

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	166.97	Contain hydrogen atoms. Optimal:100~600
Volume	126.422	Van der Waals volume
Density	1.321	Density = MW / Volume
nHA	6	Number of hydrogen bond acceptors. Optimal:0~12
nHD	2	Number of hydrogen bond donors. Optimal:0~7
nRot	3	Number of rotatable bonds. Optimal:0~11
nRing	0	Number of rings. Optimal:0~6
MaxRing	0	Number of atoms in the biggest ring. Optimal:0~18
nHet	7	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	4	Number of rigid bonds. Optimal:0~30
Flexibility	0.75	Flexibility = nRot /nRig
Stereo Centers	0	Optimal: ≤ 2
TPSA	100.9	Topological Polar Surface Area. Optimal:0~140
logS	0.163	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	-1.907	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	-0.906	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

2. Medicinal Chemistry			
Property	Value	Decision	Comment
QED	0.352	•	 A measure of drug-likeness based on the concept of desirability; Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.646	•	 ■ Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. ■ SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.0	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	0.0	•	 ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18≥45 is considered a suitable value.

NPscore	1.082	-	 Natural product-likeness score. This score is typically in the range from -5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Accepted	•	 MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Accepted	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	•	 MW ≤ 400; logP ≤ 4 Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Rejected	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALARM NMR	0 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.
3. Absorption			

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-5.822	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	0.001437		■ low permeability: $< 2 \times 10^{-6}$ cm/s ■ medium permeability: 2–20 × 10 ⁻⁶ cm/s ■ high passive permeability: > 20 × 10 ⁻⁶ cm/s
Pgp-inhibitor	0.0		 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.0	•	 Category 1: substrate; Category 0: Non-substrate; The output value is the probability of being Pgp-substrate
НІА	0.41	•	 Human Intestinal Absorption Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	0.852	•	■ 20% Bioavailability ■ Category 1: $F_{20\%}$ + (bioavailability < 20%); Category 0: $F_{20\%}^{-}$ (bioavailability ≥ 20%); The output value is the probability of being $F_{20\%}$ +

F _{30%}	0.993	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
------------------	-------	---	--

4. Distribution

Property	Value	Decision	Comment
PPB	18.09%	•	 Plasma Protein Binding Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	0.225	•	 ■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.826	•	 Blood-Brain Barrier Penetration Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	73.08%	•	 ■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.01	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP1A2 substrate	0.049	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C19 inhibitor	0.055	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C19 substrate	0.041	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C9 inhibitor	0.027	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C9 substrate	0.199	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2D6 inhibitor	0.045	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2D6 substrate	0.129	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP3A4 inhibitor	0.008	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP3A4 substrate	0.024	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	1.825	•	 ■ Clearance ■ High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.845	-	 Category 1: long half-life ; Category 0: short half-life; long half-life: >3h; short half-life: <3h The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.005	•	 Category 1: active; Category 0: inactive; The output value is the probability of being active.
H-HT	0.082	•	 Human Hepatotoxicity Category 1: H-HT positive(+); Category 0: H-HT negative(-); The output value is the probability of being toxic.
DILI	0.781	•	 Drug Induced Liver Injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.038	•	 Category 1: Ames positive(+); Category 0: Ames negative(-); The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.044	•	 Category 0: low-toxicity; Category 1: high-toxicity; The output value is the probability of being highly toxic.
FDAMDD	0.024	•	 Maximum Recommended Daily Dose Category 1: FDAMDD (+); Category 0: FDAMDD (-) The output value is the probability of being positive.
Skin Sensiti zation	0.531		 Category 1: Sensitizer; Category 0: Non-sensitizer; The output value is the probability of being sensitizer.
Carcinogen city	0.06	•	 Category 1: carcinogens; Category 0: non-carcinogens; The output value is the probability of being toxic.
Eye Corrosion	0.981	•	 Category 1: corrosives ; Category 0: noncorrosives The output value is the probability of being corrosives.
Eye Irritation	0.99	•	 Category 1: irritants ; Category 0: nonirritants The output value is the probability of being irritants.

Respiratory Toxicity	0.754	•	 Category 1: respiratory toxicants; Category 0: respiratory nontoxicants The output value is the probability of being toxic.
-------------------------	-------	---	--

8. Environmental toxicity

Property	Value	Comment	
Bioconcentration Factors	0.31	 Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. The unit is -log10[(mg/L)/(1000*MW)] 	
IGC ₅₀	2.457	 Tetrahymena pyriformis 50 percent growth inhibition concentration The unit is -log10[(mg/L)/(1000*MW)] 	
LC ₅₀ FM	3.759	 96-hour fathead minnow 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 	
LC ₅₀ DM	3.905	 48-hour daphnia magna 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 	

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.008	•	 Androgen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.002	•	 Androgen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.001	•	 Aryl hydrocarbon receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.001	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER	0.02		 Estrogen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER-LBD	0.016	•	 Estrogen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-PPAR- gamma	0.001	•	 Peroxisome proliferator-activated receptor gamma Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ARE	0.002	•	 Antioxidant response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ATAD5	0.004	•	 ATPase family AAA domain-containing protein 5 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

SR-HSE	0.01	•	 Heat shock factor response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-MMP	0.003	•	 Mitochondrial membrane potential Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-p53	0.005	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	 20 substructures acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0 alerts	 117 substructures carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	 23 substructures carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	2 alerts	■ 155 substructures■ skin irritation
Aquatic Toxicity Rule	1 alerts	 99 substructures toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	■ 19 substructures■ non-biodegradable
SureChEMBL Rule	0 alerts	 164 substructures MedChem unfriendly status

O=C(O)/C(=C/F)O[P](=O)(=O)O

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	184.97	Contain hydrogen atoms. Optimal:100~600
Volume	132.489	Van der Waals volume
Density	1.396	Density = MW / Volume
nHA	6	Number of hydrogen bond acceptors. Optimal:0~12
nHD	2	Number of hydrogen bond donors. Optimal:0~7
nRot	3	Number of rotatable bonds. Optimal:0~11
nRing	0	Number of rings. Optimal:0~6
MaxRing	0	Number of atoms in the biggest ring. Optimal:0~18
nHet	8	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	4	Number of rigid bonds. Optimal:0~30
Flexibility	0.75	Flexibility = nRot /nRig
Stereo Centers	0	Optimal: ≤ 2
TPSA	100.9	Topological Polar Surface Area. Optimal:0~140
logS	0.245	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	-1.406	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	-0.891	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.375	•	 A measure of drug-likeness based on the concept of desirability; Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.976	•	 Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.0	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	0.0	•	 ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18≥45 is considered a suitable value.

NPscore	0.703	-	 Natural product-likeness score. This score is typically in the range from -5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Accepted	•	 MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Accepted	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	•	 MW ≤ 400; logP ≤ 4 Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Rejected	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALARM NMR	0 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.
3. Absorption			

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-5.694	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	0.000656		 ■ low permeability: < 2 × 10⁻⁶ cm/s ■ medium permeability: 2–20 × 10⁻⁶ cm/s ■ high passive permeability: > 20 × 10⁻⁶ cm/s
Pgp-inhibitor	0.0	•	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.0	•	 Category 1: substrate; Category 0: Non-substrate; The output value is the probability of being Pgp-substrate
НІА	0.557	•	 Human Intestinal Absorption Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	0.983	•	■ 20% Bioavailability ■ Category 1: $F_{20\%}^{+}$ + (bioavailability < 20%); Category 0: $F_{20\%}^{-}$ (bioavailability ≥ 20%); The output value is the probability of being $F_{20\%}^{+}$ +

F _{30%}	0.999	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
------------------	-------	---	--

4. Distribution

Property	Value	Decision	Comment
PPB	28.45%	•	 Plasma Protein Binding Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	0.227	•	 ■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.627	•	 Blood-Brain Barrier Penetration Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	66.78%	•	 ■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.014	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP1A2 substrate	0.064	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C19 inhibitor	0.061	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C19 substrate	0.042	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C9 inhibitor	0.016	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C9 substrate	0.46	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2D6 inhibitor	0.052	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2D6 substrate	0.13	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP3A4 inhibitor	0.008	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP3A4 substrate	0.043	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	1.865	•	 Clearance High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.796	-	 Category 1: long half-life ; Category 0: short half-life; long half-life: >3h; short half-life: <3h The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.0	•	 Category 1: active; Category 0: inactive; The output value is the probability of being active.
H-HT	0.984	•	 Human Hepatotoxicity Category 1: H-HT positive(+); Category 0: H-HT negative(-); The output value is the probability of being toxic.
DILI	0.954	•	 Drug Induced Liver Injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.663	•	 Category 1: Ames positive(+); Category 0: Ames negative(-); The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.841	•	 Category 0: low-toxicity; Category 1: high-toxicity; The output value is the probability of being highly toxic.
FDAMDD	0.024	•	 Maximum Recommended Daily Dose Category 1: FDAMDD (+); Category 0: FDAMDD (-) The output value is the probability of being positive.
Skin Sensiti zation	0.729		 Category 1: Sensitizer; Category 0: Non-sensitizer; The output value is the probability of being sensitizer.
Carcinogen city	0.678	•	 Category 1: carcinogens; Category 0: non-carcinogens; The output value is the probability of being toxic.
Eye Corrosion	0.964	•	 Category 1: corrosives ; Category 0: noncorrosives The output value is the probability of being corrosives.
Eye Irritation	0.974	•	 Category 1: irritants ; Category 0: nonirritants The output value is the probability of being irritants.

Respiratory Toxicity	0.963	•	 Category 1: respiratory toxicants; Category 0: respiratory nontoxicants The output value is the probability of being toxic.
-------------------------	-------	---	--

8. Environmental toxicity

Property	Value	Comment		
Bioconcentration Factors	0.076	 Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. The unit is -log10[(mg/L)/(1000*MW)] 		
IGC ₅₀	2.285	 Tetrahymena pyriformis 50 percent growth inhibition concentration The unit is -log10[(mg/L)/(1000*MW)] 		
LC ₅₀ FM	4.03	 96-hour fathead minnow 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 		
LC ₅₀ DM	4.299	 48-hour daphnia magna 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 		

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.005	•	 Androgen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.001	•	 Androgen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.001	•	 Aryl hydrocarbon receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.0	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER	0.012	•	 Estrogen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER-LBD	0.005	•	 Estrogen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-PPAR- gamma	0.001	•	 Peroxisome proliferator-activated receptor gamma Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ARE	0.001	•	 Antioxidant response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ATAD5	0.004	•	 ATPase family AAA domain-containing protein 5 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

SR-HSE	0.003	•	 Heat shock factor response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-MMP	0.002	•	 Mitochondrial membrane potential Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-p53	0.003	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	 20 substructures acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0 alerts	 117 substructures carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	 23 substructures carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	1 alerts	 155 substructures skin irritation
Aquatic Toxicity Rule	1 alerts	 99 substructures toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	 19 substructures non-biodegradable
SureChEMBL Rule	0 alerts	 164 substructures MedChem unfriendly status

Compound 3

O=C(O)/C(=C/Cl)O[P](=O)(=O)O

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	200.94	Contain hydrogen atoms. Optimal:100~600
Volume	141.633	Van der Waals volume
Density	1.419	Density = MW / Volume
nHA	6	Number of hydrogen bond acceptors. Optimal:0~12
nHD	2	Number of hydrogen bond donors. Optimal:0~7
nRot	3	Number of rotatable bonds. Optimal:0~11
nRing	0	Number of rings. Optimal:0~6
MaxRing	0	Number of atoms in the biggest ring. Optimal:0~18
nHet	8	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	4	Number of rigid bonds. Optimal:0~30
Flexibility	0.75	Flexibility = nRot /nRig
Stereo Centers	0	Optimal: ≤ 2
TPSA	100.9	Topological Polar Surface Area. Optimal:0~140
logS	0.073	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	-0.612	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	-0.914	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.396	•	 A measure of drug-likeness based on the concept of desirability; Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.904	•	 Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.0	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	0.0	•	 ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18≥45 is considered a suitable value.

NPscore	1.059	-	 Natural product-likeness score. This score is typically in the range from -5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Accepted	•	 MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Accepted	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	•	 MW ≤ 400; logP ≤ 4 Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Accepted	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALARM NMR	1 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.
3. Absorption			

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-5.696	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	0.000636		 ■ low permeability: < 2 × 10⁻⁶ cm/s ■ medium permeability: 2–20 × 10⁻⁶ cm/s ■ high passive permeability: > 20 × 10⁻⁶ cm/s
Pgp-inhibitor	0.0	•	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.0	•	 Category 1: substrate; Category 0: Non-substrate; The output value is the probability of being Pgp-substrate
НІА	0.257	•	 Human Intestinal Absorption Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	0.945	•	■ 20% Bioavailability ■ Category 1: $F_{20\%}^{+}$ + (bioavailability < 20%); Category 0: $F_{20\%}^{-}$ (bioavailability ≥ 20%); The output value is the probability of being $F_{20\%}^{+}$ +

F _{30%}	0.994	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
------------------	-------	---	--

4. Distribution

Property	Value	Decision	Comment
PPB	35.30%	•	 Plasma Protein Binding Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	0.228	•	 ■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.769	•	 Blood-Brain Barrier Penetration Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	63.16%	•	 ■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.018	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP1A2 substrate	0.074	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C19 inhibitor	0.053	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C19 substrate	0.046	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C9 inhibitor	0.016	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C9 substrate	0.349	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2D6 inhibitor	0.04	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2D6 substrate	0.123	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP3A4 inhibitor	0.009	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP3A4 substrate	0.058	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	1.773	•	 Clearance High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.839	-	 Category 1: long half-life ; Category 0: short half-life; long half-life: >3h; short half-life: <3h The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.0	•	 Category 1: active; Category 0: inactive; The output value is the probability of being active.
H-HT	0.97	•	 Human Hepatotoxicity Category 1: H-HT positive(+); Category 0: H-HT negative(-); The output value is the probability of being toxic.
DILI	0.976	•	 Drug Induced Liver Injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.931	•	 Category 1: Ames positive(+); Category 0: Ames negative(-); The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.367	•	 Category 0: low-toxicity; Category 1: high-toxicity; The output value is the probability of being highly toxic.
FDAMDD	0.015	•	 Maximum Recommended Daily Dose Category 1: FDAMDD (+); Category 0: FDAMDD (-) The output value is the probability of being positive.
Skin Sensiti zation	0.775		 Category 1: Sensitizer; Category 0: Non-sensitizer; The output value is the probability of being sensitizer.
Carcinogen city	0.181	•	 Category 1: carcinogens; Category 0: non-carcinogens; The output value is the probability of being toxic.
Eye Corrosion	0.969	•	 Category 1: corrosives ; Category 0: noncorrosives The output value is the probability of being corrosives.
Eye Irritation	0.966	•	 Category 1: irritants ; Category 0: nonirritants The output value is the probability of being irritants.

Respiratory Toxicity	0.936	•	 Category 1: respiratory toxicants; Category 0: respiratory nontoxicants The output value is the probability of being toxic.
-------------------------	-------	---	--

8. Environmental toxicity

Property	Value	Comment	
Bioconcentration Factors	0.064	 Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. The unit is -log10[(mg/L)/(1000*MW)] 	
IGC ₅₀	2.461	 Tetrahymena pyriformis 50 percent growth inhibition concentration The unit is -log10[(mg/L)/(1000*MW)] 	
LC ₅₀ FM	4.052	 96-hour fathead minnow 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 	
LC ₅₀ DM	4.185	 48-hour daphnia magna 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)] 	

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.004	•	 Androgen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.002	•	 Androgen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.001	•	 Aryl hydrocarbon receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.0	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER	0.02	•	 Estrogen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER-LBD	0.008	•	 Estrogen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-PPAR- gamma	0.002	•	 Peroxisome proliferator-activated receptor gamma Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ARE	0.004	•	 Antioxidant response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ATAD5	0.007	•	 ATPase family AAA domain-containing protein 5 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

SR-HSE	0.005	•	 Heat shock factor response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-MMP	0.003	•	 Mitochondrial membrane potential Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-p53	0.011	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	 20 substructures acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	1 alerts	 117 substructures carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	 23 substructures carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	1 alerts	■ 155 substructures■ skin irritation
Aquatic Toxicity Rule	1 alerts	 99 substructures toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	■ 19 substructures■ non-biodegradable
SureChEMBL Rule	1 alerts	 164 substructures MedChem unfriendly status

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	169.99	Contain hydrogen atoms. Optimal:100~600
Volume	129.058	Van der Waals volume
Density	1.317	Density = MW / Volume
nHA	6	Number of hydrogen bond acceptors. Optimal:0~12
nHD	4	Number of hydrogen bond donors. Optimal:0~7
nRot	3	Number of rotatable bonds. Optimal:0~11
nRing	0	Number of rings. Optimal:0~6
MaxRing	0	Number of atoms in the biggest ring. Optimal:0~18
nHet	7	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	2	Number of rigid bonds. Optimal:0~30
Flexibility	1.5	Flexibility = nRot /nRig
Stereo Centers	0	Optimal: ≤ 2
TPSA	107.22	Topological Polar Surface Area. Optimal:0~140
logS	1.071	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	-3.094	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	0.114	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.367	•	 A measure of drug-likeness based on the concept of desirability; Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.655	•	 ■ Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. ■ SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.0	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	0.0	•	 ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18≥45 is considered a suitable value.

NPscore	1.173	-	 Natural product-likeness score. This score is typically in the range from -5 to 5. The higher the score is, the higher the probability is that the molecule is a NP. 	
Lipinski Rule	Accepted	•	 MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 If two properties are out of range, a poor absorption or permeability is possible, one is acceptable. 	
Pfizer Rule	Accepted	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.	
GSK Rule	Accepted	•	 MW ≤ 400; logP ≤ 4 Compounds satisfying the GSK rule may have a more favorable ADMET profile 	
Golden Triangle	Rejected	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile. 	
PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.	
ALARM NMR	0 alerts	-	Thiol reactive compounds.	
BMS	0 alerts	-	Undesirable, reactive compounds.	
Chelator Rule	0 alerts	-	Chelating compounds.	
3. Absorption				

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-5.881	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	9e-05		 Iow permeability: < 2 × 10⁻⁶ cm/s medium permeability: 2–20 × 10⁻⁶ cm/s high passive permeability: > 20 × 10⁻⁶ cm/s
Pgp-inhibitor	0.0	•	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.003	•	 Category 1: substrate; Category 0: Non-substrate; The output value is the probability of being Pgp-substrate
НІА	0.992	•	 Human Intestinal Absorption Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	1.0	•	■ 20% Bioavailability ■ Category 1: $F_{20\%}^{+}$ + (bioavailability < 20%); Category 0: $F_{20\%}^{-}$ (bioavailability ≥ 20%); The output value is the probability of being $F_{20\%}^{+}$ +

F _{30%}	0.997	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
------------------	-------	---	--

4. Distribution

Property	Value	Decision	Comment
PPB	85.82%	•	 Plasma Protein Binding Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	0.287	•	 ■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.001	•	 Blood-Brain Barrier Penetration Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	22.78%	•	 ■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.003	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP1A2 substrate	0.01	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C19 inhibitor	0.034	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C19 substrate	0.032	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C9 inhibitor	0.307	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C9 substrate	0.867	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2D6 inhibitor	0.018	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2D6 substrate	0.14	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP3A4 inhibitor	0.007	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP3A4 substrate	0.0	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	1.896	•	 ■ Clearance ■ High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.592	-	 Category 1: long half-life ; Category 0: short half-life; long half-life: >3h; short half-life: <3h The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.011	•	 Category 1: active; Category 0: inactive; The output value is the probability of being active.
H-HT	0.001	•	 Human Hepatotoxicity Category 1: H-HT positive(+); Category 0: H-HT negative(-); The output value is the probability of being toxic.
DILI	0.001	•	 Drug Induced Liver Injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.007	•	 Category 1: Ames positive(+); Category 0: Ames negative(-); The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.007	•	 Category 0: low-toxicity; Category 1: high-toxicity; The output value is the probability of being highly toxic.
FDAMDD	0.225	•	 Maximum Recommended Daily Dose Category 1: FDAMDD (+); Category 0: FDAMDD (-) The output value is the probability of being positive.
Skin Sensiti zation	0.24	•	 Category 1: Sensitizer; Category 0: Non-sensitizer; The output value is the probability of being sensitizer.
Carcinogen city	0.048	•	 Category 1: carcinogens; Category 0: non-carcinogens; The output value is the probability of being toxic.
Eye Corrosion	0.999	•	 Category 1: corrosives ; Category 0: noncorrosives The output value is the probability of being corrosives.
Eye Irritation	0.002	•	 Category 1: irritants ; Category 0: nonirritants The output value is the probability of being irritants.

Respiratory Toxicity	0.964	•	 Category 1: respiratory toxicants; Category 0: respiratory nontoxicants The output value is the probability of being toxic.
-------------------------	-------	---	--

8. Environmental toxicity

Property	Value	Comment
Bioconcentration Factors	-0.347	 Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. The unit is -log10[(mg/L)/(1000*MW)]
IGC ₅₀	2.247	 Tetrahymena pyriformis 50 percent growth inhibition concentration The unit is -log10[(mg/L)/(1000*MW)]
LC ₅₀ FM	3.461	 96-hour fathead minnow 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)]
LC ₅₀ DM	1.083	 48-hour daphnia magna 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)]

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.0	•	 Androgen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.0	•	 Androgen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.059	•	 Aryl hydrocarbon receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.001	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER	0.636		 Estrogen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER-LBD	0.637		 Estrogen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-PPAR- gamma	0.001	•	 Peroxisome proliferator-activated receptor gamma Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ARE	0.015	•	 Antioxidant response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ATAD5	0.002	•	 ATPase family AAA domain-containing protein 5 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

SR-HSE	0.001	•	 Heat shock factor response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-MMP	0.001	•	 Mitochondrial membrane potential Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-p53	0.003	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	 20 substructures acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0 alerts	 117 substructures carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	 23 substructures carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	2 alerts	■ 155 substructures■ skin irritation
Aquatic Toxicity Rule	2 alerts	 99 substructures toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	■ 19 substructures■ non-biodegradable
SureChEMBL Rule	0 alerts	 164 substructures MedChem unfriendly status

Compound 5

NC(=O)CC(O[P](=O)(=O)O)C(=O)O

1. Physicochemical Property

Property	Value	Comment
Molecular Weight	212.0	Contain hydrogen atoms. Optimal:100~600
Volume	163.505	Van der Waals volume
Density	1.297	Density = MW / Volume
nHA	8	Number of hydrogen bond acceptors. Optimal:0~12
nHD	4	Number of hydrogen bond donors. Optimal:0~7
nRot	5	Number of rotatable bonds. Optimal:0~11
nRing	0	Number of rings. Optimal:0~6
MaxRing	0	Number of atoms in the biggest ring. Optimal:0~18
nHet	9	Number of heteroatoms. Optimal:1~15
fChar	0	Formal charge. Optimal:-4 ~4
nRig	4	Number of rigid bonds. Optimal:0~30
Flexibility	1.25	Flexibility = nRot /nRig
Stereo Centers	1	Optimal: ≤ 2
TPSA	143.99	Topological Polar Surface Area. Optimal:0~140
logS	-0.292	Log of the aqueous solubility. Optimal: -4~0.5 log mol/L
logP	-2.378	Log of the octanol/water partition coefficient. Optimal: 0~3
logD	-1.078	logP at physiological pH 7.4. Optimal: 1~3

2. Medicinal Chemistry

Property	Value	Decision	Comment
QED	0.488	•	 A measure of drug-likeness based on the concept of desirability; Attractive: > 0.67; unattractive: 0.49~0.67; too complex: < 0.34
SAscore	3.676	•	 Synthetic accessibility score is designed to estimate ease of synthesis of drug-like molecules. SAscore ≥ 6, difficult to synthesize; SAscore <6, easy to synthesize
Fsp3	0.5	•	 ■ The number of sp3 hybridized carbons / total carbon count, correlating with melting point and solubility. ■ Fsp³ ≥0.42 is considered a suitable value.
MCE-18	6.0	•	 ■ MCE-18 stands for medicinal chemistry evolution. ■ MCE-18≥45 is considered a suitable value.

NPscore	0.428	-	 Natural product-likeness score. This score is typically in the range from -5 to 5. The higher the score is, the higher the probability is that the molecule is a NP.
Lipinski Rule	Accepted	•	 MW ≤ 500; logP ≤ 5; Hacc ≤ 10; Hdon ≤ 5 If two properties are out of range, a poor absorption or permeability is possible, one is acceptable.
Pfizer Rule	Accepted	•	logP > 3; TPSA < 75 Compounds with a high log P (>3) and low TPSA (<75) are likely to be toxic.
GSK Rule	Accepted	•	 MW ≤ 400; logP ≤ 4 Compounds satisfying the GSK rule may have a more favorable ADMET profile
Golden Triangle	Accepted	•	 ■ 200 ≤ MW ≤ 50; -2 ≤ logD ≤ 5 ■ Compounds satisfying the Golden Triangle rule may have a more favorable ADMET profile.
PAINS	0 alerts	-	Pan Assay Interference Compounds, frequent hitters, Alpha-screen artifacts and reactive compound.
ALARM NMR	0 alerts	-	Thiol reactive compounds.
BMS	0 alerts	-	Undesirable, reactive compounds.
Chelator Rule	0 alerts	-	Chelating compounds.
3. Absorption			

3. Absorption

Property	Value	Decision	Comment
Caco-2 Permeability	-6.152	•	Optimal: higher than -5.15 Log unit
MDCK Permeability	0.002665		 ■ low permeability: < 2 × 10⁻⁶ cm/s ■ medium permeability: 2–20 × 10⁻⁶ cm/s ■ high passive permeability: > 20 × 10⁻⁶ cm/s
Pgp-inhibitor	0.0	•	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being Pgp-inhibitor
Pgp-substrate	0.004	•	 Category 1: substrate; Category 0: Non-substrate; The output value is the probability of being Pgp-substrate
НІА	0.027	•	 Human Intestinal Absorption Category 1: HIA+(HIA < 30%); Category 0: HIA-(HIA < 30%); The output value is the probability of being HIA+
F _{20%}	0.843	•	■ 20% Bioavailability ■ Category 1: $F_{20\%}^{+}$ + (bioavailability < 20%); Category 0: $F_{20\%}^{-}$ (bioavailability ≥ 20%); The output value is the probability of being $F_{20\%}^{+}$ +

F _{30%}	0.987	•	■ 30% Bioavailability ■ Category 1: $F_{30\%}$ + (bioavailability < 30%); Category 0: $F_{30\%}$ - (bioavailability ≥ 30%); The output value is the probability of being $F_{30\%}$ +
------------------	-------	---	--

4. Distribution

Property	Value	Decision	Comment
PPB	7.939%	•	 Plasma Protein Binding Optimal: < 90%. Drugs with high protein-bound may have a low therapeutic index.
VD	0.211	•	 ■ Volume Distribution ■ Optimal: 0.04-20L/kg
BBB Penetration	0.961	•	 Blood-Brain Barrier Penetration Category 1: BBB+; Category 0: BBB-; The output value is the probability of being BBB+
Fu	89.67%	•	 ■ The fraction unbound in plasms ■ Low: <5%; Middle: 5~20%; High: > 20%

5. Metabolism

Property	Value	Comment
CYP1A2 inhibitor	0.003	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP1A2 substrate	0.04	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C19 inhibitor	0.038	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C19 substrate	0.037	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2C9 inhibitor	0.012	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2C9 substrate	0.801	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP2D6 inhibitor	0.038	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP2D6 substrate	0.108	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.
CYP3A4 inhibitor	0.005	 Category 1: Inhibitor; Category 0: Non-inhibitor; The output value is the probability of being inhibitor.
CYP3A4 substrate	0.004	 Category 1: Substrate; Category 0: Non-substrate; The output value is the probability of being substrate.

6. Excretion

Property	Value	Decision	Comment
CL	1.721	•	 Clearance High: >15 mL/min/kg; moderate: 5-15 mL/min/kg; low: <5 mL/min/kg
T _{1/2}	0.588	-	 Category 1: long half-life ; Category 0: short half-life; long half-life: >3h; short half-life: <3h The output value is the probability of having long half-life.

7. Toxicity

Property	Value	Decision	Comment
hERG Blockers	0.009	•	 Category 1: active; Category 0: inactive; The output value is the probability of being active.
H-HT	0.061	•	 Human Hepatotoxicity Category 1: H-HT positive(+); Category 0: H-HT negative(-); The output value is the probability of being toxic.
DILI	0.112	•	 Drug Induced Liver Injury. Category 1: drugs with a high risk of DILI; Category 0: drugs with no risk of DILI. The output value is the probability of being toxic.
AMES Toxicity	0.019	•	 Category 1: Ames positive(+); Category 0: Ames negative(-); The output value is the probability of being toxic.
Rat Oral Acute Toxicity	0.001	•	 Category 0: low-toxicity; Category 1: high-toxicity; The output value is the probability of being highly toxic.
FDAMDD	0.027	•	 Maximum Recommended Daily Dose Category 1: FDAMDD (+); Category 0: FDAMDD (-) The output value is the probability of being positive.
Skin Sensiti zation	0.305		 Category 1: Sensitizer; Category 0: Non-sensitizer; The output value is the probability of being sensitizer.
Carcinogen city	0.015	•	 Category 1: carcinogens; Category 0: non-carcinogens; The output value is the probability of being toxic.
Eye Corrosion	0.26	•	 Category 1: corrosives ; Category 0: noncorrosives The output value is the probability of being corrosives.
Eye Irritation	0.846	•	 Category 1: irritants ; Category 0: nonirritants The output value is the probability of being irritants.

Respiratory Toxicity	0.162	•	 Category 1: respiratory toxicants; Category 0: respiratory nontoxicants The output value is the probability of being toxic.
-------------------------	-------	---	--

8. Environmental toxicity

Property	Value	Comment
Bioconcentration Factors	0.086	 Bioconcentration factors are used for considering secondary poisoning potential and assessing risks to human health via the food chain. The unit is -log10[(mg/L)/(1000*MW)]
IGC ₅₀	2.12	 Tetrahymena pyriformis 50 percent growth inhibition concentration The unit is -log10[(mg/L)/(1000*MW)]
LC ₅₀ FM	3.767	 96-hour fathead minnow 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)]
LC ₅₀ DM	3.012	 48-hour daphnia magna 50 percent lethal concentration The unit is -log10[(mg/L)/(1000*MW)]

9. Tox21 pathway

Property	Value	Decision	Comment
NR-AR	0.011	•	 Androgen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AR-LBD	0.005	•	 Androgen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-AhR	0.0	•	 Aryl hydrocarbon receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-Aromatase	0.0	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER	0.034	•	 Estrogen receptor Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-ER-LBD	0.255	•	 Estrogen receptor ligand-binding domain Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
NR-PPAR- gamma	0.003	•	 Peroxisome proliferator-activated receptor gamma Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ARE	0.004	•	 Antioxidant response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-ATAD5	0.004	•	 ATPase family AAA domain-containing protein 5 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

SR-HSE	0.004	•	 Heat shock factor response element Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-MMP	0.005	•	 Mitochondrial membrane potential Category 1: actives ; Category 0: inactives; The output value is the probability of being active.
SR-p53	0.009	•	 Category 1: actives ; Category 0: inactives; The output value is the probability of being active.

10. Toxicophore Rules

Property	Value	Comment
Acute Toxicity Rule	0 alerts	 20 substructures acute toxicity during oral administration
Genotoxic Carcinogenicity Rule	0 alerts	 117 substructures carcinogenicity or mutagenicity
NonGenotoxic Carcinogenicity Rule	0 alerts	 23 substructures carcinogenicity through nongenotoxic mechanisms
Skin Sensitization Rule	0 alerts	 155 substructures skin irritation
Aquatic Toxicity Rule	0 alerts	 99 substructures toxicity to liquid(water)
NonBiodegradable Rule	0 alerts	■ 19 substructures■ non-biodegradable
SureChEMBL Rule	0 alerts	 164 substructures MedChem unfriendly status