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Abstract

The Internet of Things (IoT) has transformed multiple industries, providing significant
potential for automation, efficiency, and enhanced decision-making. The incorporation
of IoT and data analytics in smart grid represents a groundbreaking opportunity for the
energy sector, delivering substantial advantages in efficiency, sustainability, and customer
empowerment. This integration enables smart grids to autonomously monitor energy
flows and adjust to fluctuations in energy demand and supply in a flexible and real-time
fashion. Statistical analytics, as a fundamental component of data analytics, provides the
necessary tools and techniques to uncover patterns, trends, and insights within datasets.
Nevertheless, it is crucial to address privacy and security issues to fully maximize the
potential of data analytics in smart grids. This paper makes several significant contributions
to the literature on secure, privacy-aware aggregation schemes in smart grids. First, we
introduce a Fog-enabled Secure Data Analytics Operations (FESDAO) scheme which offers
a distributed architecture incorporating robust security features such as secure aggregation,
authentication, fault tolerance and resilience against insider threats. The scheme achieves
privacy during data aggregation through a modified Boneh-Goh-Nissim cryptographic
scheme along with other mechanisms. Second, FESDAO also supports statistical analytics
on metering data at the cloud control center and fog node levels. FESDAO ensures reliable
aggregation and accurate data analytical results, even in scenarios where smart meters
fail to report data, thereby preserving both analytical operation computation accuracy
and latency. We further provide comprehensive security analyses to demonstrate that the
proposed approach effectively supports data privacy, source authentication, fault tolerance,
and resilience against false data injection and replay attacks. Lastly, we offer thorough
performance evaluations to illustrate the efficiency of the suggested scheme in comparison
to current state-of-the-art schemes, considering encryption, computation, aggregation,
decryption, and communication costs. Moreover, a detailed security analysis has been
conducted to verify the scheme’s resistance against insider collusion attacks, replay attack,
and false data injection (FDI) attack.

Keywords: fog computing; IoTs; smart grid; privacy preservation; fault-tolerance; homomorphic
encryption; data analytics; BGN; statistical analysis; ANOVA
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1. Introduction
Smart Grid (SG) combines electric and communication network components to im-

prove the efficient and consistent delivery of environmentally friendly and cost-effective
electricity. It optimizes the economic, environmental, operational, and reliability aspects of
electrical service provision. Currently, the operational and commercial elements of energy
infrastructures are becoming more and more dependent on the integration of the Internet
of Things (IoT) into the SG [1]. Additionally, this integration gives the SG network the
ability to communicate in real time and in both directions with consumers, utilities, and
infrastructures. It includes software components for controlling and monitoring power us-
age at the production and consumption ends [2]. A typical SG includes appliances, a smart
meter (SM), Gateway/aggregator (GW), and a control center (CC). In traditional cloud-
based systems, both public and private data from SGs are usually stored and processed
at the cloud control center (CCC) [3]. Electricity usage data is obtained from customer
premises at regular intervals and sent to the CCC. This information is extremely beneficial
to SG operations management. The use of analytics for electricity usage data facilitates the
identification of consumer trends, seasonal variations, and consumption patterns. These
insights are instrumental in load forecasting, resource availability, pricing models, churn
management, demand response, and the optimization of SG operations. Within SGs,
data analytics and statistical analysis play a crucial role in extracting meaningful insights.
Statistical analytics, as a core component of data analytics, employs various methods to
uncover patterns and trends within usage datasets, enabling businesses and organizations
to make informed decisions and advance big data analytics and predictive modeling in SG
environments. However, the handling of customers’ private data raises privacy concerns.
Without proper security and privacy measures, sensitive customer information, including
living habits, types of equipment used, and daily activities, may be exposed to potential
attackers. Consequently, it is essential to ensure that customer metering data is collected
securely and shared only with authorized parties. However, these issues, along with
storage and computing challenges, can be mitigated by employing a secure fog-based SG
architecture [4]. Fog computing [5] transfers storage and computation overhead from the
CCC to nearby-user edge terminals managed by fog nodes (FNs), complementing cloud
computing by enabling direct interaction between IoT devices and applications, leading to
a significant reduction in bandwidth requirements compared to cloud computing. A typical
fog-based SG architecture that supports aggregation is illustrated in Figure 1. The fog node
(FN) has the capability to perform aggregation operations on SM data and temporarily
store it locally for a brief period. As it is close to the end user’s location, it improves overall
communication. To safeguard SMs data from malicious users, it is encrypted at the SM
level and then aggregated at the FN, which subsequently transmits the aggregated values
to the CCC. The CCC is responsible for decrypting the received aggregated values [6].

Given the emphasis on privacy and security in SG operations, conducting data analyt-
ics at the fog level closer to the network edge where data is generated provides potential
benefits in tackling security and privacy issues. Fog computing provides solutions for
reliability, latency, and processing time, thus bolstering the integrity of SGs and address-
ing apprehensions regarding the security and privacy of customer data. Handling faulty
SMs missing data during data aggregation is also crucial. If some SMs fail to report their
consumption data, the data aggregation process may be disrupted. Consequently, unless
all SMs submit their data to the aggregator, the aggregation process cannot be finalized.
Therefore, fault tolerance must be a supported feature of data aggregation. Nevertheless,
there are several limitations to current secure fog-enabled data aggregation approaches for
SGs [6–11] that only focus on calculating total consumption at CCC. While such approaches
facilitate the calculation of current load, enabling more sophisticated analyses such as aver-
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age consumption, peak consumption, load forecasting, and state estimation require support
for more advanced computational functions. Performing complex statistical operations on
encrypted data is also challenging, as the actual SMs data needs not to be revealed and
keeping a low overhead in terms of computation and storage. There exists work related
to aggregation schemes for non-fog-enabled SGs that do support operations like average
and variance [2,12]. The scheme [2] leverages the Boneh-Goh-Nissim (BGN) cryptosys-
tem, allowing the gateway to perform aggregation of encrypted data without decrypting
individual user data. The scheme incorporated differential privacy protection by adding
geometric noise at the gateway to aggregated encrypted data to protect against differential
attacks. The scheme allows the CCC to support multifunctional statistical computations
(e.g., averages, variances, ANOVA). Although effective in safeguarding privacy, the scheme
is vulnerable to inaccuracies when smart meters fail, as missing data leads to erroneous de-
cryption results. It also lacks mechanisms for data integrity and authentication. Additional
mechanisms are needed to prevent data tampering or injection attacks. The approach relies
heavily on gateways for aggregation, but these devices are resource-constrained, limiting
scalability in dense SG environments. The scheme assumes the gateway and control center
are trusted entities. If either is malicious or compromised internally, privacy guarantees
may be weakened. Geometric noise addition for differential privacy introduces errors
in the aggregated results. There is still a trade-off between privacy level and accuracy.
The scheme [12] employs additive Paillier homomorphic encryption and identity-based
signatures to ensure secure aggregation, message integrity, and protection against replay
and impersonation attacks. While effective for basic sums, Paillier supports only limited
ciphertext operations and is inefficient for higher-order statistical computations such as
variance or covariance and ANOVA. This scheme also used GW as a data aggregator and
suffered from congestion and scalability due to increased load. Furthermore, the absence of
fault tolerance means that missing data from smart meters delays decryption and increases
communication overhead, with gateways posing potential bottlenecks and single points of
failure. The scheme assumes that aggregators and smart meters behave honestly and does
not provide mechanisms for detecting or mitigating malicious behavior, such as false data
injection or collusion attacks. No explicit handling of malicious GW (aggregator) or smart
meters is provided.

Figure 1. Architecture of a typical Fog-enabled Smart Grid Infrastructure.
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The key contributions of this paper are summarized as follows:

• The Fog-enabled Secure Data Analytics Operations (FESDAO) scheme offers a dis-
tributed architecture that supports real-time processing at the fog level while incor-
porating robust security features such as secure aggregation, authentication, and
resilience against insider threats. Privacy and confidentiality of SM data are ensured
through modified homomorphic Boneh-Goh-Nissim (mBGN) cryptosystem and other
mechanisms. Only FN and CCC can decrypt aggregated data. Moreover, our scheme
is resilient against replay attacks and false data injection (FDI) attacks, and it ensures
security even in the presence of potentially malicious SM, FN and CCC. In addition,
the scheme is resistant against collusive attacks.

• Unlike current state-of-the-art schemes that support statistical analytics on encrypted
data only at the CCC after decryption [2,12], our FESDAO scheme enables secure
analytical operations such as average, variance, and ANOVA functions directly on
encrypted data at both the FN and CCC levels. This capability allows for real-time
insights into energy consumption patterns, facilitating the design of dynamic tariff
plans. Customers can make informed decisions by selecting optimal tariff plans that
align with their consumption patterns. Furthermore, the FESDAO scheme is fault-
tolerant, guaranteeing that statistical operation evaluations remain unaffected and
latency is not compromised, even in the presence of malfunctioning smart meters It
enhances reliability in real-world deployments with intermittent failures.

• The FESDAO scheme has been analyzed for security, statistical function support on
encrypted data, computational, and communication overheads. The results are then
compared to the current state-of-the-art schemes [2,12], particularly in encryption,
aggregation, decryption, and computation cost efficiency. Moreover, a detailed security
analysis has been conducted to verify the scheme’s resistance against insider collusion
attacks, replay attacks, and false data injection (FDI) attacks

The remainder of this paper is organized as follows: In Section 2, related work is
presented. In Section 3, the preliminaries of the BGN cryptosystem, MAC, and privacy-
preserving statistical operations (Average, Variance, and ANOVA) are presented. In
Section 4, the system model and security goals are discussed. Section 5 presents the
proposed fault-tolerant secure data aggregation scheme. In Section 6, we provide a privacy
analysis of the proposed scheme. The performance evaluation of the scheme is discussed
in Section 7. Finally, Section 8 concludes this work.

2. Related Work
This section explores existing data aggregation systems that use privacy features to

improve data privacy and reliability. Shi et al. [13] proposed the DG-APED system, which
detects errors and classifies users based on activity time. In this technique, noise is added
at the SM level and aggregated at the group level. Differential privacy is achieved using
binomial distribution. Bao et al. [7] proposed an AES-based approach with differential
privacy utilizing a Laplacian distribution. This technique also allows for data integrity
and fault tolerance. Borges et al. [14] proposed an in-network data aggregation technique
that protects privacy via homomorphic commitment and digital signatures. While this
approach reduces encryption costs at the SM level, it has a significant decryption cost
at the data receiver end. Erkin et al. [15] investigated the geographical aggregation of
SM measurements using cryptographic techniques to ensure privacy. Furthermore, their
system enables the temporal aggregation of multiple usage readings for specific SMs.

Tonyali et al. [16] were the first to use Fully Homomorphic Encryption (FHE) and
Secure Multi-Party Computation (SMPC) to protect client usage data. This method enables
hierarchical, safe aggregation while preserving consumer privacy. Abdallah et al. [17]
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suggested a technique using a lattice-based cryptosystem. In this strategy, data from
client appliances is collected and sent to the appropriate SMs, who encrypt it using an
NTRU-based cryptosystem before sending it to the CCC. Thoma et al. [18] created an
SMPC-based, homomorphic encryption solution for SG load management. This approach
protects consumer privacy by using homomorphic encryption. Lyu et al. [8] proposed a
differentially private aggregation scheme with built-in fault tolerance, employing OTP-
based additive homomorphic encryption. In this approach, plaintext data is combined
with key streams using modular addition, while privacy protection for metering data is
ensured through Gaussian noise distribution. However, the scheme is vulnerable to false
data injection (FDI) attacks. In addition, it introduces communication delays and requires
an additional communication round in the presence of failed meters.

Yang et al. [9] suggested an anomaly detection technique that incorporates dynamic
grouping and data re-encryption using the ElGamal encryption scheme. However, their
scheme exposes the identities of SMs, failing to protect consumer privacy and anonymity
during data aggregation. Saleem et al. [6] propose a privacy-preserving data aggregation
technique for fog-based SGs that uses modified Paillier homomorphic encryption to secure
metering data and message authentication codes (MAC) for integrity verification. However,
their fault-tolerance mechanism relies on dummy values, leading to inaccurate aggregation
results. Additionally, their scheme does not ensure data confidentiality against a potentially
malicious control center, posing security risks in adversarial environments. Khan et al. [11]
a solution that combines the BGN cryptosystem and the Elliptic Curve Digital Signature
Algorithm (ECDSA). Their system offers secure aggregation and privacy of encrypted data,
as well as fault tolerance for malfunctioning smart meters.

Chen et al. [12] suggested a technique based on the Paillier cryptosystem. This
approach enables suppliers to compute the total metering data usage while preserving
anonymity. It also allows variance analysis and ANOVA by combining numerous data re-
ports into a single message. Chen et al. [2] proposed the Multi-Functional Data Aggregation
(MuDA) approach, which uses homomorphic encryption to guarantee privacy-preserving
calculations on SM data. Their approach supports statistical functions, including summa-
tion, average, and one-way ANOVA, on encrypted data at the CCC levels. However, the
scheme does not include mechanisms for addressing faulty smart meter data during the
aggregation process, which could compromise the accuracy and reliability of the results
obtained. Zhao et al. [19] developed a fog-based SG architecture that allows for statistical
computations on consumption data. Zhang et al. [20] introduced a lightweight and resilient
strategy for multidimensional data aggregation in the Internet of Things (IoT). The Chinese
Remainder Theorem (CRT) is used in their strategy to compress SM multidimensional data
into 1-D data. Encryption is accomplished using mask values and symmetric keys, and
batch verification cuts computational complexity in half. This technique somehow raises
aggregation costs at FNs. Pang et al. [21] presented a Boolean/Arithmetic secret-sharing
technique that allows for secure transmission of electricity usage data to the CCC and FN.
Their approach uses Boolean shares to detect realistic consumption limits while maintain-
ing privacy, anonymity, and resilience against both honest-but-curious and malevolent
attackers. Zhang et al. [22] proposed a fault-tolerant multidimensional data aggregation
strategy based on the Elliptic Curve-ElGamal model. This technique provides privacy
and accuracy during data aggregation even in the presence of defective SMs. It avoids
collusion assaults and ensures accurate electricity bill creation, but actual implementa-
tion details are not provided. Song et al. [23] created a fault-tolerant data aggregation
approach that encodes multidimensional data and weights with the Chinese Remainder
Theorem. Their privacy-preserving solution operates without the need for a trusted third
party, utilizing the Paillier homomorphic encryption system and a secure key negotiation
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mechanism. Fault tolerance is obtained by an enhanced Shamir secret sharing mechanism.
Zhang et al. [24] proposes a blockchain-based multidimensional data aggregation scheme
for SGs that integrates advanced cryptographic techniques to achieve decentralization,
privacy preservation, identity authentication, and forward secrecy. The scheme supports
multidimensional aggregation and fault tolerance, enabling smart meters to report multiple
data types per message and allowing flexible users to join/leave operations through dy-
namically verifiable secret sharing. A Raft-based leader election mechanism is used to select
aggregation nodes; however, its reliability depends on the assumption that a majority of
nodes are honest and online, which may not hold in adversarial or unstable environments.
While blockchain enhances integrity and auditability, it also introduces latency and storage
overhead, raising concerns for large-scale deployment. Performance results show reduced
computation and communication costs compared to related approaches, highlighting the
scheme’s practical efficiency for SG applications.

3. Preliminaries
This section offers a summary of the cryptographic primitives utilized in this paper.

We briefly describe the working of mBGN cryptosystem, MAC, and statistical functions
execution on aggregated data. For details on these topics, we refer the reader to [22–25].

3.1. BGN Cryptosystem

The BGN cryptosystem [26] is a homomorphic encryption scheme that enables effi-
cient and privacy-preserving computation on encrypted data [7]. Unlike Paillier, which
supports only addition over ciphertexts, BGN additionally supports the multiplication
of two encrypted values. This makes it particularly suitable for operations that require
both addition and multiplication, such as variance, covariance, dot products, and other
statistical computations beyond simple averaging. It is also applicable to machine learning
tasks (e.g., distance calculation, clustering, neural networks), quadratic or higher-degree
analytics, and privacy-preserving range queries and comparisons. Notably, BGN was the
first scheme to support both addition and multiplication of ciphertexts while maintaining
constant ciphertext size [27].

3.2. Key Generation

Select large primes q1, q2 such that n = q1q2. G, G1 are the two multiplicative groups of
order n with a bilinear pairing e : (G× G)→ G1 . Select two random generators g, u from
group G and set h = uq2 . The private and public keys are generated as pk = (n, G, G1, e, g, h)
and sk = q1. In the proposed scheme FESDAO, we use a 1024-bit key, generated from two
512-bit primes q1 and, q2. Although the BGN cryptosystem supports larger key sizes (e.g.,
2048 and 4096 bits), a 1024-bit key is selected to account for the computational and storage
limitations of sensor devices.

3.2.1. Encryption

Providing a message m and selecting a random number r ∈ Z*
N , encrypted text can be

calculated as gmhr ∈ G.

3.2.2. Decryption

Using the symmetric key sk = q1 and the encrypted text C ∈ G, compute
Cq1 =

(
gm hr)q1 and Cq1 = (gq1)m . Recover the message m using a discrete logarithm.

3.3. MAC Algorithm

The MAC calculation is a symmetric-key cryptographic technique used to ensure
message integrity and verify the source. It confirms that the received message comes from
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a legitimate source and prevents any unauthorized alterations during transmission [6,28].
Bob, as the sender party, computes MAC as a function of the message m and the shared
secret key k, i.e., M = MACk(m).

Bob sends both the message m and the authentication tag M to the receiving party,
Alice. Upon receiving the message, Alice calculates the MAC for it and compares it with
the MAC she has. If both MACs match, Alice accepts the message m, confirming that it
is from a legitimate source and has not been tampered with during transmission. In the
above communication, if MAC at the receiving end will produce incorrect results it means
the message m was altered in transit. The mechanism described above ensures message
authentication and integrity.

3.4. Privacy-Preserving Aggregation and Statistical Functions Calculation

The FN can aggregate encrypted metering data through homomorphic encryption for
i = 1,2,3 . . .n user’s data in a privacy-preserving manner. The proposed scheme supports
commonly used statistical aggregation functions, namely average, variance, and ANOVA
at FN and CCC levels. It can be easily extended to other statistical functions.

3.4.1. Average Calculation

When there is a request to calculate the average of consumption data at the FN or
CCC levels, it is calculated through a function Avg = 1

n ∑ n
i=imi. The FN aggregates the

encrypted data for all meters under its jurisdiction, decrypts it, and divides it by the number
of SMs.

3.4.2. Variance Calculation

When there is a request to calculate the variance of usage data at the FN or CCC levels,
it is calculated through a function ∑ n

i=1(mi −m)2. Here m denotes the average value of
all metering data. The encrypted data for all meters in format ∏ n

i=1ci.∏ n
i=1ci is decrypted,

and variance is obtained.

3.4.3. ANOVA Calculation

ANOVA, or Analysis of Variance, is a parametric statistical method developed by R.A.
Fisher for comparing datasets [29]. It is particularly useful for assessing the means and
variances among more than two groups. In the context of SG applications, ANOVA can be
employed to determine whether a specific usage package significantly affects customers’
electricity consumption data.

In this paper, to illustrate the computation of ANOVA, we used a running example
involving three distinct electricity plans. The ANOVA analysis was performed on sample
data collected from smart meters associated with a fog node, corresponding to three
different electricity tariffs labeled A, B, and C.

In the ANOVA function, the source of variance between groups and within groups is
used to calculate the F-value through the F-Test expression. The F-value can be utilized to
ascertain whether a specific tariff scheme influences customers’ electricity consumption.
Steps for ANOVA calculation are as follows:

Suppose we have K groups (i.e., tariff plans).
Let each Group j has nj observations: x1j, x2j, . . . xnj

Total number of observations is N = ∑ k
j=1nj

Calculating Group mean: xj = 1
nj

∑
nj
i=1xij

Calculate Overall Mean: x0 = 1
N ∑ K

J=1∑
nj
i=1xij

Compute Sum of Squares Between Groups (SSB): ∑ k
j=1nj

(
xj − x0

)2

Compute Sum of Squares Within Groups (SSW): ∑ k
j=1∑

nj
i=1

(
xij − xj

)2
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Compute Total Variation (SST): SSB + SSW
Calculate Mean Squares (MSB): SSB

(K−1)

Mean square within groups (MSW): SSW
(N−K)

Calculate F-Statistic: MSB/MSW
Degrees of freedom: dfB is equal to number of groups minus 1, dfW is total number of

observations minus number of groups
Hypothesis Testing: Compare the calculated F with the critical value from the F-

distribution with (K− 1, N − K) degrees of freedom at the chosen significance level
(e.g., α = 0.05). If F > Fcritical , reject the null hypothesis H0 (that all group means are equal).

The ANOVA analysis was conducted on sample data for three different electricity
tariffs, A, B, and C from SMs connected to FN. Sample values are given in Table 1. To
perform secure analytical operations, count (nj), ∑xj and ∑x2

j operations are performed
directly on encrypted data using the mBGN cryptosystem. Decryption activity is only
performed at FN/CCC. No individual SM data is exposed during aggregation or other
operations required for ANOVA.

Table 1. Tariff ANOVA example.

Group nj ∑xj ∑x2
j meanj

Tariff-A 24 124.62 657.476 5.1925
Tariff-B 22 133.053 809.389 6.04877
Tariff-C 26 151.024 870.436 5.80862

ANOVA from aggregates (no raw data required):
Between-groups SS (SSB) = 8.416022
Within-groups SS (SSW) = 19.935330
Total SS (SST) = 28.351352
Degrees of freedom: d f B = 2, d f W = 69
Mean Squares: MSB = 4.208011, MSW = 0.288918
F-statistic: F = 14.564734
p-value ≈ 5× 10−6 (significant at α = 0.05)
Reject H0 (equal group means).
Effect size (eta-squared): η2 = 0.296847 (~29.7% of variance explained by group).

The corresponding SSB is 8.416022 and SSW is 19.935330, yielding an F-statistic of
8.305 with degrees of freedom (2, 69). The associated p-value (≈5× 10−6) is less than 0.05,
leading to the rejection of the null hypothesis of equal means.

4. System Model and Security Goals
This section covers the discussion of the system model, attacker model, and secu-

rity goals.

4.1. System Model

The system model comprises the following components, as illustrated in Figure 2:
Trusted Authority (TA): The TA oversees the registration of SG entities and the

generation of their keys. Any changes to entity details must be updated in the TA database,
and the TA contacts SM vendors to reinstate SM configurations if necessary.

CCC: The CCC is a highly trusted entity in SG responsible for collecting metering data
through FN. It performs analytical operations on usage data and manages SG operations,
including demand-response, forecasting, and billing.
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FN: The FN is responsible for collecting metering data from the SMs, aggregating
it, and transmitting it to the CCC. It also performs analytical operations at the FN level
when necessary.

SM: SMs are advanced metering infrastructure (AMI) devices that monitor the flow of
electricity from the grid to residential homes. They also submit household usage data to
FN at regular intervals. If households act as prosumers if they sell their excess electricity to
suppliers and charge them.

Home Appliances (AP): Each home contains various appliances such as fridges,
microwaves, washing machines, and TVs, all of which consume electricity and submit
their usage data to the SM installed in the respective household. The SM then submits the
aggregated usage data to FN on behalf of these appliances.

Figure 2. System model.

4.2. Attacker Model

In the proposed system, FN and CCC are honest but curious. Despite being un-
able to access individual customer data due to security measures, they are curious about
viewing private customer information. The mBGN cryptosystem is utilized to encrypt
the usage data, leveraging its homomorphic properties to prevent FN or any other in-
volved parties from reading SM data in plain text. The source of SM data is authenticated
at FN through MAC, and the FN collects and aggregates data from all connected SMs,
which are considered tamper-resistant devices. The proposed attacker model includes the
following scenarios:

1. An adversary eavesdropping on the communication between SM and CCC.
2. External adversaries can manipulate messages from SM to FN or from FN to CCC.
3. The adversary goals may include knowing the aggregated and individual SM readings
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4. SMs do not transmit data due to malfunction.
5. An adversary compromising CCC.
6. An adversary initiating the following attacks:

(a) Replay attack
(b) FDI attack
(c) Message modification attack
(d) Unauthorized access

7. Assumptions

(a) CCC and FN are honest but curious
(b) CCC and FN may collude
(c) Residential users/SMs are considered honest
(d) Communication channel is not secure

4.3. Security Goals

The proposed scheme accomplishes the following security objectives:
Privacy: In the event of an attacker intercepting communication packets over an

insecure channel, it is infeasible to extract private customer information. The FN cannot
access encrypted customer data, as it lacks a decryption mechanism unless necessary. The
CCC can decrypt aggregated data from the FN, but not individual customer data. Even in
the event of a compromise, only current aggregated data can be leaked, while individual
customer data remains secure.

Fault Tolerance: The aggregation process will persist even in the presence of malfunc-
tioning SMs. The CCC will decrypt aggregated data from the FN for both functioning and
non-functioning SMs.

Data Integrity: Any modification of data packets from SM to FN during transit will
result in their rejection. Only data packets from authorized entities are accepted.

Any attempts by an adversary to send previously stored packets will be thwarted
using timestamps.

5. Proposed Scheme
This section outlines the proposed FESDAO scheme. The primary stakeholders are the

Application Provider (AP), Smart Meters (SMs), Fog Nodes (FNs), the Cloud Control Center
(CCC), and the Trusted Authority (TA). The TA is responsible for generating cryptographic
keys for SMs, FNs, and the CCC using the modified BGN (mBGN) cryptosystem. These
keys are used for encryption and decryption operations. In addition, the TA generates secret
keys for HMAC, which are used by SMs, FNs, and the CCC for message authentication
code (MAC) generation and verification.

The scheme supports statistical function computations at both the FN and CCC levels.
At the SM level, home appliance data is collected, encrypted using mBGN, and transmitted
to the FN. At the FN, the encrypted data is aggregated in a privacy-preserving manner.
Depending on the computation requirements, the FN can either perform statistical cal-
culations (e.g., average, variance, ANOVA) on the aggregated ciphertexts or forward the
aggregated data to the CCC. At the CCC, decryption and additional statistical analysis can
be performed on the aggregated results.

Figure 3 illustrates the flow of metering data and the execution of statistical functions
within the proposed scheme. The framework ensures compliance with data protection
regulations by safeguarding customer data through robust cryptographic and security
mechanisms.

The operation of the FESDAO scheme is defined through five core algorithms: (i) Key
Generation, (ii) Encryption and MAC Generation at the SM, (iii) MAC Verification and
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Fault-Tolerant Secure Data Aggregation at the FN, (iv) Decryption of Aggregated Data at
the FN, and (v) Statistical Function Computation at the FN. The notation and symbols used
throughout the scheme are summarized in Table 2.

 

Figure 3. Analytics calculation at FN and CCC level.

Table 2. List of symbols.

Symbol Description

SM Smart Meter
FN Fog Node
CCC Cloud Control Center
q1 Private Key of BGN
(n,G,G1,e,g,h) Public Key of BGN
s0 Secret parameter of CCC
si Secret parameter of SM/User
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Table 2. Cont.

Symbol Description

fi Secret parameter of FN
mi Message text
R Random number
ti or t The timestamp for a particular time interval
Sreq Statistical Function calculation request form FN
MACsmi MAC tag generated on ci at smi
MAC f ni

MAC tag generated on received ci at FN
ci Ciphertext at SM (metering data as m)
cs Ciphertext at SM (metering data as m*m)
bu f Buffer storage for the current reading of smi
SMin f o Data structure contains SMid, psm

k , and Flag
Flag Status field, 0 for failed meter, 1 for working meter
C f n The aggregated ciphertext of all SMs at FNi
Aggval Aggregated value at CCC
Msqrsu Sum of square metering data
H(ci) Hash function using SHA-256
M/Msum Sum of all SMs consumption data
Cd All fog nodes’ aggregated value
smw Working SM
sm f Failed SM

5.1. Key Generation

This task focuses on generating the cryptographic keys for the mBGN cryptosystem
and the secret parameters required by SMs and the CCC to enable fault-tolerant decryption.
In the mBGN scheme, the public key is used for homomorphic encryption, while the private
key enables homomorphic decryption.

The TA begins by selecting two large prime numbers q1 and q2 and computes n = q1.q2.
Using bilinear (pairing) e : (G × G) → G1 and random group generators g and u, the
TA computes h = uq2 . The TA then publishes the public key (n, G, G1, e, g, h) and securely
retains the private key q1 for the mBGN cryptosystem. To support fault-tolerant decryption,
the TA further selects n random numbers si from Z∗N using a random generation function,
where i = 1, 2, 3 . . . , n and assign each si to SMi. Additionally, TA also selects s0 and fi

from Z∗N and assigns to the CCC and FN in such a manner that the below conditions hold.
Equation (1) can be used if decryption at the CCC level is required, while Equation (2) will
be used if decryption is required at the FN level.

s0.(s1 + s2 + . . . sn ) = 1 mod q1 (1)

fi.(s1 + s2 + . . . sn ) = 1 mod q1 (2)

This inverse relationship enables the system to recover the original aggregated cipher-
text (or, equivalently, the required exponent) by combining the partial results from the
smart meters and then applying a single combining coefficient. In essence, the combining
coefficient counteracts the effect of the aggregated shares, allowing the aggregator to obtain
the exact ciphertext or exponent necessary to complete the decryption process.

For MAC generation and verification, TA, as discussed in [30], generates a private key
sk for SM and FN, respectively. Once the key generation activity is completed, the TA will
only be required to add or remove SMs if they join or leave the SG network. The steps for
this step are given in Algorithm 1.
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Algorithm 1. Key generation algorithm.

1. Procedure Key Generation
2. Input: Large Prime numbers q1, q2, n = q1q2

3. Output: Public Key pk = (n, G, G1, e, g, h), Private Key sk = q1, Secret Parameters
si, s0, fi, and si. Private key sk for MAC generation

4. Let G, G1 be two multiplicative groups of order n with a bilinear pairing e : (G ×
G)→ G1

5. Pick two random generators g, u R← G and set h = uq2

6. Then h is a random generator of the subgroup G order q1

7. Generate si ∈ Z*
N , i = 1,2, 3, . . .n

8. Generate s0 ∈ Z*
N , i = 1,2, 3, . . .n

9. Generate fi ∈ Z*
N , i = 1,2, 3, . . .n

10. Compute fi ∈ Z*
N s.t fi.∑ n

i=1si = 1 mod q1

11. Compute s0 ∈ Z*
N s.t s0.∑ n

i=1si = 1 mod q1

12. Generate sk for MAC generation and verification
13. Return (s0 , si, sk, fi)
14. end procedure

5.2. Encryption and MAC Generation at SM

This task is responsible for encryption and MAC generation at the smart meter. Each
SMi, encrypts its data mi using its secret key si, producing ciphertext ci. A MAC MACsmi

on ciphertext ci is generated using the secret key sk. The encryption and MAC operations
are performed through Equations (3) and (4). In these equations ti represents the timestamp
corresponding to a specific time slot. If there is a requirement for statistical function
calculation, the FN issues a request Sreq to each SM. When Sreq value is Yes, both ci and cs

are submitted to enable the computation of statistical functions such as average, variance,
and ANOVA functions. Finally, the ciphertext ci, cs along MACsmi are submitted to the FN.

ci = E(mi) = grtmi hrtsi fi (3)

MACsmi= sk(H(ci||ti)) (4)

The steps for this task are given in Algorithm 2.

Algorithm 2. Encryption and MAC generation algorithm.

1. Procedure Encryption and MAC Generation
2. Input: Message mi, time ti, SReq, SMi

3. Output: Cipher ci, MAC MACsmi , Cipher cs

4. ci = E( mi) = grtmi hrtsi fi

5. If SReq = Yes then
6. cs = E(mi × mi) = grtmimi hrtsi fi

7. end if
8. MACsmi = Ssm

k (H( ci) || ti)
9. Return (MACsmi , ci, SMi, cs)
10. end procedure

5.3. Fault Tolerant Secure Aggregation of Data at FN

In this task, the FN maintains a multi-column list SMin f o consisting of two fields:
SMid and Flag. At the beginning of each data collection round the Flag column value for
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every SM is initialized to 0. When data ci is received from a particular SM, the FN retrieves
the corresponding SMid from SMin f o and calculates its MAC

(
MAC f ni

)
for verification

purposes. If the MAC is valid, the FN updates the Flag value for that SM to 1 and stores a
copy of the metering data in a local buffer bu f , indexes by SMid.

The FN then aggregates the ciphertext values received from all connected SMs under
its domain. The FN verifies the count of all SMs in his jurisdiction based on the flag value
in SMin f o list. If some SMs fail to send their data (where flag = 0), the FN substitutes their
missing readings with the most recently stored valid readings from the buffer.

The aggregation operation is performed using Equations (5a) and (5b). If all SMs
successfully transmit their data, Equation (5a) is used; otherwise, Equation (5b) is applied.
It is assumed that at least one valid reading for every SM exists in the buffer bu f .

C f n = ∏ n
i=1ci (5a)

if SMfaulty then

C f n = ∏ w
i=1ci + ∏ f

i=1bu f (ci) (5b)

The FN aggregates the encrypted metering data for both working and failed SMs. For
working SMs’, the data corresponding to its current timestamp t, where for failed SMs, the
buffered values with timestamp tb are used:

C f n =
(
∏ w

i=1ci
)t−1

+
(
∏ f

i=1ci

)t−1
b

C f n =
(

grt∑ w
i mi hrt f i∑

w
i si

)t−1

+

(
grtb∑

f
i mi hrtb f i∑

f
i si

)t−1
b

Assuming t ≈ tb, we obtain:

C f n =
(

grt∑ k
i mi hrt f i∑

k
i si
)t−1

Taking t common from g and h:

C f n =
(

gr∑ k
i mi hr fi∑ k

i si
)tt−1

Since fi.∑ n
i si = 1 (mode q1 ), the final aggregated ciphertext is:

C f n = gr∑ n
i mi hr (5c)

To support statistical function calculations (e.g., variance and ANOVA), the FN also
performs squaring operations on ciphertexts, producing C f nsqragg1 for available SMs, and
C f nsqragg2 for faulty SMs. Once aggregations are complete, the FN generates its own MAC
on aggregated ciphertext C f n as defined in Equation (5d).

MAC f n = s f n
k

(
H
(

C f n

) ∣∣∣∣∣∣ ti

)
(5d)

The steps for this task are given in Algorithm 3.
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Algorithm 3. Aggregation and MAC verification algorithm at FN.

1. Procedure Aggregation and MAC Verification at FN
2. Input: MACsmi , ci, cs, SMi

3. Output: Cfnagg , Cfnsqragg

4. / ∗ SMin f o is Multi field data structure. It has fields SMi, and Flag. */
5. /* In start of data collection round, Flag default value set to 0 */
6. /* Step 7 to 14 repeat for all SMs who submitted their data in specific data

collection round*/
7. MAC f ni

= Sk (H ( ci) || ti)

8. If MAC f ni
= MACsmi then

9. MAC is veri f ied and ci is accepted
10. Based on SMi, SMin f o.Flag = 1
11. bu f i = (SMi, ci, ti)

12. Else
13. MAC is rejected and ci is discarded
14. end if
15. /* smw contains SM whose flag in SMin f o 1.
16. For i = 0; i < smw; i ++ do

17. C f nagg1 = ∏ w
i=1ci

18. C f nsqragg1 = ∏ w
i=1cs

19. /* sm f contains SM whole flag in SMin f o is 0, i.e., they are failed meters */
20. For i = 0; i < sm f ; i ++ do

21. C f nagg2 = ∏
f
i=1bu f i (sm f , ci, ti)

22. C f nsqragg2 = ∏
f
i=1bu f i (sm f , ci, ti) * bu f f i (sm f , ci, ti)

23. C f nagg = C
f nagg1 + C f nagg2

24. C f nsqragg = C
f nsqragg1 + C f nsqragg2

25. Return
(

C f nagg , C f nsqragg
)

26. end procedure

5.4. MAC Verification and Fault-Tolerance Secure Data Aggregation at FN

In the proposed scheme, the FN performs decryption operations to compute ag-
gregated usage data and to support the execution of statistical functions such as average
consumption, variance, and ANOVA. The decryption process is carried out using Equations
(6) and (7).

Cd= gr∑ n
i mi hr (6)

Respective FN computes:
Cdh−r= gr∑ n

i mi (7)

The FN then computes the discrete logarithm of gr∑ n
i mi to recover aggregated values

Msum and Msqrsum. The step is accomplished using Pollard’s lambda method [28], as
defined in Equations (8) and (9).

Msum= ∑ n
i mi (8)

Msqrsum=
(
∑ n

i mi
)2 (9)

The steps for this task are given in Algorithm 4.
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Algorithm 4. Decryption and MAC verification at FN algorithm.

1. Procedure Decryption at FN

2. Input: C f nagg , C f nsqragg

3. Output: M, Msqrsum

4. Cd = C f nagg

5. Cd = gr∑ n
i=1mi hr

6. Cd = gr∑ n
i=1mi

h−r

7. Cd hr= gr∑ n
i=1mi

8. FN through discrete log get M = gr∑ n
i=1mi

9. FN through discrete log get Msqrsum = g(r∑ n
i=1mi)

2

10. Return (M, Msqrsum)
11. end procedure

5.5. Statistical Functions Calculation at FN

In this task, the Fog Node (FN) performs the computation of aggregated consumption,
average consumption, variance, and ANOVA functions. For this task, the SM must submit
the data in the required format, as discussed in Algorithm 2. Once the aggregated cipher-
texts (both in their standard and squared forms) are received, they are decrypted using
Pollard’s lambda method. The FN then derives the average and variance using Equations
(10) and (11).

Mavg=
1
n

Msum

Mavg=
1
n∑ n

i=1mi (10)

Mvar=
1
n

Msumsqr −
1
n2 Msqrsum

Mvar=
1
n ∑ n

i=1m2
i −

(
∑ n

i=1mi

n

)2

(11)

In addition to variance, the scheme also supports the execution of the ANOVA test
to evaluate the impact of different tariff plans on electricity consumption behavior. Let
us assume there are s different tariff plans (e.g., P1, P2, P3). Customers may choose one
of these plans depending on their pricing preferences. Once the FN receives aggregated
consumption data for each tariff plan, it calculates the following values:

It calculates the sum of squares of all data through A1 = ∑ s
j=1∑ n

i=1m2
ij, calculates Sum

of squares of aggregated data within each tariff plan using A2 = ∑ s
j=1

(
∑ n

i=1mij
)2 and

Square of the sum of all data across plans using A3 =
(

∑ s
j=1∑ n

i=1mij

)2
. As per ANOVA,

the sum of squares between (s different tariff plans) is

SSB = ∑ s
j=1∑ n

i=1m2
ij −

1
n∑ s

j=1
(
∑ n

i=1mij
)2

SSB = A1 −
1
n

A2 (12)

and the sum of squares between within groups is

SSW =
1
n∑ s

j=1(∑ n
i=1mij)

2 − 1
ns

(∑ s
j=1∑ n

i=1mij)
2
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SSW =
1
n

A2 −
1
ns

A3 (13)

Finally, the FN performs the F-Test to evaluate whether the differences among tariff
plan groups are statistically significant:

F =
SSB/(s− 1)

SSw/(n− s)
(14)

Here s− 1 denotes the degree of freedom between group and n− s within the groups.
The computed F value (with the numerator n− 1 and denominator n− s) is compared
with a critical threshold at a chosen significance level (commonly 5%). If the calculated
F value is below the threshold, this indicates that the group means differ significantly,
suggesting that at least one tariff plan influences customer electricity usage. Conversely, if
the F-value exceeds the threshold, it implies no significant difference among group means,
indicating that the different tariff strategies do not have a measurable effect on electricity
consumption.

The steps for this task are given in Algorithm 5.

Algorithm 5. Statistical functions calculation algorithm.

1. Procedure Statistical Functions
2. Input: Reqavg, Reqvar, nSm

3. Output: Avg, Var
4. Variance can be calculated using ∑ n

i=1(mi −m)2

5. ci = ∑ n
i=1mi

6. csqr
i = ∑ n

i=1m2
i

7. c f ogi = ∏ n
i=1ci

8. c f ogisqr = ∏ n
i=1csqr

i

9. Var =
c f ogisqr

nSm
−

( c f ogi
nSm

)2

10. Var = 1
nSm

∑ n
i=1m2

i −
(

∑ n
i=1mi
nSm

)2

11. Var = 1
wSm

∑ n
i=1m2

i −
1

w2
sm

(
∑ n

i=1mi
)2

12. Avg = CSmagg

nSm

13. Return (Avg, Var)
14. end procedure

Figure 4 illustrates the block diagram of the FESDAO scheme, which involves four
primary entities: the Trusted Authority (TA), Smart Meters (SMs), Fog Nodes (FNs), and
the Cloud Control Center (CCC).

The TA distributes secret parameters to the SMs, FN, and CCC. Each SM encrypts its
metering data mi using its secret parameter, producing ciphertext ci. The SM also generates
a MAC on ciphertext ci using its private key and concatenates it with a timestamp ti. The
SM shares the ciphertext ci and MAC MACi both to the FN. Upon receipt, the FN verifies
the MAC. If valid, the FN stores the data in a local buffer and aggregates the encrypted
data from all SMs under its jurisdiction. In the case of failed SMs, the FN substitutes their
missing readings with the most recent successful values stored in the buffer, ensuring
fault-tolerant aggregation. The FN then generates its MAC MAC f n on aggregated data and
forwarded it to the CCC. At the CCC, the MAC is verified, and the aggregated data from all
FNs is combined and decrypted to compute the estimated electricity consumption values.
This workflow ensures data confidentiality, integrity, and fault tolerance throughout the
FESDAO scheme.



Sensors 2025, 25, 6240 18 of 28

 

Figure 4. Block diagram of the proposed scheme.

6. Security and Privacy Analysis
To demonstrate that the FESDAO scheme is privacy-preserving, supports analytical

operations on encrypted data, and is secure under the defined threat model, we evaluated
it through the following theorems, and it is shown that the proposed scheme preserves the
data privacy of metering data, ensures source authentication, fault tolerance, and prevents
FDI and replay attacks.

Theorem 1. The security of SM metering data is secured.

Proof. Suppose an adversary A eavesdrops on the communication while metering data
is being transmitted from an SM to the FN. In this case, the adversary can observe the
ciphertext ci of any SM. In the FESDAO scheme, the metering data is encrypted using the
mBGN cryptosystem,

ci= E(mi)= grtmi hrtsi fi

To decrypt the ciphertext, the adversary would require the private key components held by
the SM and FN, which are not available to it. In the above calculation r is also randomly
chosen by CCC during the start of data aggregation, which is not known to the adversary.
Therefore, the adversary cannot recover individual SM data, and its privacy is secured
against indistinguishable under chosen-plaintext attack (IND-CPA). □

Theorem 2. If the set of SMs for a specific FN is compromised, still other SMi data is protected.

Proof. If adversary A, through any means, compromised some SMs and obtained their
secret parameter si, It is easy to reveal those SMs private data. In the FESDAO scheme,
secret parameter si is randomly generated, and it has no relation with other SMs secret
parameters. It means that if some SM secret parameters are known to the adversary, it is
still not possible for it to know the metering data of other SMs. The condition below can
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reveal the aggregated data only if the private key of mBGN ( q1), the secret parameter value
of FN (fi) and secret parameters of all SMs (si) is known to adversary A.

fi.(s1 + s2 + . . . sn ) = 1 mod q1.

Let each SMi computes a partial value Di = csi , (This is required for share-based decryption:
each share is an exponent applied to the ciphertext). All Di are sent (or aggregated) to the
combiner (FN). The combiner forms the product and applies its combining coefficient:

D = ∏ n
i=1Di = ∏ n

i=1csi= C(s1+s2+...sn).

fi.(s1 + s2 + . . . sn ) = 1 mod q1

FN raises D to the power fi:

D fi = C(s1+s2+...sn)
fi
= cfi(s1+s2+...sn) ≡ c1modq1

Because fi.(s1 + s2 + . . . sn) = 1 mod q1 ≡ c1modq1 is working inside the subgroup of order q1

this recovers c (or the needed representative) and lets the holder of the remaining private
key material complete decryption. From this calculation, it is evident that the FN is unable
to recover or infer the individual readings of any SM, ensuring data confidentiality. □

Theorem 3. If FN is compromised, it cannot reveal the individual user’s data.

Proof. If the FN is compromised due to an internal attack or malfunction, it can only
expose encrypted aggregated data. Decryption can only be performed if data from all SMs
associated with the FN is received. The decryption activity can only reveal total usage
information at the FN level. Hence, the privacy of individual SM cannot be compromised
by adversary. The FN performs decryption activity through the following Equations.

CI =
(

gr∑ n
i mi hr

)tt−1

Divide both sides by hr

CI
hr = gr∑ n

i mi
hr

hr

CIh−r= gr∑ n
i mi

Using discrete log, FN computes
Msum= ∑ n

i mi

Similarly, if a strong adversary A compromises the CCC, they may obtain the aggregated
consumption value M. However, since the CCC lacks the capability to decrypt individual
users’ consumption data, the adversary cannot infer any specific user’s reading from the
aggregate. Therefore, even though the adversary has successfully penetrated the CC, the
individual privacy of users remains preserved. □

Theorem 4. An eavesdropper through a replay attack cannot change the state of aggregated data.

Proof. Because all data packets sent from SM to FN are time-stamped, the timestamp (TS)
of a data packet can be checked; if the timestamp (TS) is for an earlier period, the data
packet will be rejected. A timestamp can be found in both the metering data ci and the
MAC MACI .
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ci= E (mi)= grtmi hrt

□

Theorem 5. An attacker cannot impersonate the FN.

Proof. If an adversary tries to send some fake data packets by hiding the actual meter’s
identity, it will be identified through the MAC authentication mechanism. If MAC and
identity are verified at the FN level, its data packets will be accepted; otherwise, they will
be rejected. Hence, the integrity of the data is preserved.

MACv = sk(H(ci) || ti )

i f (MACv = MAC i ) Keep ci Otherwise Reject

□

7. Performance Evaluation
This section presents the implementation results of the proposed secure aggregation

scheme in fog-enabled SG architecture. We have evaluated the performance as below:
To evaluate the performance, we have analyzed the aggregation cost in the presence of
colluding parties and compared the results with existing schemes [2,12]. Implementation
parameters are mentioned in Table 3.

• Aggregation costs at the FN and CCC level, as shown in Table 4.
• Calculate the proposed scheme cost of encryption, MAC generation, MAC verification,

and decryption, as shown in Tables 5 and 6. The encryption cost is compared with [2,12].
• Communication cost comparison is given in Table 7.
• Comparison of security properties with existing schemes, as shown in Table 8.
• Computation cost of three data analytical operations (average, variance, ANOVA).

The FESDAO scheme is implemented using Java (JDK 8.0) with the Java Cryptographic
Extension (JCE). Experiments are conducted on a system with an 11th Gen Intel Core i7-
1165G7 Quad-Core CPU (Intel Corporation, Santa Clara, CA, USA, 2.8 GHz, 8 threads), 16
GB DDR4 RAM (SK Hynix Inc., Seoul, Republic of Korea; 2400 MHz and 3200 MHz mod-
ules), running Microsoft Windows 11 Enterprise 64-bit (Microsoft Corporation, Redmond,
WA, USA). The proposed research leverages the publicly available Individual Household
Electric Power Consumption dataset from Sceaux, Paris, France, hosted by the UCI Ma-
chine Learning Repository [31]. This dataset contains more than 2 million records collected
between December 2006 and December 2010 and includes attributes such as SM identifiers,
consumption values, and per-minute reporting intervals.

For key generation in the mBGN scheme, two large primes q1 and q2, each of 512 bits,
are used. Similarly, 256-bit keys are employed for MAC generation. The initial parameter
settings are summarized in Table 3.

Table 3. Implementation parameters.

Parameter Value Used

q1 512 bits
q2 512 bits
Hash Algorithm 256 bits
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In the FESDAO scheme, there are n FNs, each of which collects consumption data
from its connected SMs. Aggregation is performed at the FN level, where the collected
consumption data is processed. The aggregation cost is calculated for three FNs ( f n1,
f n2 and f n3) and is presented in Table 4. The scheme can be easily extended to support
additional FNs as needed, thereby ensuring scalability and accommodating extra load.

Table 4. Aggregation cost at fog nodes.

BGN based Aggregation Cost

Fn1 Level Fn2 Level Fn3 Level CCC

No# of
SMs

Time
(ms)

No# of
SMs

Time
(ms)

No# of
SMs

Time
(ms) Total SM Time

(ms)

100 12 100 11 100 12 300 35
200 30 200 34 200 32 600 98
400 84 300 40 300 43 1000 167
500 101 400 87 500 81 1400 269
1000 166 500 103 500 104 2000 373

Table 5 presents the costs associated with encryption, MAC generation, MAC verifica-
tion, and ciphertext storage at the FN. The evaluation of the FESDAO scheme is carried out
with respect to computation, communication, and fault-tolerance factors.

Table 5. FESDAO cryptographic operation computation cost.

Level Encryption MAC-
Generation

MAC-
Verification Decryption

SMi 90 per SM 1 per SM - -
FNi - 1 per FN 2 per SM 34.1 per 100 SMs

CCC - - 2 per FN 2 per 3 FNs

7.1. Computation Cost

The computational cost of the proposed FESDAO scheme is evaluated based on
the time required for encryption at the SM, MAC generation, aggregation, decryption,
and the calculation of statistical functions at the FN and CCC. At the SM level, most
operations consist of encryption using the mBGN private key and MAC generation on
the encrypted data for authentication purposes. At the FN level, the main tasks include
MAC verification, aggregation, statistical computations, and decryption. The FN also
performs MAC generation and encryption when submitting aggregated results to the CCC.
At the CCC, the aggregated data received from each FN undergoes MAC verification and
decryption to determine the overall electricity consumption.

Table 4 reports the aggregation cost at each FN and the total aggregation cost at the
CCC. In Table 5, encryption cost comparison is given. The FESDAO scheme is compared
with existing approaches that support statistical operations on ciphertext data during
aggregation [2,12]. The encryption cost, calculated using Algorithm 2 and presented in
Figure 5, shows that FESDAO and [2] have identical encryption costs, both being higher
than [12]. This is because FESDAO and [2] use the BGN cryptosystem for encryption,
whereas [12] employs Paillier encryption. The BGN scheme, which relies on bilinear maps
and two cyclic groups, is computationally more expensive than Paillier. However, its key
advantage lies in supporting both additive and multiplicative operations on ciphertext,
while Paillier only supports additive operations. This makes BGN particularly useful for
more complex statistical computations.
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Table 6. Encryption cost at the SM level.

No. of SM L. Chen et al. [2] Y. Chen et al. [12] Proposed

100 9000 2000 9000
200 18,000 4000 18,000
300 27,000 6000 27,000
400 36,000 8000 36,000
500 45,000 10,000 45,000

Figure 6 shows that the decryption cost of the proposed scheme is lower compared to
that of [2]. This is because a small, fixed number of faulty sensor nodes are considered. By
contrast, the schemes in [2,12] lack fault tolerance and do not support statistical operations
at the FN. When meters fail, these schemes either ignore their data or adjust dummy inputs,
leading to reduced accuracy in statistical calculations. In certain cases, the TA is additionally
consulted to verify the status of failed meters, introducing communication overhead and
delaying aggregation and decryption. While this may be manageable with a small number
of failed meters, in large-scale failure scenarios it can lead to severely distorted analytical
outcomes, under-mining the objectives of statistical analysis and reducing the overall
efficiency of the smart grid. Figures 7–9 present the computation cost, which is derived
from the aggregation cost, decryption cost, and computation operations at the fog node.
We assume no faulty SMs in Figures 7–9. In the proposed scheme, both aggregation and
decryption costs are based on the BGN cryptosystem.

Decryption is performed only after the aggregation process, with the aggregation cost
excluding decryption cost. Figure 7 depicts variance calculation scales linearly with the
number of inputs. Since ANOVA involves similar computational expressions, with data
partitioned into groups, its computation time is also expected to grow linearly.
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Figure 5. Encryption cost comparison [2,12].
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In this experiment, to demonstrate how ANOVA is computed, we used a practical ex-
ample involving three different electricity tariff plans. The ANOVA analysis was conducted
on sample data collected from SM connected to a FN, corresponding to tariffs labeled A, B,
and C. On the x-axis, we plotted the total number of observations received at the FN, with
values of 100, 200, 300, 400, and 500. For instance, the point at 100 on the x-axis indicates
that the combined number of observations from all three tariff plans is 100. The y-axis
represents the computation cost measured in milliseconds. The graph shows in Figure 9
that as the number of observations increases, the computation time at the FN grows roughly
in a linear fashion.
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Figure 9. ANOVA computation time.

7.2. Communication Cost

In the FESDAO scheme, the communication cost is evaluated by comparing the size
and number of message exchanges between the SM and the FN, as well as between the FN
and the CCC. The comparative results of all three schemes are summarized in Table 7.

Table 7. Communication cost from SM to FN.

Scheme Security
Parameter

Cipher
Text
Size

Time
Stamp

MAC
Generation

SM
ID#
Size

Per
SM

Total

For
all SMs

Proposed 512 1024 32 256 32 1344 1344 × N
L. Chen et al. [2] 512 - - - - 1024 1024 × N
Y. Chen et al. [12] 1024 2048 32 256 32 2368 2368 × N

N denotes the number of smart meters (SMs).

In the FESDAO scheme security parameter n is considered as 512 bits, and the size of
the ciphertext ci is 1024 bits. For source authentication, HMAC with SHA-256 is employed,
producing a 256-bit tag. To mitigate replay attacks, a 32-bit timestamp and a 32-bit SM
identification number are included. Consequently, the total communication cost for a single
SM is calculated as: 1024 bits (ciphertext) + 256 bits (MAC) + 32 bits (timestamp) + 32 bits
(ID) = 1344 bits. For all N SMs, the aggregate upstream communication cost is therefore
1344 × N bits. In contrast, the communication cost in scheme [2] is reported as 1024 bits,
as the authors only consider the ciphertext size and omit authentication and timestamp
overheads. The communication cost of [12] from SM to FN is 3268 bits, and FN to CCC
it is also 2368 bits. For Pailler system, the bit length of k is considered as 1024 bits, and
n2 as 2048 bits. For signature generation SHA-256 is used. Timestamp value of 32 bit
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along with the 32 bits identification number of SM is added to make a complete packet of
2368 bits. However, at FN, the communication cost varies across all three schemes. The
FESDAO scheme adjusts metering data to reflect aggregated values for failed meters, while
in schemes [2,12], it is ignored. Figure 9 represents communication cost from SM to FN.

The FESDAO fault tolerance mechanism adjusts metering data to reflect values for
failed meters, while in schemes [2,12], it is ignored. These schemes not only increase latency
but also lead to inaccurate outcomes in data analytical operations. Figure 9 represents
communication cost from SM to FN while assuming no faulty meter. The schemes [2,12]
require an additional round of communication during data aggregation to verify SM data
via the trusted authority (TA). The comparative communication costs from SM to FN are
summarized in Figure 10.

 

Figure 10. Communication Cost from SM to FN [2,12].

7.3. Fault Tolerance

Local buffers are used in the proposed scheme to store metering data prior to aggrega-
tion. If no data is received for faulty SMs, their last successful reading will be adjusted to
complete the aggregation process. In comparison to existing state-of-the-art schemes [2,12],
where faulty SMs are ignored, and the fault tolerance scenario is not considered during
data aggregation. If missing SMs data is ignored, the final decrypted usage information
is inaccurate and cannot be used for forecasting or demand-response requirements. Com-
pared to the schemes [2,12], the proposed scheme has much practical support for fault
tolerance. The placement of real values enables the aggregation process to be completed
efficiently, without requiring involvement from other parties. This approach ensures that,
even if up to 50% of smart meters are faulty, latency remains largely unaffected, though
there may be a slight reduction in data analytics accuracy. As the proportion of faulty
meters increases further, the accuracy of analytics will decrease, since substituted values
rely on prior periods.

The proposed scheme improves accuracy through two-way communication between
faulty SMs and FNs. When a failed SM becomes available, the FN notifies it that the last
reading for the missing period has been adjusted. This allows the SM to update its metering
data for future submission cycles. Additionally, SMs that fail to submit data for more than
three consecutive periods will be suspended, and their cases will be referred to the trusted
authority (TA). The buffer requirement to store the last successful readings is minimal, and
fog-based SGs can easily handle it due to an abundance of resources.
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7.4. Random Meters Addition and Removal

The proposed scheme has no dependency on the addition or removal of SMs. In
case of adding a new SM, secret share si needs to be generated and shared with the new
smi. The TA will also update the condition for the new secret key as fi.(s1 + s2 + . . . sn)
= 1 mod q1. Similarly, in the case of removal, the secret key needs to be removed from the
Equation fi.(s1 + s2 + . . . sn) = 1 mod q1. The fault-tolerant algorithm is independent of
meter addition or removal.

Table 8 presents the security properties addressed by the state-of-the-art and proposed
scheme. The proposed scheme supports two extra properties: statistical operations support
at the FN and CCC levels and Fault tolerance during secure aggregation. Privacy is
achieved through homomorphic encryption; integrity and authentication are achieved
through MAC tag generation on the encrypted ciphertext. False data injection attacks are
prevented through timestamps in every message. Based on the timestamp, old packets are
rejected.

Table 8. Comparison of security properties.

Properties L. Chen et al. [2] Y. Chen et al. [12] Proposed Scheme

Privacy ✔ ✔ ✔

Integrity ✔ ✔ ✔

Authentication ✔ ✔ ✔

FDI ✘ ✔ ✔

Collusive Attack ✘ ✘ ✔

Basic Statistical Functions at FN ✘ ✘ ✔

Basic Functions at CCC Level ✔ ✔ ✔

ANOVA calculation at FN ✘ ✘ ✔

ANOVA calculation at CCC ✘ ✘ ✔

Fault Tolerance at FN ✘ ✘ ✔

Fault Tolerance at FN ✘ ✘ ✔

8. Conclusions
This paper presents a fog-enabled secure data aggregation (FESDAO) scheme with

integrated fault tolerance, designed to strengthen the reliability and efficiency of smart grid
data analytics. The scheme highlights the critical role of statistical analysis in uncovering
patterns and insights from consumption data, while simultaneously addressing privacy
and security requirements that are essential for maximizing the value of data-driven
decision-making in smart grids.

The proposed FESDAO framework leverages fog computing to extend analytical
capabilities for fog node, and cloud control center layers. It ensures key security properties,
including privacy, authentication, and integrity, while maintaining fault tolerance during
secure aggregation. Unlike existing approaches that either neglect fault tolerance or treat
failed smart meters as null inputs, FESDAO incorporates valid historical data in aggregation
without requiring additional communication with smart meters or the trusted authority.

To provide robust protection against false data injection attacks, the scheme employs
modified BGN and other mechanisms. Furthermore, it enables secure execution of ad-
vanced analytical operations such as average, variance, and ANOVA directly on encrypted
data at both fog nodes and the cloud control center. This capability supports real-time
analysis of energy consumption patterns, thereby facilitating the design of adaptive tar-
iff strategies and empowering consumers to make informed decisions regarding their
energy usage.

In future work, we plan to extend the FESDAO framework to support more advanced
statistical functions and analytics on encrypted data. We also aim to enable statistical
function calculations at the SM level, where appliances within individual households can
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submit their data to the local SM for aggregation and analysis. This will open opportunities
for fine-grained energy usage insights, and personalized feedback for consumers. Further-
more, we plan to simulate the scheme in more practical and large-scale environments to
evaluate its performance and scalability across a larger number of smart meters, ensuring
its applicability to real-world smart grid deployments.
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