i)|zi(t)| +

n∑

j=1

âij(pj |zj(t)| + qj)

+
n∑

j=1

b̂ij(pj |zj(t − τj)| + qj) − κ2,i

n∑

j=1

|zj(t − τj)| − κ3,i

]

=
n∑

i=1

φi

[
−(di + κ1,i)|zi(t)| +

n∑

j=1

âij(pj |zj(t)|) +
n∑

j=1

âijqj

+

n∑

j=1

b̂ijpj |zj(t − τj)| +
n∑

j=1

b̂ijqj − κ2,i

n∑

j=1

|zj(t − τj)| − κ3,i

]

= −
n∑

i=1

[
φi(di + κ1,i) −

n∑

j=1

φj âjipi

]
|zi(t)| −

n∑

i=1

[
φi(κ2,i −

n∑

j=1

b̂ijpj)
]
|zj(t − τj)|

−
n∑

j=1

φi

[
κ3,i −

n∑

j=1

(âij + b̂ij)qj

]

Combining the Eq.(13) − (15), we obtain

DαV (t) ≤ −
n∑

i=1

[
φi(di + κ1,i) −

n∑

j=1

φj âjipi

]
|zi(t)|

≤ −Ω
n∑

i=1

φi|zi(t)|,

where Ω = min1≤i≤n Ωi, Ωi = (di+κ1,i)−
∑n

j=1 âjipi. Therefore, the above inequality can be rewritten
as DαV (t) ≤ −ΩV (t). There exists a positive ξ(t) satisfying DαV (t)+ξ(t) = −ΩV (t). Taking Laplace
transform on both sides, we get

L(DαV (t)) + L(ξ(t)) = L(−ΩV (t))

sαV (s) − sα−1V (0) +

∫ +∞

0

e−stξ(t)dt = −Ω

∫ +∞

0

e−stV (t)dt

sαV (s) − sα−1V (0) + ξ(s) = −ΩV (s)

(sα + Ω)V (s) = V (0)sα−1 − ξ(s)

V (s) =
V (0)sα−1 − ξ(s)

sα + Ω
. (18)

Let α < α̃ < α + 1 and

ξ̃(s) = L[ξ(s)] =

∫ +∞

0

e−stξ(t)dt = ξ(s) + V (0)[sα−α̃ − sα−1]. (19)

Taking inverse Laplace transform on both sides, we get

L−1{ξ̃(s)} = L−1
{

ξ(s) + V (0)[sα−α̃ − sα−1]
}

ξ̃(t) = ξ(t) + V (0)
[ tα̃−α−1

Γ(α̃ − α)
− t−α

Γ(1 − α)

]
,

By virtue of Eq.(18), it follows that

V (s) =
V (0)sα−α̃ − ξ̃(s)

sα + Ω
.
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Taking inverse Laplace transform on both sides, we get

L−1{V (s)} = L−1
{V (0)sα−α̃ − ξ̃(s)

sα + Ω

}

= V (0)tα̃−1Eα,α̃(−Ωtα) − ξ̃(t) ∗ [tα−1Eα,α(−Ωtα)].

Note that both function Eα,α(−Ωtα) and tα−1 are non negative.

It follows that ξ̃(t) ∗ [tα−1Eα,α(−Ωtα)] > 0. Then there exists a constant t1 > 0 and δ > 0 such that

V (t) = V (0)tα̃−1Eα,α̃(−Ωtα) ∀ t ≥ t1 ≥ 0,

and 1 + α − δ < α̃ < 1 + α. Hence

V (t) ≤ V (0)t−ζEα,1−ζ(−Ωtα) ∀ t ≥ t1 > 0, (20)

where −ζ = α̃ − 1. On the other hand, we see that

V (0) =
n∑

i=1

φi|zi(0)|

≤ max
1≤i≤n

φi

n∑

i=1

|zi(0)| = φmax

n∑

i=1

|zi(0)|

V (t) =

n∑

i=1

φi|zi(t)|

≥ min
1≤i≤n

φi

n∑

i=1

|zi(t)| = φmin

n∑

i=1

|zi(t)|

The inequality (20) can be rewritten as

φmin

n∑

i=1

|zi(t)| ≤ φmax

n∑

i=1

|zi(0)|
[
t−ζEα,1−ζ(−Ωtα)

]

∥z(t)∥ ≤ Λ∥z(0)∥
[
t−ζEα,1−ζ(−Ωtα)

]
,

where Λ = φmax

φmin
. According to (16), then we obtain

∥y(t) − x(t)∥ ≤ Λ∥y(0) − x(0)∥
[
t−ζEα,1−ζ(−Ωtα)

]
, ∀ t ≥ t1 > 0.

Then by using definition 2.5, drive system (2) and response (4) are robust generalized Mittag-Leffler
synchronized. This completes the proof of the theorem.

Corollary 3.5 Under A(1), A(2) and A(3) holds, if there exists a positive scalar κ1,i, κ2,i and κ3,i

such that

(
(di + κ1,i) −

n∑

j=1

âjipi

)
> 0,

(
nκ2,i −

n∑

j=1

b̂ijpj

)
> 0,

(
κ3,i −

n∑

j=1

(âij + b̂ij)qj

)
> 0, i, j = 1 . . . n,

then the error system (9) is robust generalized Mittag-Leffler synchronization via state delayed feedback
controller (5) .
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Similarly, we can choose the following feedback discontinuous controller:

θi(t) = −κ1,izi(t) − κ3,i sgn(zi(t)) (21)

where κ1,i and κ3,i are constant gain coefficients. By using the above feedback controller, we have the
following result.

Theorem 3.6 Under assumptions A(1), A(2) and A(3) if Q1 = D + K1 − E2 is an M-matrix,
Q2 = K3 − F2 is a positive diagonal matrix, then the error system (9) is robust generalized Mittag-
Leffler synchronization via state feedback controller (21).

Proof. Assume that the solution of the system (2) and the response system (4) are x(t) = (x1(t), . . . , xn(t))T

and y(t) = (y1(t), . . . , yn(t))T with initial values x(0) = (x1(0), . . . , xn(0))T and y(0) = (y1(0), . . . , yn(0))T

respectively.
Since D + K1 − E2 is an M -matrix and K3 − F2 is positive diagonal matrices, there exist positive
constants φi(i = 1, 2, ....., n) by Lemma 2.9 such that

(
φi(di + κ1,i) −

n∑

j=1

φj(âji + b̂ji)pi

)
> 0, φi

(
κ3,i −

n∑

j=1

(âij + b̂ij)qj

)
> 0, i = 1 . . . n,

According to the rest of the proof is similar to Theorem 3.4. Hence omitted the theorem.
The following corollary are directly obtained from Theorem 3.6 are still correct.

Corollary 3.7 Under assumptions A(1), A(2) and A(3), if there exists a positive scalar κ1,i and κ3,i

such that

(di + κ1,i) −
n∑

j=1

(âji + b̂ji)pi > 0, κ3,i −
n∑

j=1

(âij + b̂ij)qj > 0, i = 1 . . . n,

then the error system (9) is robust generalized Mittag-Leffler synchronization based on the controller
(21).

When the system (2) and (4) has without delays based on the controller (21), we have the following
result which can be obtained from Theorem 3.4.

Corollary 3.8 Under assumptions A(1), A(2) and A(3) holds if R1 = D + K1 − E1 is an M-matrix,
R2 = K3 − F3 is a positive diagonal matrix, then the error system (9) is robust generalized Mittag-
Leffler synchronization based on the controller (21).

Proof. Assume that the solution of drive system (2) and response system (4) are x(t) = (x1(t), . . . , xn(t))T

and y(t) = (y1(t), . . . , yn(t))T with initial values x(0) = (x1(0), . . . , xn(0))T and y(0) = (y1(0), . . . , yn(0))T ,
respectively.
Since D+K1 −E1 is an M -matrix and K3 −F3 is positive diagonal matrices, then there exist positive
constants φi(i = 1, 2, . . . , n) by lemma 2.9 such that

φi

(
(di + κ1,i) −

n∑

j=1

âjipi

)
> 0, φi

(
κ3,i −

n∑

j=1

âijqj

)
> 0.

According to the rest of the proof is similar to Theorem 3.4. Hence omitted the corollary.

When a neuron activation are satisfies common Lipschitz continuous function, the assumption
A(2) is replaced by the following conditions,
(J) For all x, y ∈ R, suppose there exists a positive scalar pi > 0 such that the following conditions
are established:

|hi(x) − hi(y)| ≤ pi|x − y|, i = 1, . . . , n.

As a special case of theorem 3.4, we have the following synchronization result.
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Corollary 3.9 Suppose A(1), A(3) and (J) holds, the drive system (2) and response system (4) is
robust generalized Mittag-Leffler synchronization based on the controller (12) if the following conditions
are satisfied:

π1 = min
[
(di + κ1,i) −

n∑

j=1

âjipi

]
> max

[ n∑

j=1

b̂jipi

]
= π2 > 0.

Proof. The synchronization error system between (2) and (4), we obtain





Dαzi(t) = −dizi(t) +
∑n

j=1 aij [hj(yj(t)) − hj(xj(t))]

+
∑n

j=1 bij [hj(yj(t − τj)) − hj(xj(t − τj))] + Ii + κ1,i)zi(t), t ̸= tk, t ≥ 0,

∆zi(tk) = zi(t
+
k ) − zi(tk) = Υik(zi(tk)), k = 1, 2, ....

zi(s) = Θi(s), s ∈ [−τ, 0].

Consider a non-negative function: V (t) =
∑n

j=1 φi|zi(t)|
According to proof Theorem 3.4, we can easily obtain V (t+k ) ≤ V (tk). Based on Assumption J ,

we get

DαV (t) =
n∑

i=1

φiD
α|zi(t)|

≤
n∑

i=1

φi

[
−(di + κ1,i)|zi(t)| +

n∑

j=1

|aij |pj |zj(t)| +
n∑

j=1

|bij |pj |zj(t − τj)|
]

= −
n∑

i=1

φi

[
(di + κ1,i) −

n∑

j=1

âjipi

]
|zi(t)| +

n∑

i=1

n∑

j=1

φib̂jipi|zi(t − τi)|

≤ −π1V (t) + π2 sup
t−τ≤m≤t

V (m)

For any solution of the synchronization error system zi(t) satisfies the Razumikhin condition, for
more details[Ivanka, 2014]. Therefore V (m) ≤ V (t), t − τ ≤ m ≤ t. It can immediately follows that
DαV (t) ≤ −[π1 − π2]V (t), we can select Ω = min1≤i≤n[π1 − π2] > 0 such that DαV (t) ≤ −ΩV (t).
The rest of the proof are similar in Theorem 3.4. Hence the corollary is completed.

When D = D = D̄, A = A = Ā, B = B = B̄, the system (2) and (4) is without the parameter
uncertainties, then we have the following results.

Theorem 3.10 Suppose A(1), A(2) and A(3), holds and if V1 = D + K1 − E3 is an M-matrix,
V2 = nK2 − M1 and V3 = K3 − M2 are two positive diagonal matrices, then error system (9) is a
generalized Mittag-Leffler synchronization based on the controller (5).

The proof of Theorem 3.10 is similar to Theorem 3.4.
The following corollary are directly obtained from Theorem 3.10 still correct.

Corollary 3.11 Suppose A(1), A(2) and A(3) holds, if exists a positive scalar κ1,i, κ2,i and κ3,i such
that

(
(di + κ1,i) −

n∑

j=1

|aji|pi

)
> 0,

(
nκ2,i −

n∑

j=1

|bij |pj

)
> 0,

(
κ3,i −

n∑

j=1

(|aij | + |bij |)qj

)
> 0, i = 1, 2, . . . , n,

then the error system (9) is generalized Mittag-Leffler synchronization based on the controller (5).

Theorem 3.12 Under assumptions A(1), A(2) and A(3) holds if W1 = D+K1−E4 is an M-matrix,
W2 = K3 − M2 is a positive diagonal matrix, then the error system (9) is generalized Mittag-Leffler
synchronization based on the controller (21).
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Proof. Assume that the solution of the drive system (2) and the response system (4) are x(t) =
(x1(t), . . . , xn(t))T and y(t) = (y1(t), . . . , yn(t))T with initial values x(0) = (x1(0), . . . , xn(0))T and
(0) = (y1(0), . . . , yn(0))T , respectively. Since D + K1 − E4 is an M-matrix and K3 − M2 is positive
diagonal matrices, there exist positive constants φi(i = 1, 2, . . . , n) by Lemma 2.9 such that

(
φi(di + κ1,i) −

n∑

j=1

φj(|(aji| + |bji|)pi

)
> 0, φi

(
κ3,i −

n∑

j=1

(|aij | + |bij |)qj

)
> 0.

According to the rest of the proof is similar to Theorem 3.4. Hence omitted the theorem.

Corollary 3.13 Under A(1), A(2) and A(3) holds, if there exists a scalar κ1,i, κ2,i and κ3,i such
that

(
(di + κ1,i) −

n∑

j=1

(|aji| + |bji|)pi

)
> 0,

(
κ3,i −

n∑

j=1

(|aij | + |bij |)qj

)
> 0, i, j = 1, 2, . . . , n,

then the error system (9) is generalized Mittag-Leffler synchronization based on the controller (21).

Remark 3.14 A novel discontinuous feedback controller (5) plays an essential role to realize the
generalized mittag Leffler synchronization goal, which contains two different discontinuous terms
such as, κ2,i[sgn(zi(t))] and κ2,i[sgn(zi(t))]

∑n
j=1 |zj(t − τj)|. The role of the discontinuous term

κ2,i[sgn(zi(t−τj))] dealing with the uncertain states is different in between the controlled drive-response
synchronization goal, while the other term [sgn κ2,i(zi(t))]

∑n
j=1 |zi(t)| is reduced due to the influence

of time delay considered in the network model. So our proposed controller are more effective, when
compared with other continuous feedback controller κ1,izi(t).

Remark 3.15 Suppose the parametric uncertainties term in the system (2) and (4) is ignored, and
the activation function are treated to be a continuous one then the obtained main results of Theorem
3.4 is a generalized Mittag-Leffler synchronization. Then by using Remark 2.6 and Lemma 4 in
Ref [8], the solution of the drive-response system in (2) and (4) is Mittag-Leffler synchronization.
In conclusion, these results has been discussed already by Ivanka in 2014 but by using simple state
feedback control techniques. Hence our proposed method shows some novelty over the works in the
Refs (Ding et al.,2016; Ivanka et al.,2014; Zhang et al.,2016).

4 Numerical Examples

Here four examples are provided to illustrate the results obtained in the previous section.

Example 4.1 Consider the two dimensional uncertain fractional order impulsive delayed neural net-
work with discontinuous activation as

Dαx(t) = −Dx(t) + Ah(x(t)) + Bh(x(t − τ)) + I, t ̸= tk, t ≥ t0.

where α = 0.96 and τ = 3. Let x(t) = (x1(t), x2(t))
T ∈ R2, D ∈ DI = [D, D̄], AI = [A, Ā],

B ∈ BI = [B, B̄], I = [0 0]T with

D =

[
0.24 0
0 0.17

]
, D̄ =

[
0.38 0
0 0.43

]
, A =

[
0.71 1.43
−1.2 0.41

]
,

Ā =

[
1.3 1.76
0.3 0.51,

]
, B =

[
−0.94 −0.21
−0.8 0.12

]
, B̄ =

[
0.31 −0.14
0.15 0.49

]

and
{

x1(t
+
k ) = 3x1(tk)

5 , k = 1, 2, . . .

x2(t
+
k ) = 2x2(tk)

5 , k = 1, 2, . . .
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Figure 1: Controlled time evolution of state variables x(t), y(t) and Uncontrolled time evolution of
state variables x(t), y(t) in Example 4.1.
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Figure 2: Synchronization error evolution of state variables z(t) in Example 4.1.

Then the activation function are defined as h(x) = tanh(x)+0.05 sgn x, while it is easy to see that
pj = 1, qj = 0.5, j = 1, 2 in assumption A(2). In delayed feedback controller (5), we can select the
control gains are κ1,1 = 1.5, κ1,2 = 0.5, κ2,1 = 0.875, κ2,2 = 0.75, κ3,1 = 2.75 and κ3,2 = 1.75. Then
by using assumption A(3) and Theorem 3.4, it easily to checked that 0 < σ1k = 2

5 < 2, 0 < σ2k = 3
5 <

2,

P1 = D + K1 − E1 =

[
0.44 −1.76
−1.2 0.16

]
, P2 = nK2 − F1 =

[
0.6 0
0 0.21

]
, P3 = K3 − F2 =

[
0.645 0

0 0.25

]
.

Obviously P1 is M-matrix, P2 and P3 are two positive diagonal matrix. Therefore, from Theorem 3.4,
the system (2) and (4) are robust generalized Mittag-Leffler synchronization. In Fig.1, it is shown
that the drive-response state evolution of x(t) and y(t) with or without controller by using the initial
conditions x(0) = (−1.6, 1.2) and y(0) = (2.9, −2.5). In Fig. 2, depicts the error state of drive-
response synchronization z(t) under the delayed feedback controller (5), which displays that the error
system converges to zero. Obviously, the synchronization results of Theorem 3.4 are confirmed by this
example.

Example 4.2 Consider the two dimensional uncertain fractional order impulsive delayed neural net-
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Figure 3: Controlled time evolution of state variables x(t), y(t) and Uncontrolled time evolution of
state variables x(t), y(t) in Example 4.2.
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Figure 4: Synchronization error evolution of state variables z(t) in Example 4.2.

work with discontinuous activation

Dαx(t) = −Dx(t) + Ah(x(t)) + Bh(x(t − τ)) + I, t ̸= tk, t ≥ t0.

where α = 0.97, τ = 3, x(t) = (x1(t), x2(t))
T ∈ R2, while the network parameters D ∈ DI =

[D, D̄], AI = [A, Ā], B ∈ BI = [B, B̄] are given by

D =

[
0.23 0
0 1.17

]
, D̄ =

[
1.28 0
0 1.61

]
, A =

[
0.91 1.4
−2.4 −1.12

]
,

Ā =

[
1.23 1.49
0.2 0.9,

]
, B =

[
−1.46 −0.19
−0.9 0.61

]
, B̄ =

[
0.9 −1.11
1.4 1.7

]

and
{

x1(t
+
k ) = x1(tk)

3 , k = 1, 2, . . .

x2(t
+
k ) = x2(tk)

4 , k = 1, 2, . . .

The activation function is chosen as h(x) = tanh(x) + 0.01 sgn x, while by using assumption A(2),
we have properly selected the values as pj = 1, qj = 0.5, j = 1, 2. In state feedback controller (21),

17



we can choose the control gains as κ1,1 = 2.5, κ1,2 = 2.5, κ3,1 = 3.5 and κ3,2 = 3.5. According to
assumption A(3) and Theorem 3.6, it easy to verified that 0 < σ1k = 2

3 < 2, 0 < σ2k = 3
4 < 2,

Q1 = D + K1 − E2 =

[
0.04 −2.6
−3.8 0.85

]
, Q2 = K3 − F2 =

[
0.85 0
0 0.19

]
.
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Figure 5: Controlled time evolution of state variables x1(t), y1(t) and Uncontrolled time evolution of
state variables x1(t), y1(t) in Example 4.3.
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Figure 6: Controlled time evolution of state variables x2(t), y2(t) and Uncontrolled time evolution of
state variables x2(t), y2(t) in Example 4.3.

Obviously, Q1 is M-matrix and Q2 is positive diagonal matrix. Therefore, from Theorem 3.6,
the system (2) and (4) are robust generalized Mittag-Leffler synchronization. In Fig.3, it is shown
that the drive-response state evolution of x(t) and y(t) with or without controller by using the initial
values x(0) = (−2.6, 0.2) and y(0) = (2, −0.5). In Fig.4, depicts the error state of drive-response
synchronization z(t) by means of the state feedback controller (21), which displays that the error
system converges to zero. Obviously, the synchronization results of Theorem 3.6 are confirmed by
simulation.

Example 4.3 Consider the three dimensional fractional order impulsive delayed neural network with
discontinuous activation

Dαx(t) = −Dx(t) + Ah(x(t)) + Bh(x(t − τ)) + I, t ̸= tk, t ≥ t0,

where α = 0.97, τ = 3. Let x(t) = (x1(t), x2(t), x3(t))
T ∈ R3 and the network parameters are selected
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Figure 7: Controlled time evolution of state variables x3(t), y3(t) and Uncontrolled time evolution of
state variables x3(t), y3(t) in Example 4.3.
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Figure 8: Synchronization error evolution of state variables z(t) in Example 4.3.

as

D =




0.56 0 0
0 0.75 0
0 0 0.94


 , A =




−0.32 0.09 −0.25
0.35 −0.12 0.8
0.23 −0.47 0.65


 , B =




0.94 −0.28 −0.55
0.35 −0.3 0.9
0.77 0.19 −0.75




and




x1(t
+
k ) = 3x1(tk)

5 , k = 1, 2, . . .

x2(t
+
k ) = x2(tk)

7 , k = 1, 2, . . .

x3(t
+
k ) = 3x1(tk)

4 , k = 1, 2, . . .

The activation function is given by h(x) = tanh(x) + 0.08 sgnx, while it is noted that pj = 0.25, qj =
0.1, j = 1, 2, 3 in A(2). In delayed feedback controller (5), the control gains are designed as κ1,1 =
0.2, κ1,2 = 0.4, κ1,3 = 0.6, κ2,1 = 0.6, κ2,2 = 0.4, κ2,3 = 0.8, κ3,1 = 0.5, κ3,2 = 0.8, κ3,3 = 0.7. By
means of assumption A(3) and Theorem 3.10, it easily to checked that 0 < σ1k = 2

5 < 2, 0 < σ2k =
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6
7 < 2, 0 < σ3k = 1

4 < 2,

V1 = D + K1 − E3 =




0.68 −0.023 −0.063
−0.088 1.12 −0.2
−0.058 −0.118 1.377


 , V2 = nK2 − M1 =




1.357 0 0
0 0.813 0
0 0 1.972


 ,

V3 = K3 − F3 =




0.257 0 0
0 0.518 0
0 0 0.34




Obviously V1 is M-Matrix, V2 and V3 are two positive diagonal matrix. Therefore, from Theorem 3.10,
the system (2) and (4) are robust generalized Mittag-Leffler synchronization. In Fig.5-7, it is shown
that the drive-response state evolution of x(t) and y(t) with or without controller by using the initial
values x(0) = (−2.5, 1.5, 0.45) and y(0) = (1.5, −1.65, 2.7). The error state of the drive-response
synchronization z(t) under the delayed feedback controller (5), which displays that the error system
converges to zero are presented in Fig.8. Obviously, the synchronization results of Theorem 3.10 are
verified via this numerical simulation.

Example 4.4 Consider the three dimensional fractional order impulsive delayed neural network with
discontinuous activation

Dαx(t) = −Dx(t) + Ah(x(t)) + Bh(x(t − τ)) + I, t ̸= tk, t ≥ t0,

where α = 0.96 and τ = 3. Let x(t) = (x1(t), x2(t), x3(t))
T ∈ R3 and the network parameters are

selected as

D =




0.75 0 0
0 0.35 0
0 0 0.5


 , A =




0.3 −0.19 −0.28
0.74 −1.2 0.47
0.65 0.8 0.35


 , B =




−0.69 −0.14 0.3
0.18 −0.7 0.16
0.5 0.66 0.9




and




x1(t
+
k ) = 3x1(tk)

4 , k = 1, 2, . . .

x2(t
+
k ) = 3x2(tk)

7 , k = 1, 2, . . .

x3(t
+
k ) = 2x2(tk)

5 , k = 1, 2, . . .
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Figure 9: Controlled time evolution of state variables x1(t), y1(t) and Uncontrolled time evolution of
state variables x1(t), y1(t) in Example 4.4.

The activation function is given by h(x) = tanh(x) + 0.08 sgnx, and by using assumption A(2), it is
easy to see that pj = 0.2, qj = 0.2, j = 1, 2, 3. In state feedback controller (21), we can properly select
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Figure 10: Controlled time evolution of state variables x2(t), y2(t) and Uncontrolled time evolution
of state variables x2(t), y2(t) in Example 4.4.
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Figure 11: Controlled time evolution of state variables x3(t), y3(t) and Uncontrolled time evolution
of state variables x3(t), y3(t) in Example 4.4.

the gains are κ1,1 = 2.5, κ1,2 = 2.5, κ1,3 = 2.5, κ3,1 = 2.5, κ3,2 = 2.5, κ3,3 = 2.5. According to
assumption A(3) and Theorem 3.12, it easily to checked that 0 < σ1k = 1

4 < 2, 0 < σ2k = 4
7 < 2, 0 <

σ3k = 3
5 < 2,

W1 = D + K1 − E4 =




3.052 −0.66 −0.116
−0.184 2.47 −0.126
−0.23 −0.292 2.75


 , W2 = K3 − M2 =




1.12 0 0
0 1.81 0
0 0 1.728


 .

Obviously, W1 is M-matrix and W2 is positive diagonal matrix. Therefore, the system (2) and (4) are
generalized Mittag-Leffler synchronization based on the state feedback controller (21). Therefore, ac-
cording to Theorem 3.12, the system (2) and (4) are robust generalized Mittag-Leffler synchronization.
In Fig.9-11, it is shown that the drive-response state evolution of x(t) and y(t) with or without con-
troller by using the initial values x(0) = (2.5, −1.3, 0.75) and y(0) = (−1.5, 1, −1.7). The error state
of controlled drive-response synchronization z(t) based on the feedback controller (21) are presented in
Fig.12. Obviously, the synchronization results of Theorem 3.12 are verified via this numerical example.

5 Conclusions

The concepts of Filippov solution and synchronization conditions for fractional order uncertain neural
networks with discontinuous activation functions have been investigated. By means of the growth
conditions, differential inclusions and the generalized Gronwall inequality, a sufficient condition for
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Figure 12: Synchronization error evolution of state variables z(t) in Example 4.4.

the existence of Filippov solution was obtained. Moreover, sufficient criteria were given to the robust
generalized Mittag-Leffler synchronization between discontinuous activation function of impulsive frac-
tional order neural network systems with (or without) parameter uncertainties. Finally, four numerical
simulations are presented to demonstrate the effectiveness of our synchronization results.

References

[1] Berman, A., and Plemmons, R. (1979). Nonnegative Matrices in the Mathematical Sciences. New
York: Academic.

[2] Cao, J., and Li, R.(2017). Fixed-time synchronization of delayed memristor-based recurrent neural
networks. SCIENCE CHINA Information Sciences, 60(3), 032201.

[3] Chen, J., Jiao, L., Wu. J and Wang, X .(2010). Projective synchronization with different scale
factors in a driven response complex network and its application in image encryption. Nonlinear
Analysis: Real World Applications, 11, 3045-3058.

[4] Chen, L., Chai, Y., Wu, R and Ma, T. (2013). Dynamic analysis of a class of fractional-order
neural networks with delay. Neurocomputing, 111, 2, 190-194.

[5] Chen, W., Ye, L and Sun, H.(2010). Fractional diffusion equations by the Kansa method. Com-
puters and Mathematics with Applications, 59, 1614-1620.

[6] Yang, X., Cao, J. (2014). Hybrid adaptive and impulsive synchronization of uncertain complex
networks with delays and general uncertain perturbations, Applied Mathematics and Computa-
tion, 227, 480-493.

[7] Lu, J., Wang, Z., Cao, J., Daniel W. Ho, Kurths, J. (2012). Pinning impulsive stabilization of
nonlinear dynamical networks with time-varying delay, International Journal of Bifurcation and
Chaos, 22:7, 1250176.

[8] Ding, Z., Shen, Y and Wang, L. (2016). Global Mittag-Leffler synchronization of fractional order
neural networks with discontinuous activations. Neural Networks, 73, 77-85.

[9] El-Dessoky, M. (2010). Anti-synchronization of four scroll attractor with fully unknown parame-
ters. Nonlinear Analysis: Real World Applications, 11, 778-783.

22



[10] Filippov A, F. (1988). Differential equations with discontinuous right-hand sides. Dordrecht:
Kluwer.

[11] Li, X, Song, S. (2017). Stabilization of Delay Systems: Delay-dependent Impulsive Control, IEEE
Transactions on Automatic Control 62(1), 406-411.

[12] Li, X, Cao, J. (2017). An impulsive delay inequality involving unbounded time-varying delay and
applications, IEEE Transactions on Automatic Control, 62, 3618-3625.

[13] Forti, M and Nistri, P. (2003). Global convergence of neural networks with discontinuous neuron
activations. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
50, 1421-1435.

[14] Forti, M., Nistri, P and Papini, D. (2005). Global exponential stability and global convergence in
finite time of delayed neural networks with infinite gain. IEEE Transactions on Neural Networks,
16 , 1449-1463.

[15] Forti, M., Nistri, P and Quincampoix, M. (2004). Generalized neural network for nonsmooth
nonlinear programming problems. IEEE Transactions on Circuits and Systems. I., 51, 1741-1754.

[16] Heaviside, O. (1971). Electromagnetic Theory. Chelse, NewYork.

[17] Hilfer, R (Ed.). (2000). Applications of fractional calculus in physics. Singapore: World Scientific,
Vol.128.

[18] Ivanka, S. (2014). Global Mittag-Leffler stability and synchronization of impulsive fractional order
neural networs with time-varying delays. Nonlinear Dynamics, 77, 1251-1260.

[19] Kaslik, E and Sivasundaram, S. (2012). Nonlinear dynamics and chaos in fractionalorder neural
networks. Neural Networks, 32, 245-256.

[20] Jiang, G., Tang, W and Chen, G. (2006). A state-observer-based approach for synchronization in
complex dynamical networks, IEEE Transactions on Circuits and Systems I, 53, 12, 2739-2745.

[21] Kilbas, A., Srivastava, A and Trujillo, J.J. (2006). Theory and applications of fractional differen-
tial equations. Elsevier Science Limited, Vol.204.

[22] Li, Y., Chen, Y and Podlubny, I. (2010). Stability of fractional-order nonlinear dynamic systems:
Lyapunov direct method and generalized Mittag-leffler stability. Comput. Math. Appl. 59, 1810-
1821.

[23] Liu, X and Cao, J. (2009). On periodic solutions of neural networks via differential inclusions.
Neural Networks, 22, 329-334.

[24] Liu. J, Liu, X and Xie, W.(2012). Global convergence of neural networks with mixed time-varying
delays and discontinuous neuron activations. Information Sciences, 183, 92-105.

[25] Li, X. Wu, J. (2016). Stability of nonlinear differential systems with state-dependent delayed
impulses, Automatica, 64, 63-69.

[26] Liu, X., Park, J., Jiang, N and Cao, J. (2014). Nonsmooth finite-time stabilization of neural
networks with discontinuous activations. Neural Networks, 52 , 25-32.

[27] Lu, W and Chen, T. (2005). Dynamical behaviors of Cohen-rossberg neural networks with dis-
continuous activation functions. Neural Networks, 18, 231-242.

[28] Li, R., Cao, J., Alsaedi, A and Alsaadi, F. (2017). Exponential and fixed-time synchronization of
Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms, Applied
Mathematics and Computation, 313, 37-51.

23



[29] Li, R., Cao, J. (2017). Ahmad Alsaedi and Fuad Alsaadi, Stability analysis of fractional-order
delayed neural networks. Nonlinear Analysis: Modelling and Control, 22, 505-520.

[30] Magin, R. L and Ovadia, M. (2008). Modeling the cardiac tissue electrode interface using frac-
tional calculus. Journal of Vibration and Control, 14, 1431-1442.

[31] Milanovic, V and Zaghloul, M. E. (1996). Synchronization of chaotic neural networks and appli-
cations to communications. International Journal of Bifurcation and Chaos, 6(12), 2571-2585.

[32] Pecora, L., Carrol, T. (1990). Synchronization in chaotic systems. Phys Rev Lett 64, 821-824.

[33] Podlubny, I. (1999). Fractional differential equations. San Diego, California: Academic Press.

[34] Rosenblum, M., Pikovsky, A., J, Kurths. (1996). Phase synchronization of chaotic oscillators.
Physical Review Letters, 76, 1804-1807.

[35] Ren, F., Cao, F and Cao, J. (2015). Mittag-Leffler stability and generalized Mittag-Leffler stability
of fractional-order gene regulatory networks. Neurocomputing, 160(2015), 185-190.

[36] Song, C and Cao, J. (2014). Dynamics in fractional-order neural networks. Neurocomputing, 142,
494-498.

[37] Wang, J., Huang, L and Guo, Z. (2009). Global asymptotic stability of neural networks with
discontinuous activations. Neural Networks, 22, 931-937.

[38] Wang, L., Shen, Y and Sheng, Y. (2016). Finite-time robust stabilization of uncertain delayed
neural networs with discontinious activations via delayed feedback control. Neural Networks, 76,
46-54.

[39] Li, X., Zhang, X., and S. Song. (2017). Effect of delayed impulses on input-to-state stability of
nonlinear systems, Automatica 76, 378-382.

[40] Li, X., Bohner, M., Wang, C. (2015). Impulsive differential equations: Periodic solutions and
applications, Automatica 52, 173-178.

[41] Yang, Y and Cao, J. (2007). Exponential lag synchronization of a class of chaotic delayed neural
networks with impulsive effects. Physica A Statistical Mechanics and Its Applications, 386, 492-
502.

[42] Xiao, J., Zhong, S., Li, Y., Xu, F. (2016). Finite-time Mittag-Leffler synchronization of fractional-
order memristive BAM neural networks with time delays. Neurocomputing, 219, 431-439.

[43] Ye, H.P., Gao, J and Ding. Y. (2007). A generalized Gronwall inequality and its application to a
fractional differential equation. J. Math. Anal. Appl, 328, 1075-1081.

[44] Zhang, S., Yu, Y and Wang, Q. (2016). Stability analysis of fractional-order Hopfield neural
networks with discontinuous activation functions. Neurocomputing, 171, 1075-1084.

[45] Zhu, Q and Cao, J. (2011). Exponential stability analysis of stochastic reaction-diffusion Cohen-
Grossberg neural networks with mixed delays. Neurocomputing, 74, 3084-3091.

24


	Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses

