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Retrieval of hourly aerosol single
scattering albedo over land using
geostationary satellite data
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The single scattering albedo (SSA) of aerosol particles is one of the key variables that determine
aerosol radiative forcing. Herein, an Algorithm for the retrieval of Single scattering albedo over Land
(ASL) is proposed for application to full-disk data from the advanced Himawari imager (AHI) sensor
flying on board the Himawari-8 satellite. In this algorithm, an atmospheric radiative transfer model
known as the USM (the top of the atmosphere reflectance as the sum of Un-scattered, Single-
scattered, andMultiple-scattered components) is used to calculate theSSA insteadof predetermining
theaerosolmodel; theUSM isconstrainedby the surfacebidirectional reflectancedistribution function
shape and aerosol optical depth (AOD) in the retrieval process. Combining two consecutive
observations and a 2 * 2 pixel window, the optimal estimation algorithm is adopted to obtain the
optimal solution for the aerosol SSA. These SSA results are evaluated by comparing with aerosol
robotic network (AERONET) data. Linear regression shows that SSAASL = 0.60*SSSAERONET+ 0.38,
with a correlation coefficient (0.7284), mean absolute error (0.0319), mean bias error (0.00324), root
mean square error (0.0427), and ~80.11% of the ASL SSA data within an uncertainty of ±0.05 of the
AERONET data. A comparison of the ASL SSA products with collocated Himawari-8 SSA products
(Version 03, officially released by the Japan Meteorological Agency (JMA), referred to herein as JMA
SSA) shows that the accuracy of theASLSSA is better than that of the JMASSAproducts. For theSSA
retrieval in large AODs (>0.4), the validation metrics vs. AERONET data are better.

Absorbing aerosol particles are mainly emitted from biomass burning and
fuel combustion for transportation, industrial, and household activities, as
well as fromdust aerosol particles emitted from soil erosion (e.g. during dust
storms over deserts) and agricultural activities. Absorbing aerosol particles
significantly affect the transmission of solar radiation in the atmosphere and
are widely regarded as a principal source of low regional air quality1–3.
Aerosol absorption is typically expressed by the single scattering albedo
(SSA), i.e. the ratio of aerosol absorption to the total aerosol extinction (the
sum of absorption and scattering) in the atmosphere. SSA is a key variable
for describing aerosol radiative forcing and, thus, the direct effect of aerosols
on climate change. Furthermore, absorbing aerosols adversely affect air
quality and health4, as well as on snow melt contributing to Arctic ampli-
fication and the retreat of glaciers5–7. Therefore, accurate estimates of SSA
are critical for decreasing the uncertainty in investigations of aerosol effects
on air pollution and climate change8–10.

Satellite remote sensing allows the optical characteristics of global
aerosols to be captured11,12. However, the intensity of the reflected radiation
in radiative transport is affected by both aerosol scattering and absorption,
which are difficult to distinguish in satellite remote sensing retrieval13. In
particular, for polar-orbit satellites with a single view, the inversion of var-
ious aerosol properties is underdeterminedbecause of the limitednumber of
independent observations14.

Candidate regional aerosol models used in typical aerosol inversion
algorithms are typically derived via a cluster analysis of specific ground
observation data15,16. Every predefined aerosol model exhibits known
aerosol properties and different models exhibit different optical properties.
SSA can be obtained using these models. For example, for the Dark Target
algorithm developed for aerosol retrieval using moderate-resolution ima-
ging spectroradiometer (MODIS) data over dark surfaces, five aerosol
models (continental, moderately absorbing, non-absorbing, strong
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absorbing, and spheroid) were defined based on the analysis of sun pho-
tometer data in the global aerosol robotic network (AERONET)17,18. For
each aerosolmodel, the SSA at 550 nmwas fixed at values of 0.89, 0.92, 0.95,
0.87, and 0.9519. Hence, only a few discrete SSA values can be assigned using
this algorithm, which results severely biased SSA results.

Researchers have attempted to retrieve parameters to characterise
aerosol absorption, such as SSA or absorbing aerosol optical depth (AOD),
from satellite observations. Satheesh et al.20 used the MODIS AOD product
to retrieve aerosol absorption from ozone monitoring instrument (OMI)
data, and theMODIS aerosol algorithmwas discovered to be independent of
the aerosol layer height (ALH). Although the OMI can provide both AOD
and SSA products, the ALHmust be assumed in advance21–23. Subsequently,
MODIS retrieval is performed to constrain theAOD inOMI retrieval,which
can improve the assessment of aerosol absorption24. Jeong and Hsu25 pro-
posed an algorithm known as the aerosol single-scattering albedo and layer
height estimation (ASHE) algorithm, which can provide biomass burning
smoke (BBS) SSA and the ALH using a combination of MODIS, OMI, and
Cloud-Aerosol Lidar with Orthogonal Polarization satellite sensors, and the
corresponding shape and magnitude of spectral BBS SSA inversion results
agreed well with the AERONET data (the deviation between them was
within ± 0.03). However, this study only compared 4-day biomass aerosol
SSA data to test the ASHE algorithm, the former of which do not contain
sufficient data to verify the stability of the algorithm. Jeong et al.26 developed
an optimal-estimation (OE)-based aerosol inversion algorithm based on
OMI observations, and the results showed that the OE-based SSA (corre-
lation coefficient (R = 0.33)) at 388 nmwas consistent with AERONET SSA
and comparable to the operational SSA (R = 0.34). Bao et al.27 proposed an
inversion algorithm to indirectly obtain daily SSA results using a visible
infra-red imaging radiometer suite sensor in East Asia. The algorithm
combines the three basic aerosol components in a 6 Smodel to obtain several
aerosol models and then selects the optimal aerosol model to obtain the
optimal SSA value. The SSA inversion accuracy is higher under higher
aerosol loading (AOD> 0.5) (R2

all AOD = 0.426 and R2
AOD > 0.5 = 0.571 at

550 nm).Wanget al.28 also regarded theaerosolmodels asunknownsandare
determined based on themixture of aerosol components (DU, BrC, BC, and
AS), and the results are more reliable than the official SSA of MODIS. In
addition to using only wavelengths in the ultraviolet and visible bands for
SSA retrieval, the use of polarisation can provide additional information,
thus providing a method for the detection of aerosol optical properties.
Dubovik et al.29 developed a generalised retrieval of atmospheric and surface
properties (GRASP) to retrieve the SSA for a POLDER/PARASOL sensor.
The global GRASP/model SSA correlation coefficient was 0.348 compared
with that of the AERONET at 443 nm, and researchers have proven that the
retrieval accuracy can be improved during aerosol enrichment (R = 0.639
when AOD> 1.5)30,31.

Currently, research pertaining to SSA inversion is mainly focused on
polar orbit satellites, whereas research pertaining to geostationary satellites
is limited. Comparedwith polar orbit satellites, geostationary satellites have
higher temporal resolution, which is of great research significance for
studying the dynamic changes in aerosol optical properties14. Yoshida et al.32

constructed the advanced Himawari imager (AHI) retrieval technique and
utilised the optimal estimation algorithm to invert the AOD and SSA at
500 nm; however, the SSA showed a low correlation of 0.304 when com-
pared with AERONET’s observations, because the verification results show
that the variable range of the satellite’s SSA is small, leading to significant
deviation33.

Herein, an Algorithm for the retrieval of Single scattering albedo over
Land (ASL) based on the geostationary satellite Himawari-8/AHI data is
presented. Section 2 describes the results of the SSA inversion are presented
and validated using ground-based AERONET data. The validation results
are compared with the operational Japan Meteorological Agency (JMA)
SSAresults for the sameperiod.TheSection3 is discussionof thispaper.The
Section 4 describes data source, the atmospheric radiative transfer forward
model and the surface albedo model used in this study and the manner by
which these models are used to construct the SSA retrieval algorithm.

Additionally, the SSA and asymmetry factor sensitivity analysis are
presented.

Results
Spatiotemporal distribution of retrieved SSA datasets over
study area
The ASL algorithm was applied to the AHI data to retrieve the SSA in the
study area from January to September 2020. The spatial distributions of the
AHI-retrieved SSA on 16 February 2020 from 00:00 to 08:00 UTC are
presented inFig. 1. Theoverall spatial distributions of the SSAover the study
area were similar throughout the day, with high values over Australia and
theNorthChina Plain (near 40N, 110E) and low values over SoutheastAsia
(near 20N, between 80E and 100E). However, the spatial distributions over
different regions changed by the hour, indicating the short-term variability
of the aerosol absorbing properties, which can only be observed over such
large areas using instruments on geostationary satellites. The lowSSA (<0.9)
over Southeast Asia indicates a relatively high proportion of absorbing
aerosols in this region,whichmaybe related tohigh emissions frombiomass
burning and the industry34.

Validation of ASL-retrieved SSA and comparison with JMA
SSA data
The inversion results were evaluated and compared with the AERONET
observations. To compare the results from the ASL algorithmwith the JMA
SSA, the latter were evaluated against AERONET SSA data for the same
period. Based on the validation of these datasets through comparison with
collocated AERONET SSA data, a quantitative comparison of the ASL SSA
and JMA SSA was performed. In this regard, statistical metrics, including
the correlation coefficient (R) and root-mean-square error (RMSE), mean
absolute error (MAE), mean bias error (MBE), and expected error (EE,
±0.05) were used to evaluate the accuracy27,35. The AERONET SSA retrieval
results from observations within ±30min of the satellite overpass were
averaged, and the satellite-retrieved SSAwas averaged over a 50 km× 50 km
region around the AERONET station27,36–39.

Scatterplots of the ASL SSA and JMA SSA vs. the AERONET SSA are
shown in Fig. 2. To compare the AHI andAERONETSSA at the equivalent
wavelength, the AERONET SSA was corrected to the AHI wavelengths at
470 and 500 nm via interpolation from 440 nm and 675 nm, respectively36.
A total of 1071 collocated AHI/AERONET data points were obtained
(Fig. 2a); the R was 0.7284 and the linear regression function was
SSAASL = 0.60*SSSAERONET+ 0.38. Meanwhile, MAE = 0.0319, MBE =
0.00324, andRMSE = 0.0427. Approximately 80.11%of theASL SSAswere
within the uncertainty range of △SSA = ( ± 0.05+ SSAAERONET)

27. To
validate the JMA SSA (Fig. 2b), 1766 collocated data pairs were used. The
correlation between the JMA SSA and AERONET SSA was less significant
than that for the ASL SSA data, with R = 0.0969, MAE = 0.0413, MBE =
0.00179, RMSE = 0.0654, and SSAJMA = 0.04*SSSAERONET+ 0.90.
Approximately 74.29%of the retrieval results werewithin the uncertainty of
the ± 0.05 EE envelope. Clearly, the JMA SSA does not include the lower
values provided by theASL andAERONET, as shown by the comparison of
the data presented in Fig. 2a and b.

The number of collocated SSAdata points for theASL SSAwas smaller
than that for the JMA SSA. For the inversion of the ASL SSA, a 2 × 2 pixel
window in a cloud-free state must be implemented for two consecutive
observations, and for both observations, an AOD value must be available.
These conditions are not always fulfilled; in addition, some invalid inversion
values with SSA ≥ 1.0 appear in the inversion results, which are invalid
values andwill not be included in the validation results. This also results in a
relatively small numberofmatchingpoints forASLvalidation; therefore, the
number of successful SSA retrievals and, thus, the number ofmatch-ups for
the ASL SSA is smaller than that for the JMA SSA.

In addition, thepreviousdiscussion includedall the successfulASLSSA
retrievals. Based on AERONET studies, the retrieval at low AODs (<0.4 at
440 nm) is less reliable40,41, which is similarly indicated in “Methods“ herein
(the retrieval for low AODs (<0.4 at 470 nm) is less reliable). Therefore, the
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ASL SSA validation was repeated for cases where AOD> 0.4. As expected,
the results in Fig. 3 showed better agreement between the ASL SSA and
AERONET SSA, with an R value of 0.8627; the linear regression function
was SSAASL = 0.73*SSAAERONET+ 0.26, and the MAE, MBE, and RMSE
were 0.0251, 0.01138, and the 0.0342, respectively. Furthermore, 84.58% of
the ASL SSA was within the uncertain range of the ±0.05 EE envelope. The
results above show that the correlation of the SSA retrieved by the ASL
method agrees better with the ground-based observation when the aerosol
load is high.

Discussion
In this study, an algorithm for the inversion of ASL was proposed for
application to AHI data over land. The algorithm is based on the USM
model and iteratively uses multi-pixel and multi-time data. In the
inversion process, the known AOD and BRDF shapes were used to
determine the aerosol SSA based on the optimal estimationmethod. The
ASL algorithm was applied to the AHI data to invert the SSA over land
for the Himawari-8 full-disk observation encompassing Asia and
Australia for a period of 9 months. The results were evaluated using

AERONET-derived SSA data. A comparison of the results with the JMA
SSA data over the same area and time period, using AERONET data as
reference, indicated the better performance of the ASL results, which
agreed well with AERONET reference data, where the latter showed
much lower SSA values than the JMA product. However, ASL retrieval
requires the availability of multiple cloud-free pixels and the availability
of AOD over these pixels, i.e. conditions that cannot be fulfilled at all
times, thus resulting in lower coverage. And when the equations were
iterated, sometimes there would be no solution state. Therefore, there
are fewer matching points in verification results.

Methods
Data
The AHI is an imager on board the Himawari-8 geostationary
meteorological satellite that was launched by the JMA in 2014. The AHI
observes the full disk image every 10 min and the radiances in 16
channels at wavelengths from 0.47 to 13.28 μm, with a spatial resolution
of 0.5–2 km42. In this study, AHI L1b data at 0.47 μmwere used for SSA
retrieval, because the blue wavelengths are sensitive to absorbing

Fig. 1 | Maps of SSA retrieved using ASL algorithm over study area on February 16th 2020. a–i represent the SSA values of observation time from 0:00 – 08:00 UTC.
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aerosols, which are good for estimation SSA27. The study area was
(80°E–180°E, 60°S–60°N) over land, and the study period was from
January to September 2020. The results were compared with those of
aerosol products retrieved from the AHI observations by the JMA,
which were distributed free of charge. In this study, we used level 2 SSA
products (Version03) at 0.500 μmwith a spatial resolution of 5 km and a
temporal resolution of 10 min36 (further referred to as “JMA SSA”),
retrieved daily between 0:00 and 8:00 UTC. The AHI official L1 and SSA
products were obtained from JAXA (http://www.eorc.jaxa.jp/ptree/, last
accessed on 30 November 2023). Hourly high-precision AHI AOD
datasets used as inputs in this study were obtained from She et al.43,
according to the validation results with AERONET measurements, the
accuracy of this dataset is higher than JMA AOD and comparable to
MODIS C6 AOD.

The SSA derived from AERONET sun photometer measurements
was used to validate the retrieved SSA. AERONET sun photometers
provide direct solar irradiance and sky radiance measurements along
the solar principle plane and solar almucantar40,44. The SSA is provided
at four wavelengths (440, 675, 870, and 1020 nm) and has a low
uncertainty of ± 0.03 when AOD > 0.4 at 440 nm40,41. Data from all
available AERONET sites in the study area (Supplementary Table 1)
were used for validation. These datasets are available for free from the
AERONET website (https://aeronet.gsfc.nasa.gov/, last accessed on 17
December 2023).

Forward model
The atmospheric forward radiative transfer model used in this study was
proposed by these research articles45,46. This model, referred to as the USM
model herein, describes the top of the atmosphere reflectance (TOA) as the
sum of Un-scattered, Single-scattered, andMultiple-scattered components,
as shown in Eq. (1) and Supplementary Fig. 1(a)-(c). The meaning of each
parameter used in Eq. (1) are listed in Table 1.

ρTOAðθs; θv;φÞ ¼
I0ðτ;ΩvÞ þ I1ðτ;ΩvÞ þ Imðτ;ΩvÞ=F

0
0jμsj

¼ ρðθs; θv;φÞe�Gτ þ ωPt ðΩv ;ΩsÞ
4ðjμsjþμvÞ ð1� e�GτÞ þ Imðτ;ΩvÞ

F
0
0jμsj

:

ð1Þ

In (1), SSA (ω) is expressed as an independent variable in I1 τ;Ωv

� �
and

Im τ;Ωv

� �
(for the detailed expressions of I1 τ;Ωv

� �
and Im τ;Ωv

� �
, see Li et

al.45), the value of which can be obtained from the analytical solution of this
equation.The total atmospheric scatteringphase function (Pt Ωv;Ωs

� �
), SSA

(ω), and asymmetry factor (g) are expressed in Eq’s. (2), (3) and (4).

PtðΩv;ΩsÞ ¼
τrPrðΘÞ þ τaPaðΘÞ

τr þ τa
: ð2Þ

ω ¼ τrωr þ τaωa

τr þ τa
: ð3Þ

g ¼ τrgr þ τaga
τr þ τa

: ð4Þ

Fig. 3 | Scatter plot of ASL-retrieved SSA vs. AERONET SSA for AOD > 0.4 at
470 nm over study area for the period from January to September 2020. Middle
dashed lines (red), side dashed lines (red), and solid lines (green) are the 1:1, EE
(±5%+ SSAAERONET), and linear regression lines, respectively. The upper-left text
denotes the MAE, MBE, RMSE, EE, R, linear regression function, and number of
matching points (N).

Fig. 2 | Scatter plots of satellite SSA vs. AERONET-derived SSA data over study
area from January to September 2020. a ASL SSA and b JMA SSA vs. AERONET
SSAdata over study area.Middle dashed lines (red), side dashed lines (red), and solid

lines (green) are the 1:1, EE (±5%+ SSAAERONET), and linear regression lines,
respectively. The upper-left text denotes the MAE, MBE, RMSE, EE, R, linear
regression function, and number of matching points (N).
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The aerosol scattering phase function (Pa Θð Þ) can be calculated using
the Henyey–Greenstein function as follows47:

PaðΘÞ ¼ PH�GðΘÞ ¼
1� g2a

½1þ g2a � 2ga cosðΘÞ�1:5
: ð5Þ

For molecular Rayleigh scattering, gr ¼ 0;ωr ¼ 1; τr ¼ 0:00864λ
�ð3:916þ 0:074λþ 0:05

λ Þ, and Pr Θð Þ ¼ f3 1þ cos2 Θð Þ� �
=4g48.

Surface BRDF/albedo model
Land surface bidirectional reflectance was calculated using a semi-
empirical kernel-driven BRDFmodel. The most widely used model for
simulating the BRDF shape is the Ross–Thick–Li–Sparse (RTLS)
model, which is utilised to generate the MODIS BRDF product,
MCD4349. It describes the land surface BRDF in terms of three angular
kernels, which represent three major scattering processes: isotropic
(iso), volume scattering (vol), and geometric optical (geo) in Eq. (6).
The meanings of the various parameters used in the RTLS model are
listed in Table 2.

ρðθs; θv;φÞ ¼
f isoKisoðθs; θv;φÞ þ f volKvolðθs; θv;φÞ þ f geoKgeoðθs; θv;φÞ:

ð6Þ

Equation (6) can be simplified toEq. (7)50, which effectively reduces the
number of unknown surface parameters in the inversion process.

ρ θs; θv;φ
� � ¼

fiso 1þ fvol
fiso

� �
� Kvolðθs; θv;φÞ þ ðfgeofiso Þ � Kgeoðθs; θv;φÞ

h i
:

ð7Þ

MCD43C2 data provide the isotropic coefficient (f iso), volume
scattering coefficient (f vol), and geometric optical scattering coefficient
(f geo) in seven wavebands from the visible to the near-infra-red region at
a spatial resolution of 5 km. In many studies, f iso was assumed to change
with time, the BRDF shapewas assumed to be relatively stable in amonth
and between different spectral channels, and the shape of BRDF 43,50 can
be characterized by ratios of f vol and f geo to f iso. Therefore, in this study,
the f vol=f iso and f geo=f iso ratios were obtained from the MCD43C2
products and aggregated into monthly averages with a spatial resolution
of 10 km.

Once f iso is obtained, we can compute the bi-hemispherical reflectance
in the multiple scattering radiance (Im τ;Ωv

� �
) process, which is the white-

sky albedoofMODISproducts, using the BRDF shape provided. Thewhite-
sky albedo α can be expressed as follows51:

α ¼ fisoðλÞHiso þ fvolðλÞHvol þ fgeoðλÞHgeo: ð8Þ

Where Hiso ¼ 1,Hvol ¼ 0:189184, and Hiso ¼ �1:377622.

Sensitivity analysis
We analysed the sensitivity of Eq. (1) in solving the SSA (Fig. 4). In this
regard, we used the following values: θs ¼ θv ¼ φ ¼ 30°; wavelength,
0.47 μm; and AOD values of 0.0001, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 1.0, 1.5, 2.0,
and 2.5. Five typical aerosol models (continental, moderately-absorbing,
non-absorbing, absorbing, anddust)were selected, and the SSAandg values
for these five models are shown in Supplementary Table 252. Two surface
types (vegetation in Fig. 4a and desert in Fig. 4b) were considered, and the
standard deviation of the TOA value calculated under different aerosol
models is shown in Table 3 for each AOD step value. The data in Table 3
show that when AOD is low (AOD< 0.4), the TOA estimated by different
SSA values barely changes, indicating that the retrieved SSA value is not

Table 2 | RTLS model parameter description

Parameter Description

ρ θs; θv ;φ
� �

Surface bidirectional reflectance

fk Three kernel coefficients of theRTLSmodel; subscript kcanbe iso,
vol, or geo

Kk Three kernels of theRTLSmodel; subscript k can be iso, vol, or geo

α Bi-hemispherical reflectance, which is also known as white-sky
albedo

Hk Three albedo kernels of the RTLS model; subscript k can be iso,
vol, or geo

Table 1 | Description of the USM model parameters

Parameter Descriptions

θ Zenith angle of solar and satellite; subscripts s and v represent solar and satellite, respectively

φ Relative azimuth angle

Ω Solid angle, which is the cosine of zenith angle θ and azimuth angle φ

Θ The scattering angle, cos Θð Þ ¼ μsμv þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� μ2s Þð1� μ2v Þ

p
cosðφÞ

μ Cosine of zenith angle θ, μ = cos (θ); subscripts s and v represent solar and satellite, respectively

λ Wavelength

ρTOA θs; θv;φ
� �

Top of atmosphere reflectance

ρ θs; θv ;φ
� �

Surface bidirectional reflectance

F 0
0 Solar radiance (units =W•m-2•μm-1•sr-1)

G Air mass factor, G ¼ 1
μs
þ 1

μv

τ Total atmosphere optical depth, τ ¼ τa þ τr ; subscripts a and r represent aerosol and molecular Rayleigh optical depth, respectively

ω Single scattering albedo; subscripts a and r represent aerosol and molecular Rayleigh optical depth, respectively

g Asymmetry factor; subscripts a and r represent aerosol and molecular Rayleigh optical depth, respectively

P ðΩv ;ΩsÞ Scattering phase function; subscripts t, a, and r represent total atmosphere, aerosol, and Rayleigh scattering phase function, respectively

I0 τ;Ωv

� �
Unscattered radiance, i.e. sunlight without atmospheric scattering; after reaching the surface, it is reflected by the surface and enters the sensor (Fig. 4a)

I1 τ;Ωv

� �
Single scattering radiance, which refers to direct sunlight that does not reach the surface and enters the sensor after being scattered by the atmosphere
once (Fig. 4b)

Im τ;Ωv

� �
Multiple scattering radiance, i.e. the sky light generated by multiple scattering of the atmosphere, which is reflected by the atmosphere and ground and
then enters the sensor (Fig. 4c)
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accurate at this time. When AOD> 0.4, the TOA estimated using different
SSA values began to differentiate. The higher the AOD value, the more
significant is the differences, indicating that the TOA under high aerosol
loading is sensitive to changes in the SSA, which is consistent with ground-
based AERONET data41.

In order to further analyze the impact of SSA and g on the inversion
results, we took the bright surface as an example and conducted sensi-
tivity analysis on SSA and g respectively. The observation angle andAOD
change step were consistent with the above. SSA ranges from 0.7, 0.8, 0.9
to 0.99, and g from 0.65, 0.7–0.75, as shown in Supplementary Fig. 2 and
Supplementary Fig. 3. In Supplementary Fig. 2a–c, when AOD > 0.4, the

estimated TOA for different SSA values can be clearly distinguished,
indicating that the accuracy of inversion can be guaranteed in this case. In
Supplementary Fig. 3a–d, when SSA = 0.7, the difference in estimated
TOA for g under different AOD values is not significant, and when the
AOD load is high, TOA hardly changes with the change of AOD. As SSA
gradually increases, the estimated TOA will show more significant dif-
ferences, indicating a lack of sensitivity in g when targeting high load
aerosols with strong absorption.

Inverse method
The L1b AHI/Himawari-8 data provided by the JMA and the AHI-AOD
datasets produced by She et al.43 were used in the ASL algorithm. The L1b
data included a cloudmask determined based on themethod of Lim et al.42.
The theoretical basis for the algorithm in this study comes from the different
spatiotemporal scale differences between the Earth’s land surface and
aerosols. The land surface undergoes significant changes in space, but the
short-term changes areminimal, while the optical properties of aerosols can
undergo rapid changes over time, but the changes are relatively small within
a spatial range of about 50–60 km53,54. For the AHI sensor, its high-
frequency observation characteristics can provide high-resolution obser-
vation images. Although the observation zenith angle of geostationary
satellites is alwaysfixed, the solar zenith angle changeswith time, resulting in
changes in the scattering angle of the two observations. Therefore, it has
natural multi angle observation characteristics, effectively avoiding the
problem of insufficient observation information caused by single angle
observation. So the ASL is based on the following assumptions: (1) the
surface BRDF fiso does not change within 1 h; (2) the aerosol optical prop-
erties (SSA, g) in the 20 km× 20 km pixel window (2 × 2 pixel window)
remainunchanged54,55; and (3) the aerosol optical properties (SSA, g) remain
unchanged for 1 h. TheMODISMCD43C2/BRDFproductwas used for the

Fig. 4 | Sensitivity analysis of SSA based on USM model. a Vegetated areas (dark
surface, 34°40′5.21″N, 116°58′28.79″E), fk = 0.070750, 0.035759, 0.09853. b Desert
areas (bright surface, 42°12′58.52″N, 117°7′21.93″E); fk = 0.279533, 0.162176,

0.054849. The fk (k= iso, vol, or geo) are obtained from the monthly mean value of
MCD43C2 products in February.

Table 3 | TOA standard deviation (s.d.) of five typical aerosol
models under different AOD conditions

AOD s.d. for Fig. 4(a) s.d. for Fig. 4(b)

0.0001 1.11E-05 1.74E-05

0.05 0.0002 0.0001

0.1 0.0003 0.0002

0.15 0.0004 0.0003

0.2 0.0006 0.0005

0.4 0.0020 0.0016

0.6 0.0024 0.0021

1.0 0.0033 0.0026

1.5 0.0037 0.0033

2.0 0.0038 0.0050

2.5 0.0039 0.0075
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treatment of surface reflectance. For a fixed BRDF shape, information
regarding the aerosol optical properties and BRDF f iso can be estimated
frommultiple time and pixel window observations available from the AHI.
For the general condition, we usedN×N pixel windows andK observations
for the inversion.N2+ 2unknowns,N2BRDF isotropic coefficients, and two
parameters can be used to characterise the aerosol optical properties (SSA,
g), provided that theAOD is known. In total, theK×N2 equations exist. The
number of equations must not be less than the number of unknowns to
ensure robust retrieval.

K ×N2 ≥N2 þ 2: ð9Þ

The solutionof inequality shown inEq. (9) canbe realised forK = 2and
N = 2. The schematic diagram is shown in Supplementary Fig. 4. For the
iterative method, we selected the OE method26. The cost function cðxÞ is
expressed as:

c ðxÞ ¼ ðy � FðxÞÞTS�1
ε ðy � FðxÞÞ þ ðxa � xÞTS�1

a ðxa � xÞ: ð10Þ

In Eq. (10), x represents the unknown parameters (f iso, SSA, and g) to
be determined, xa the prior value of the unknown parameter, Sa the prior
covariance matrix, and Sε the AHI TOA observation error-covariance
matrix. Considering that the AHI TOA at 0.47 μm is independent at dif-
ferent pixel positions and for the same pixel at different times56, Sε is
expressed as a diagonal matrix of the spectral reflectance multiplied by the
radiometric calibration accuracy. f iso, SSA, and g are independent of time
and space; therefore, Sa is a diagonal matrix. The initial values of SSA and g
were set to 0.9 and 0.65, respectively, and the initial value of f iso from
MCD43C2 products. An extremely low SSA value (0.7) was set as the weak
constraint of the component SSA of the diagonal matrix Sa. The effective
value range of SSA is [0-1]. To avoid invalid iterations,we calculated the SSA
values of AERONET in the study area and found that the SSA values range
from 0.6 to 1.0. Therefore, if SSA < 0.6 or SSA ≥ 1.0 occurs during the
iteration process, the iteration will stop and the inversion results will be
considered invalid. The constraint of thediagonalmatrix Sa on f iso was set to
the greater of two values: (1) the uncertainty of the MODIS BRDF product
(10%) or (2) the standard deviation of f iso per month. Tominimise the cost
function, we used the Levenberg–Marquardt method to perform the
inversion iteration. Thewhole inversion process is shown in Supplementary
Fig. 5.

Data availability
TheAHI data can be obtained from JAXA (http://www.eorc.jaxa.jp/ptree/),
and the AERONET data are accessible at https://aeronet.gsfc.nasa.gov/.

Code availability
The codes of this study are not available.
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