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Abstract

We present some factorisation and divisibility properties of Cata-
lan polynomials. Inijtia] results established with ed Aoc proofs
then make way for & more systematic approach and usc of the
well developed theory of cyclotomic polynomials.

1 Introduction

In [1, Scction 5.1, PP.17-25] the essential mathematica] properties of the so
called Catalan polynomizals were given, duc in the main to known results on
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Dickson and Chebyshev polynomials of the second kind (to which they are
related; see Section 2.1 later). Various forms exist for the general (n+ 1)th
Catalan polynomial P, (z): for 7 > 0 we have the binomial sum

P =3 ("7%) ey (1)

i=0

with hypergeometric form

Pu(z) = o F; (_‘%’"' ‘_"*Z"’ -1 , 43:) . 2)

and the equivalent matrix forms

Erave) (9 Iy )( )

(]

Fo(z)

x

- oo 1) (2)

Previous results involving Catalan polynomials may be scen in [1-3]. In
torms of work conducted, a summary of their various contexts is given in
the Introduction of an accompanying article (to this one) [4]. The first fow
polynomials arc (factored where possible)

Rz) = 1,
Pl(.'l!) = 1,
Pz(:!:) = 1—.'.1':,
Py(x) = 1- 2z,
Fi(z) = 1-3z+22
Fi(z) = 1-4z+43z2 = (1 —=z)(1 - 32),
Pe{x) = 1-5z+622- 23,
Pr(z) = 1-62+102% 428 = (1—22}1 - 4z + 222),
Py(z) = 1-Tr4+152° - 10874 2% — (1 = z)(1 - 6z + 922 — 2%,
B(z) = 1-87+212%- 2053 4502 — (1 =3z +2%)(1 ~ 5z + 527),
Pp(z) = 1 -9z +282% — 352% + 152 — 75,
Pulz) = 1-10z + 3627 — 5643 + 352° — 655
= (1-z)(1-22)(1-32)(1 - 4 + 2%,
Po(z) = 1—11:1:+45a:2—84a:3+70:c4-21.1:5+x5,
Pis(z) = 1-12z + 5522 — 1202® + 1262% — 5645 4 72

= (1=52+62 ~ 2%)(1 - 7z + 142 — 729), (4)




etc. The basic linear recurrence satisfied by the polynomials is

0=zF(x} — Poyi(2) + Puya(x); Fy(z) = Pi(z) =1, (5)
from which the closed form
— n+l _ _ - n+1
Pu(z) = 2n1+1 (1+T—4z) \/I—-_gz: vi=iz) (©)

follows readily. The bi-variate function

1 oo
Torrae = 2 Bl M
n=0

acts as an ordinary generating function for the polynomials; equations (5)-
(7) are taken from [1, resp., (69),(70),(73), pp.17,19].

In this article we examine some factorisation and divisibility aspects of
the Catalan polynomials. First, in Section 2, new results are cstablished
with ad hoc proofs constructed as appropriate. Section 3 then details a
more systematic approach to their factorisation over Z and an appeal to
the well developed theory of cyclotomic polynomials which together allow
some interesting insights into the factorisation process; as a consequence,
we arc motivated to recover carlier results from Section 2. A Summary
completes the paper.

2 New Results

Noting that the roots of al! Catalan polynomials arc real and positive (sce
the proof of Theorem 4 later), we establish the following result:

Theorem 1 In seeking rational solutions z of the equation Po(z)} =0 only
the arguments x = 1,1, 1 need be considered.

Proof Let ¢ > % be rational, and let a(z) = 4z — 1 > 0 so that /T — 4z =
v e{z}i. Solving 0 = P, (z) iraplies, from (6), the solution of

0= (1+ va(z)i)™! - (1 - Va(@)i)**, (P1)

1+ ya(z)i e _
= [1__—— m] = 2" a), (P2)
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say, where z(a) = i—;f’; + fﬁgi. In the complex plane z lies on the unit disc,
and it is straightforward to show that z(a) = exp[f(a)i]- with Re{z(a)} =
cos{f(c)), Im{z(a)} = sin{#(a)) where

6(a) = cos™! (%-_—:—z) . (P3)
so that (P2) reads
1 =exp[(n + 1)8(a)i]. (P4)

Thus, (n+ 1)8(a) = 2kx (k € Z) and we require to solve

r(a) = cos(g) (P5)

where r(a) = i—;g—, q=2k/(n+1), r,q € Q. To proceed any further we
nced to apply the rather useful (and scemingly little known) result which

is stated and proven below:
Lemma 1 Letg,re Q. Ifr = cos(gr) then r {0,:&%,:!:1}.

Proof We firstly account for a few specific instances of g values to aid the
proof. Let § = {0,+1,+1}. Consider Bg=0eQ=>r=cos(0)=1€ 8.
Next, supposc g € @ = {...,—%,—%,—%,%,g,g—,...} ={k+1i:keZ}
We know that cos(fn) = 0 iff 9 e Q, so that (ii) if ¢ € Q C Q then
r=cos(gr) =0 S.

Now (iii) fix ¢ € Q\{Q U {0}} such that cos(gm) € Q. We show, noting
cos(gm) # 0 in this instance, that it follows that cos({gn) = :I:%, +1 to com-
plete the solution sct 8. To do this we write ¢ = s/t and 2cos(gn) = a/b,
each in its lowest (irreducible) form {a,b,5,t € Z). The clementary identity
cos(2z) = 2co0s?(z) — 1 gives

2cos(2gm) = Acos®(gm) - 2

- (3
a? - 2p?
B2
= = (L1)

L

say. We show the ratio u/v is in its lowest form by assuming the contrary
and seeing that this leads to a contradiction. If /v is reducible there is
& prime p which divides both u and v. If plv = b2 then (a) plb trivially.
Furthermore, if pju then, mod p, © = a2 — 252 = 0 whence (since b2 =




0) a® = 0 so that (b) pla. Deductions (a),(b) arc a contradiction of the
assumption that a/b is irreducible. Having cstablished that u/v is in its
lowest form, we suppose (for the purposc of the proof in deriving a further
contradiction) that |b] > 1, allowing us to write

den{2cos(2gr)} = ¥ > b = den{2cos(gn)}, (L2)

where “den” denotes “denominator”. Now, using (L1) above,

il

[2cos(2qm)]® - 2

u 2
(5) -2
_ (a® —20%)% — 2p*
N bt
(which, by an argument similar to that just made, is itsclf irreducible), and
wc have

2cos{4qm)

(L3)

den{2cos(4gm)} = 5* > ¥ = den{Z2cos(2gn)}. (L4)

Repeating the process we arrive at the series of inequalities

b = den{2cos(2%mn)}
< b = den{2cos(2'qm)}
< b* = den{2cos(2qn)}
< I
< b = den{2cos(2¢m)}, (L5)

etc., and we have the following: that the sequence {den{2cos(2™gm)}}52,
comprising the denominators of terms (in irreducible form) 2cos(2"gn) is
strictly increasing, taking, therefore, an infinite number of distinct values.
Bowever, writing s/t = g = ¢(t; s) = ¢(t) it is casy to scc that ¥m € Z the
angle mq(t)w satisfies the equivalence relation

mg(t)r = B(t) (mod 27) (L6)

for some element 3(t) € B(t), B{t) being the finite sct B(t) = {(i/t}n :
i=01,2,...,2t - 1}.! In other words, for a given m € Z there exists
a rational multiple of 7 —8(t) € B(t) such that cos(mg(t)r) = cos(8(t)).

iperhaps an example or two is in order here {congruences are mod 27): (I) m = 3,
g = q(7;1) = q(7) = 1/7: then me(t)r = 3x/7T = 3x/7T = B(7) € B(7) =
{0,mf7,27/7,...,13x/7}. (II) m = 6, q = q(3;2) = ¢(3) = 2/3: then mq(t)xs = 4r =
0 = A(3) € B(3) = {0,7/3,21/3,...,5m/3}. (1) m = —4, q = g(9;2) = (9) = 2/%
then mq(t)x = —81/9 = 10n/9 = A(9) € B(9) = {0,#/9,2x/9, ...,17x/9}.

Noting that
{cos(2"q{t)r
B(t) € B(1)},
n=2012,.
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Noting that the set {2" : n = 0,1,2,.. .} is a subset of Z, it follows that
{cos(2%q(t)r) : n = 0,1,2,...} C {cos(mg(t)r) : m € Z} = {cos(B(t)) :
B(t) € B(t)}, meaning that the reduced elements of the set {cos(2"gq(t)w) :
n=1012,...} (it being a finitc onc) can only attain a finite number of
values which will necessarily contain a maximum value; this contradicts the
inequalities (L5) and the subsequent summary statement.

The proof is concluded quickly, for since [b] # 1 we must have b = +1,
and in turn cos(gmw) = 2 = :}:%a. The only valid values for a € Z arc
a = %1,+2, for which cos(gn) = :I:%, +1 as required.D

The proof of Theorem 1 is itself now readily completed too, for setting
r(a) = {32 =0,4,-3,1, -1 yiclds just four solutions a = 1,%,3,0, and in
turn z(a) = Ha +1) = i, 4 (which latter value we discount).O

Remark 1 In the search for rational roots z of Pp(z) we do not need to
consider x € [0, %] for the following reasons. Firstly, x # 0, ;} since Yn > 0
Fn(0) = 1 # 0 and [1, Remark 2, p.18] Po(4) = (n+1)2~" # 0. Over the
remaining interval z € (0, %) then any roots correspond to solutions of the
equation [%_t:{:j)‘]"ﬂ = 1, where #(z) = /1 =4z > 0. There are, howcver,
no solutions since the inequalities 1 < 1 + m(z) <2and 0 <1 -r(z) <1
mean that {302 ~

Having shown that the only rational roots of the Catalan polynomials arc
1, 1,1, we subsequently find easily those particular polynomials associated
with these roots; for n = 0,1, 2,...,

Panya(l) = Papyg (%) = Pgnys (%) = 0. (8)

These have been verified computationally (along with all other main re-
sults), and we leave their derivation as a simple reader exercise. The first of
equations (8} implics, for instance, that any run of six consecutive Catalan
polynomials contains a pair with a commeon root of 1; we can see examples
of this by listing (to 5 d.p.) the root scts for polynomials Py(z),. .., P (z):

Py(z) : {1.0000},

Py(z} : {0.5000},

Pi(z) : {0.3820,2.6180},

P5(z) : {0.3333,1.0000},

Ps(z) : {0.3080,0.6431, 5.0489},

Py(z) : {0.2929,0.5000,1.7071},




Ps(z) : {0.2831,0.4260, 1.0000, 8.2909),
Py(z) : {0.2764,0.3820,0.7236,2.6180},
Po(z) : {0.2716,0.3533,0.5830, 1.4487, 12.3435},
Pu(z) : {0.2679,0.3333,0.5000,1.0000,3.7321}. (9)

Runs of four or five polynomials may (e.g., Ps(z),..., Pi;(z) or Fs(z),...,
Po(z}) or may not (e.g., Ps(z). ..., Ps(z) or Ps(x),..., Pip(z)) contain such
a pair. Runs of three or less won't. Similar statements can be made con-
cerning runs of polynomials possessing (or not) pairs of the other roots %

1
and 3

Theorem 2 For n > 2 any consecutive triplet of Catalan polynomials
Pp(z), Po1(x), Pora{x) has pairwise distinct sets of roots.

Proof First note once more that all roots of all polynomials are non-zero.
Suppose a polynomial pair within any given triplet possesses a common
root. We show that this implies two consccutive polynomials have that
common root also, which in turn leads to a contradiction.

Let the pair be Py (z), Pat1(x), or Pry1(z), Puya(z). Since each pair con-
sists of consecutive polynomials, we arc done trivially. If the pair is B, (z)
and P, 12(z), with non-zero common root z = a, say, then the linear recur-
rence (5) reads, at = = @, 0 = aPp(a) ~ Poyy(a) + Fi2(a) = —Puyi(a),
so that a is also a root of P,41(z) and we have that P,(z), Ppy1(x) arc a
consecutive pair with common root @.? With P,(a) = P, 1{a) = 0 then
shifting the index of the recurrence (5) vian — n—1 throughout, and evalu-
ating at = = a again, we obtain 0 = aP,_1(a)~P,(a)+Poy; (@) = aPy_y{a),
whence a is a root of P,_)(z). Thus, we have established the following: if
Pn(z), Pry1(zx) are a consecutive polynomial pair with common root z = a
then it is also a root of P,_;(z). We can sequentially work this deduc-
tion backwards to the point where Ps(z), Py(x) arc a comsccutive pair
with common root @, so that Py(z) also has root a. Howecver (5) now
yields 0 = aPi(a) — Py(a) + Ps(a} = aPi(a) = a # 0 by assumption, a
contradiction.O

Theorem 3 Forn > 0, k > 2, the polynomial Py(z) divides Prregynsi(z).

Proof Consider the identity
Prys(z) = Po(x)Pu(z) — Py (z) P, ~1{z), r,e>1, (P6)

%2As indeed are Py (2), Paya(z); the argument which results in the contradiction
can, of course, cqually be started with this pair.
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first given in 1, (82), p.22], which reads

B, (x) P, (z)
R = Penle) 5

~ 2Pp_1(z) (P7)

on seiting r = k+1, s = m and dividing throughout by Pr(z) # 0. Supposc
Fr(z)| Pn(x) (k,m > 2), so that Fr(z)/Pi(z) € Z[z]. Then cvidently, by
(P7), Pouyi+1(x)/Pe(z) € Zfz] and we have that the divisibility of P,,(z)
by Pi(z) is sufficient for the divisibility of Py r+1(z) by Pz}, which in
turn is sufficient for the divisibility of Ponv2(k+1) () by Pe(z), ete. Thus, we
sec that if Pi(z) divides P,,(z) it follows that Pi(z) divides Prnngrrny(z)
for n > 0. Since Pe(x) divides itself we can set m = k and the result is
established.O

Remark 2 Theorem 3, with n = 1, gives that Py(z) divides Pyrqy(x) for
k > 2, which was noted as part of Propertics (c) of [1, p.22; sce (85)].

Corollary Forn > 4, then ifn + 1 is composite P, (x) is composite,

Proof By Theorem 3 Pyi(z) divides Pl 1ym+(z) for m > 0, k > 2. Con-
sider integers n;,ns such that M >ng 2 2, andsetk=mn; —1 > 1,
m=mn3—12>12 0, so we have that the polynomial P, _,(z) divides
Prayna—1(z). However, since the smallest value of n > 4 for which n + 1
is composite is n = 5 then we can write, provided it is not the square of
an odd prime, n + 1 as the product n + 1 = mng (= 6), whence P, _)(x)
divides P,(z); the proof is completed by noting that P,,-1(z) is a proper
polynomial (n; —1 > 1, as seen, and Pa(z) = 1 — x is, after the trivial
ones Py(z) = Pi(z) = 1, the first proper polynomial which appears in the
list (4)), so that P,(z) has a proper polynomial divisor and is, thercfore,
composite. The case when, for prime P23, n+1=p?is accommodated
with the same line of argument with n; = ng = p.00

Theorem 4 Forn > 2, then if n+1 is prime Pp,(z) is irreducible.

Proof We begin with the statement and proof of a lemma:

Lemma 2 Let o be an algebraic integer of degree n. Then, for k Z,
k-+a is an algebraic integer of degree n,

Proof Sinee a is an algebraic integer of degree n there exists a monic poly-
nomial f(z) = ap + @12 + @g2® + -+ + ap_j2"l 4 27 € Ziz] \ {0}, of

30Observed empirically in [1, Properties (c), p.22].




minimum degree n, such that f(a) = 0. Note that f(zx) is monic since
[="{f(z)} = 1. To prove Lemma 2 simply define a degree n polynomial
9(2) = ao+a; (—k)+az(z—k)?+. - “Fan-1(z—k)"" 14 (z— k)" € Z[z]\{0}.
Since g(k + a) = f(a) = 0 then & + a is an algebraic integer of degree at
most n. If its degree werc (strictly) less than n we could apply the ar-
gument again to show that o has degree strictly less than n, which is a
contradiction; hence, k + o is an algebraic integer of degree n.O

Noting that we usc the terms “degrec” and “order” interchangably the
proof of Theorem 4 is as follows, for which we need to first introduce some
precise terminology. Let f(z) be a non-constant polynomial € Z[z] of order
o(f), say. We call f (z) virtually monie if the highest power of z has a cocffi-
cient of magnitude 1, i.e., [zo0 N{f(z)} = £1. We call f(z) virtually monic
at both ends if it is virtually monic and [z9{f(z)} = £1. Ifa polynomial
is virtually monic at both ends then it is virtually monic. A non-constant
polynomial f(z) € Z[z] of ordor o(f) has a dual f*(z), of order o(f) sim-
llarly (provided 0 # [29]{f (2)}), defined as f*(z) = zoU) (1). Clearly, if
f(z) is virtually monic at both ends then so is its dual,

We establish the result by contradiction, assuming in the first instance
that P,(z) is reducible. Noting that since n is even (n + 1 is prime),
o(Pp(x)) = 3n and we write Fu(z) = T(z)U(z), where T(z), U(z) € Z[x)
are non-constant polynomials with o(T) + o(U) = a7 Further, from (1)
B Py (2)} = 1, whilst [zo(P "D Pa(2)} = [Py (z)} = (-1 =
*1, so that P,(z) is virtually monic at both ends. Hence, both T(z) and
Uz} must be virtually monic at both ends, and so cach of the duals T (z)

and U*(z) are virtually monic at both ends, and so virtually monic. Con-
sider now

24Po(1/2) = 2%MT(1/z) - 25Oy (1/), (P8)

and let p be a root of Py(z) (p # 0; we know from (1] that the roots of
Fu(z) are all positive (see (P10) below)). Then using the decomposition
(P8) in reverse,

(%)O(T)T(p )'G)D(U)U(”) - (3)%"1’1;(;7) = 0. (P9)

p

Thus, 1/p is a root of either T*(z) or U*(z). This means, therefore, that
1/pis aroot of a virtually monie polynomial, and (multiplying throughout
(P9} by -1 if necessary) so a root of a monic polynomial of individual
degree < 3n. In other words, 1/p is an algebraic integer of degrec < in.

The roots
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The roots of P, (z) arc given generally by [1, (97), p.25]

1
S S S P10
) S S T s @) (P10)

where 8(A) = 2wA/(n+1) and A takes values A = 1,2,...,n (excluding any

value for which 2) = n + 1). At least one value of A(n) must describe a
Troot z,,y which corresponds to p, whence

2rA 1
2 —_— = P11
+2cos(n+1) p (P11)

is an algebraic integer of degree < %n, a deduction for which we now provide
an immediate contradiction. Since n + 1 i prime each ratio A/(n + 1) is
in its simplest form, and by a result due to Lehmer (5, Theorem 1, p.165)
2cos2mA/(n+ 1)] is an algebraic integer of degrec $¢(n + 1), where @(n) is
Euler’s so called toticnt function which cnumerates the number of integers
d € [1,n] that are coprime to n (d = 1 is regarded as coprime to ail
n 2 1). With n + 1 prime here, ¢(n+ 1) = n trivially and we have that
2cos[27A/(n + 1)] is an algebraic integer of degree n, which is also the
degree of the algebraic integer 2 + 2cos{2mA/(n + 1)] by Lemma 2, yiclding
the required contradiction on the assumed reducibility of P,(zx).0

2.1 Catalan and Chebyshev/Dickson Polynomials:
Some Remarks

It was noted in [1, (71),(72
of the second kind
- 4l _ _ — n+41
Un(z) = %(m+\/mi 1) = _(31 VvzT=1) (10)

(which is, in turn, the instance E,(2z,1)

), p.18] that the general Chebyshev polynomial

of the general two parameter Dick-
1 - - -
son polynomial {of the second kind) E,(z,a) = ZE; ! (“:‘) (—a)'z™%) j5,

for n > 0, related to the corresponding Catalan polynomial according to

Pa(a) = (ﬁ)nrfﬂ( ! ) (11)

2z
Existing results for Chebyshev/Dickson polynomials can, therefore, be trans-

lated in principle dircctly to statements for Catalan polynomials.4 Prop-
erty 3 of [7, p.1234), for instance, states that if | > 1 is integer s.t. m =

A1t is known, for example, that the degree n integral polynomial 7, (z) has roots which
are real, distinct, symmetric about z = § and of the form cosfkn/(n + ) (k=1,...,n),
from which those of P, (z) follow readily; other properties were listed in [1, Sections 5.1.3
and 5.1.5, Pp.18-20,21-25) based on stand alone arguments, and results taken from i6].
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(n+ 1) — 1, then Up(2)|Upnm(z); setting m = (p + 1)k +p, n = k, and re-
placing Ux(z) by Pi(z), then for p=0,1,2,.. ., this reads as our Theorem
3. The proof, however, relies on a mixed recurrence involving Chebyshev
polynomials of both first and second kind (in contrast to our proof), and
‘other work in (7] on Chebyshev polynomials is not re-interpreted here in
the context of Catalan polynomials.5 Instead, in what follows next we will
leave our resuits and ad hoe proofs as they are and rather than appealing
to work elsewhere on Chebyshev (or Dickson) polynomials bring to bear
on the question of factorisation of Catalan polynomials a more formalised
approach and an application of the theory of cyclotomic polynomials un-
derpinned by the propertics of ordinary and primitive roots of unity; in
doing so, we find we atc also able to recover Theorems 2,3 and 4.

3 Cyclotomic Polynomials: Theory
and Application

3.1 Fundamental Features

We begin by giving a quick reminder of the essential features of cyclotomic
polynomials (see also Footnote 10 later) before we apply them to the task
in hand, providing illustrative examples.

We rceall that an (ordinary) nth root of unity r, say, is & so called primitive
nthroot if, for k = 1,...,n, k = n is the smallest valuc of k for which r¥ = 1.
Thus, we see trivially that 1 is the primitive first root of unity, whilst —1
is the primitive square root of unity. In addition, wep = £(-1 + V3i)
arc cach primitive cube roots of unity. The primitive fourth roots of unity
are immediate as +4, whilst there are 4 primitive fifth roots of unity, be-
ing those complex ordinary fifth roots (writing these as py, ..., p4 for the
moment, they are given explicitly in Section 3.3). The 6 ordinary roots of
unity are seen to be +1, tw, b, delivering just —w,p as the two primitive
sixth roots; the process continues. For nth roots of unity &;,...,&,, say,
the nth cyclotomic polynomial &, (z) is, for n > 1, defined as

()= JI (z-&), (12)
prirr;eiﬁi:'e &

5Sec Theorem 4 thercin (p.1235) which gives a result on the greatest common divi-
sor between two Chebyshev polynomials U, {(x), U (z), and the subsequent section on
modular factorisation which—as a topic of potential interest in the context of Catalan
polynomials—lies beyond the scope of this paper. Chapter 5 of the book by Rivlin [8] is
another obvious source of (potentially transferable) results on Chebyshev polynomials.
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and we now list @,(z),..., ()} as cxamples. Denoting by w cither one of
the primitive cube roots w, j, we write

Oi(z) = 2-1,
D2z) = z-(-1) = z+1 = (FP-1/{z-1),

Pi(z) = (r—we)(z—wp)
= (F=w)z-uv?) = P+a+l = (@P*-1)/(z-1),
u(z) = (x—i)(z—(-1)) = z°+1,
D5(z) = (z—pi){z—p2)(z — p3)(z — pa)
= i+ 42l +z+1 = (z° - 1)/(z -~ 1),
Bs(z) = (z—(-wa))(z— (—wp))

(z+wiz+uw?) = 22—z +1, (13)

where we have taken advantage of the fact that w? , = wy, and w2 g =
~1. Note that ®p(z) = (2P —1)/{z— 1) =2 4+ 2P 2 4... 4y z+1forp
prime since  observing that it holds when p = 2 --in every other case (i.e.,
p odd) then aside from unity itself all other p — 1 ordinary complex roots
of unity are themselves primitive pth roots.

In gencral, an nth root of unity exp(2rnmi/n) is a primitive nth root when-
ever m = 0,...,n-1 and n are coprime. Thus, the number ¢{n) of primitive
nth roots of unity is given by the cardinality of the sct {melo,n-1]:
m, n are coprime}, from which it follows that deg{®,(z)} = ¢(n). More
intercstingly, it can be shown that n = Zd|n (1<d<n) $(d) (for example,
12=1+1+2+24+2+4=¢(1) + ¢(2) + ¢(3) + #(4) + (6) + $(12) =
2412 9(d)), along with the result®

-1= [] Q=) n>1, (14)
d|n (1<d<n)

which (given ®,(z)) allows an inductive computation of cyclotomic poly-
nomials through the re-arrangement

2t -1 >9 (15)
n N
Il (dn) alz)’ -

It is casy to cheek, for instance, that 23 — 1 = ®,(x)®3(x) and 2 — 1 =
®1(z)P2(x)23(x)®Ps(z). Equation (14), then, tells us that for n > 2 the n
roots of unity arc simply those roots of the polynomial II din &4(x) which

o.(z) =

8'The proof of (14) is simple; an nth root of unity will be a primitive dth root for some
dln, whilst, conversely, if d|n then a primitive dth root of unity is an nth root of unity.
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unity. In other words, any nth root of unity co-incides with a primitive dth
root of unity for some divisor d of n. Note that all cyclotomic polynomials
arc monic with integer cocflicients (this is straightforward to cstablish) and,
further, that since ®,,(z) is irreducible in the polynomial ring Q[z] (Vn > 1;
sce Eisenstein’s Irreducibility Criterion) then it is the minimal polynomial
of any primitive nth root of unity.

3.2 Connecting Cyclotomic and
Catalan Polynomials

Consider ¢ = {(z) defined as

1+v1-4x
= — 16
== (16)
With a little algebra we find, from (16), the reverse relation
z(() = £ (17)
(C+1)?

By (6) it is clcar that solving the equation F(z} = 0 is equivalent to solving
¢"*!(z) = 1. Now, whilst ¢ = 1 isan (n+1)th root of unity, we discount this
value since it corresponds to z(1) = % which is never a Catalan polynomial
root (it is known (sec Remark 1 carlier) that P,(3) = (n + 1)/2" #£0). In
addition, for n odd then ¢ = —1 is an (n+1)th root of unity but this too is
discounted since the value corresponds to z(—1) = —oo. Thus we conclude
that ¢ = ((z) # +1 is a root of the polynomial (o1 = Mania ®alz) if

z = z({) s a root of the Catalan polynomial P, (z), an observation that we
can now apply.

3.3 Application

We are now in a position to apply the above in search of Catalan polyno-

mial factors, and we illustrate this with some examples- initially low level
oncs.

Casen=1 Here n + 1 = 2, and the solutions of 1 = ¢ are ¢ = +1,
both of which we discount. The Catalan polynomial P, (z) has, therefore,
no roots/factors, which is correct since Pz)=1.

Cascn =2 Here n 4 1 = 3, and the solutions of 1 = ¢3 are ¢ = 1 (dis-
counted) and ¢ = w,, = 3(—1+ V/3i) given earlier. Both values are
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dealt with simultancously by obscrving that (L+ 02 = (1 +wep)? =
(Lt wap+w? ) +wapy = 04w,y = Wa,b = ¢, 50 that 2{¢) = ¢/(1+¢)2 =1
which confirms that the Catalan polynomial Py(z) = 1—z has but a single
root of 1.

Case n = 3 This case is similar to the previous onc in that the solutions
¢ = &i of 1 = ¢* (discounting the other two solutions ¢ = +1) cach have
the property that (1+-()? = 2(, giving #(¢) = ¢/(1+¢)? = & as the correct
sole root of Py(x) =1 — 2.

Case n =4 Wesolve 1 = e discounting the root ¢ = 1. The complex pairs
P12 = 3[(V5 ~ 1) % V10 + 254 and ps.4 = 2(~vE - 1) % v/10 - 375§
complete the root set. It is found, with a little work, that setting ( = P12
yiclds one root of Iy(xz) as =) =¢/(1+¢)*=2/(3+ V/5), whilst setting
¢ = p3,4 produces the other root z(() = 2/(3 — v/5). Thus, Py(x) may be
constructed as Py(z) = (z — ,—;_'_2—\,5)(:1: - 3—__—273) =1-3z+z2

Casen = 5 The solutions of 1 = (6 are, from carlier, known to be +1
(discounted) together with Hway. With ¢ = w, then z(¢) = 1 (by the
Case n = 2), whilst putting ¢ = —tap gives (1+¢)? = (1 - wap)? =
(Itwap+wly) —Fwes = 0— 3w, = —3wa,p = 3¢, so that z(() = §. These
two roots of F5(x) = (1 - z)(1 — 3z) are indeed correct,

Case n = 6 We discount the unity solution of 1 = ¢", with factors gen-
crated by the conjugate pairs ¢ = v, 5 = cos(2x/7) £isin(2n/7), ( = 13,4 =
~cos(3m/7) £isin(37/7) and ¢ = Yi,6 = —cos(m/T)+isin(n/7). These pairs
result in values (v 2} = [1 + cos(2m/7)]/[3 + 4cos(2n/7) — cos(3x/7)] =
0.307979, z(y3,4) = [1 - cos(3x/7)]/ [3 - dcos(3n/7) — cos(n /7)] = 0.643104,
and z(v5,6) = 1/2[1—cos(x/7)| = 5.048917, with (subject to roundoff error)
(0.307979 — z)(x — 0.643104)(z — 5.048917) = 1 — 5z + 622 — 23 = Py(z).
The values given here were determined by use of Maple.

Case n = 7 Discounting the solutions +1 of ] = ¢8, the solution pair i
generates the factor 1 — 2z of Py(x) (sce Case n = 3). The remaining two
conjugate pairs are ¢ = (1+4)/+/2 and ¢ = (—1+4)/v/2 which pairwise yicld
values ({) = 1/(2 + v/2) and, in turn (up to a multiplicative constant),
the quadratic factor 1 — 4z + 2z2; we have, thercfore, the factorisation
Py(z) = (1 - 22)(1 — 4z + 222).

Remark 3 It is of course known that if, forme[0,n-1},¢= exp(2mmi/n)
is an nth root of unity, then so is 1/¢. The reason why—-as secn in the
examples above - -conjugate pairs of roots of unity correspond to the same
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Catalan polynomial root value is simply because in this instance, by (179),

2(¢) = (}).

Remark 4 It is clear that for odd n > 1 the (even) n + 1 associated roots
of unity contain 41 which, when discounted, leaves %(n — 1) complex con-
Jjugate pairs of solutions, each pair giving a root of the polynomial B, (z)
whose degree is 3(n—1). For even n > 2 the {odd) n+1 associated roots of
unity contain 1 (discounted), leaving %n complex conjugate solution pairs
to each yield a root of the polynomial F,(z) of degree %n. This confirms
the order of P,(z), as dependent on the parity of n, which is clear from (1).
Thus far we have not utilised the connection between Catalan and cy-
cletomic polynomials through the notion of a primitive root of unity. In
considering Catalan polynomial factorisation the following examples show
how this can be done, moving from what with increasing n would other-
wise be an evermore burdensome route - -reliant strongly on numerical ap-
proximations of roots of unity to a more manageable algebraic one which

appeals to the theory of cyclotomic polynomials in gencral, and also to the
observation in particular that, from (16},

1 1+vi-dz 1-+/T"4g

C(“")J’C(x) T e - B sy
- %-2, (18)

so that, in addition to (17), we have 2(()=(C+ % +2)-1

Casc n = 11 Consider the cquation

0 = ¢Z-1 = JJeu

dj12

‘1’1(0‘1’2(()‘1’3(0‘1’4(0‘1’6(C)‘I’m(C)- (19)

Now the roots of ®1(¢), ®2((), being ¢ = +1, are discounted, whilst the
roots of ®3(¢), 4(¢) and Ds(() (resp., wep,+i and —Wa,p) correspond, from
earlier cases seen, to the linear factors 1 — 2,1—2z and 1 — 3.

We focus, therefore, on 0 = ®12(¢) = ¢4~ ¢2 + 1. The roots of $12(¢)
arc the 4 primitive twelfth roots of unity ¢¢/6, gixi/ 8, eTmi/6 l1mi/6 (o},
tained as e2M™4/12 = emmi/6 Lo o {k €0,11] : k,12 are coprime} =
{1,5,7,11}), however we do not actually need to identify these explicitly.
Dividing throughout by ¢2 # 0 this reads ¢ — -1+ fl"" ={¢C+ %)2 -3=

I{(¢), say. Wi
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1(¢), say. With reference to (18), then setting () + f(lET = z* — 2, the re-
quired factor will be forthcoming from I{z*) = (z* -2)2 -3 = 1 —42* + z*2,
with the actual factor delivered by T (%), i.e., 1 — 4z + 22 (in this case the

same expression). Thus we have identified the remaining quadratic factor,
with Py (z) = (1 — 2)(1 — 2z)(1 — 3z)(1 ~ 4z + z?) as scen in (4).

Casen=13. We write (' — 1 = &;(¢)®2(¢)®7(¢)®14(¢), with factors
generated from $7(¢) and ®14(¢) only. Consider first, then,

0 = &) = C+C+C+E+E+¢+1

- () oert) ()
= I(Q), (20}

after dividing through by ¢* and re-arranging. Hence, I{z*) = (z* — 2)% +
(" ~2)? - 2(z" — 2) ~ 1 = z*3 — 52*2 + 6z* — 1, with the associated
factor given by I(1) as 1 — 5z + 622 ~ z%. The other factor is found from
consideration of

0 = ) = -G+t -+ -c+1, (21)

that is,

GG RGN

With I{z") = (z" - 2)° - (z* - 2)? - 2(z* - 2) + 1 = 2" — 72*2 + 142" - 7,
we have 1 - 72+ 14z? — 72 as the other factor immediate from I (1); hence
(and in agreement with (4)), Pi3(z) = (1-52+622—2%)(1-7z+14z2—723).

We consider one further example to illustrate the mechanics of factorisa-
tion. If we look at Psg(z), then we must first write down all the divisors d =
1,2,3,4,5,6,10,12,15,20, 30,60 of n + 1 = 60. Excluding d = 1,2 (which
lead to no factors), we find that the factors of Pjo{x) are of respective or-
der 36(3), 56(4), 36(5), $¢(6),. .., 16(30), 1(60) = 1,1,2,1,2,2,4,4,4,8,
50 that there arc three linear, quadratic and quartic factors each, together
with a single factor of order 8; this concurs with the actual decomposition”
Po(z) = (1-z)(1-22)(1 - 3z)(1 ~ 3z +2%)(1 - 4z +2?)(1 — 5z + 5z2)(1 ~
8z + 1922 - 1223 + 7%)(1 — Tz 4 1422 — 82° + 24)(1 — 9z + 262 — 2423 +
z4)(1 — 16z + 10522 — 36423 + T14z% — 78425 + 44025 — 9677 + z%), and

7The precise factors are found algebraically as in the manner detailed for Py1(z) and
Fiz(z).




we conclude that for n > 2 P,(z) is factorisable as a product of irreducible
polynomials of degree %¢(d] for all divisors d > 2 of n+ 1. As a corollary,
it is immedijate that should n + 1 be prime then the only factor of P, (z) is
itsclf, which is, therefore, irreducible (and of degree on+1)= 3n); this
i8 Theorem 4.

Based on the work of this section we can now proceed to re-prove Theorems
2 and 3, both proofs heavily reliant on an important bijection cstablished
at the start of the first one.

Theorem 2 (New Proof) Let Ry = RN (0,00) be the st of positive re-
als, and N, = N\{0} the positive integers. We define, for n € N, scts
U ={{ € C: (" = 1andIm(() > 0}, R = {z € Ry : Py(z) = 0}
{being, resp., the set of all (n 4 1)th roots of unity lying in the top half of
the complex planc, and the st of all (positive real) roots of P, (x)), and the
mapping 7 : C\{-1} — C defincd as 7(¢) = IT-EEF If 7, is the restriction
of 7 to U, then it is a rclatively straightforward matter to show that 7, is
a bijection® between U, and R,, which permits a rather clegant argument
to be formed.

To prove Theorem 2 we argue by contradiction, supposing at the outset
that the statement is false and that some pair of the triplet of polyno-
mials P, (z), Ppy1(), Pay2(x) possess a common root. Thus, this root
is a common clement between two of the scts RasRn+1,Rns2 and, by
bijection, its value mapped by 7 (via the restrictions Try Tat+lsTnt2) OC-
curs in two of the sets Un,Upt1,Upnta. Now the set U, can be written
instead as U, = {exp[2kmi/(n+1)] : k= 1,...,|4n|} which mcans, writ-
ing B, = {k/(n+1):k=1,..., | 3m]}, that this common clement is shared
between two of the sets By, By, Bpya. W.Lo.g., therefore, we suppose this
root lies in By, and is repeated in B4, (where s = 1 or 2), whereupon there
exists integers &y € [1,|n/2]], k2 € [1, [(n + 5)/2|] such that
ko ko
n+l n+s+1
Clearly k2 > k; for equality, and since both are integer then we must have
ky = k; + 4, for some integer §;, > 1. Hence,
k1 _ kL + 6
n+l nt+s+1’

(P12)

(P13)

- G =kis/(n+1). (P14)

8We leave the precise details of the proof of this bijection to the interested reader as
it largely uscs idcas seen carlier in the section.
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Theorem 3 (New Proof) Let k > 2 be integer. The Catalan polynomial

Lk] Lik)

A6 = 3 (7)o - w[e-m . @)

i=() i=]

has roots P1,p2,... 1p|_é-k_|) say, Wif.h

= A < cou (KUY gy,
2

We first note that for  even then, trivially, [ 35] = 1k and o, = (-1)3k =

£1, whilst for & odd |14] = L(k — 1) and we find that ay = (—1)$(k-1),
2k+1)= +3(k+1). If we consider further the polynomial

L3 [(k+1)n+ki)
Fottynik(z) = i II @-w), (P18)
i=]1
with roots wy,ws, ... W (k+1)n+k)) (7 > 0), then (noting that Brn € Z)
we now look at the ratio Bkm/ax for both k even/odd cases. For k even

the ratio Brnfog = +Bk.n € Z. For k odd we note that (k+ 1)n+k is odd
80 we can write down immediately

Bikn = fﬂv'L’:’Hkﬂ)ﬂﬂ”l{P(k+1)u+k($)}
T |
= (=1)HF+ntk 1f-§(k+1)(n+1), (P19)
whence

B__k.g _ (_U%[(k+l)n+k—1] . %(k + 1)(‘.’1 + 1)
(a7 (—1)"1?("‘1) . %(k +1)

— .(__1)%-(k+l)n(n+ 1)

€ Z. (P20)
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bijection, this corresponds to a particular (k + 1)th root of unity ¢, =
¢(p) € Uy. Since (¢)FHN=D = [((Ye+1]2+l = [1*H] = 1, (, is also
a (k + 1)(n 4 1)th root of unity in (x4 1)n+k, mapping bijectivcly to the
same root = p of Py y1)n4x(z). It follows, therefore, that every root of
Py.(z) is contained in Pyg41)nt4{x) and (ordering the roots of Pt 1ynx(%)
88 P1, P2, 3 P Jk)r W J k410 - "1w[%[(k+l)n+k]_|) we have the relation

Py nynsk(®) = Pe(z) B(z), (P21)

with
_ L3[(k+1)n+kl]
R(z) = R(zkn) = e ] (z-w) (P22)
i=|}k)+1

denoting the quoticnt polynomial and, by nccessity, ven = Ben/ax € Z.
To complete the proof we need to show that the polynomial R(z) € Q[x],
and we argue by contradiction, assuming that it is not and so possesscs at
least one coefficient which is irrational. Let kA be the highcst power of z
in R(z) which has an irrational coefficient r = r({k,n), say, and consider
the term in zL3%1+h in Py(2)R(z), with (irrational) cocfficient agr, given
by the product of the zl2*| term in P,(z) with the z* term in R(z).
Within the polynomial Py (x}R(z) other possible terms in zL7%1+% arc found
by products of terms of type zl3kl-1. gh+l glikl-2. zh+2 anq 50 on,
with terms in zl¥%1-1 £l3k1-2  lying in Py(2) € Z[z), whilst terms in
zh+l ght?  (whosc coefficients are rational since each power h+1, h+2,
etc., is greater than h), arc drawn from R(z). In other words (by (P21)),°

[ 35+ {Pi(z) R(z)}
= apr+ci151+ o8y + - (P23}

[xl'%kj+h]{P(k+l)n+k(£)}

(e1,c2y...,€ Z, 81,82,...,€ Q), which, being irrational, is a contradic-
tion since Pyt 1)n+k{z) € Z[z]. Hence, R(z) € Q[z] and so Py(z)R(z) =
Pit1yn+i(z) is factorisable over Q[z], and in turn over Z[x] (by Gauss'
Lemma, a standard result), whence we have Py 1yntk(z)/ Pe(z) € Zz|.O

4 Summary

In this article we have, for the first time in any detail, attempted to lmﬂl_'
yse factorisation and divisibility of Catalan polynomials. Somec initial stand
alone results are established, and subsequently recovered by applying known

9Evidently, the number of terms in the r.h.s. of (P23) is dependent on the position of
the postulated z* term in the degree | 3[(k + 1)n + K]} — | &) polynomial R(z)-
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properties of roots of unity and cyclotomic polynomials!® which also allow
the factorisation process to be understood more clearly. No existing results
on Chebyshev or Dickson polynomials-- to which Catalan polynomials are
connected--are used here, indeed we leave the question of how to interpret
our results (in conjunction with cyclotomic polynomial theory) to form
corresponding ones in the context of Chebyshev pelynomials as offering a
futurc potential piece of work.

Finally, we note that the Catalan polynomials arc in fact but one fam-
ily of a much larger class of polynomials, cach of which is associated with
an integer sequence whose ordinary generating function is governed by a
quadratic equation with functional coefficients in Z[z] (such as that for the
Catalan sequence through which the Catalan polynomials are defined; oth-
crs studied previously are the (Large) Schréder and Motzkin polynomials,
s0 named after their namesake scquences!!). It remains a possibility that
some of the results presented here might well be carried over, and appear
in a gimilar form, in other such polynomial family cases; this, too, defines
an open problem at present.
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This paper is a revised and extended form of the version submitted for
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Commemorating 200 Years
Since the Birth of
Eugene Charles Catalan

Guest Editor
Peter J. Larcombe

Dedication

This Special May 2014 Bulletin Issue is Dedicated to the Memory of
David R. French (‘Frenchy’)
1943—2014

The Catalan sequence has an almost unparalleled ubiquity in discrete math-

ematics, arising as, or in, the solution of a wide variety of apparently dis--

parate and unconnected counting problems. Throughout the major part
of the 19th century the accepted version of its discovery linked the ini-
tial identification of the sequence to Leonhard Euler, who in 1751 wrote
of its elements as providing solutions to the so called triangulated decom-
positions of polygons—a problem which is today well known and through
which the Catalan sequence was to eventually bear the name of Catalan
himself, seemingly after a flurry of activity (by Catalan and some contem-
poraries) during the 1830s and 1840s. This false attribution (and others)
continued until 1988 when a Chinese historian, J. Luo, detailed a new con-
text as evidence of an even earlier awareness of the Catalan sequence by
the scholar Antu Ming (who during the first half of the 1700s examined,
via geometrical considerations, a certain type of infinite series containing
Catalan numbers).

From such beginnings well over 250 years ago, the Catalan sequence
has continued to make regular appearances in the literature—sometimes in
surprising ways—whilst the Catalan numbers have interesting mathemat-
ical properties in their own right which link with other integer sequences.
My own personal interest in the Catalan sequence took off when it arose
in an enumeration problem on which I was working with an undergraduate
final year student in the mid 1990s (strangely, it took many years for this
work to be disseminated), and—after the assimilation and translation of
the relevant material—I wrote, and co-wrote, a series of short pieces on the
origins of the Catalan sequence in an attempt to clarify that part of its
history. Since then both Catalan and the Catalan numbers have at times



figured in my work, most recently through the so called Catalan polyno-
mials which I discovered with a Ph.D. student (James Clapperton) and
great, friend Dr. Eric Fennessey (in our study of iterated generating func-
tions) and which form the basis of my joint contributions to this Special
Issue. 1 am, of course, not alone in my Catalan-related pursuits. Professor
Richard P. Stanley, for instance, has aptly termed an extreme enthusiasm
for all matters Catalan as “Catalania” (“Catalan mania”), & ‘condition’
whose ‘sufferers’ will undoubtedly recognise! Richard himself keeps a won-
derful Catalan Addendum to Volume 2 of his well known book Enumerative
Combinatorics active as an up-to-date resource for researchers in which be
details new interpretations and problems, and Professor Thomas Koshy has
been moved to write a stand alone undergraduate text Catalan Numbers
with Applications for a less specianlised readership (see overleaf for more
details on these books). Each, in its own particuler way, serves the mathe-
matical community well, along with the numerous articles which have, over
the years, formed a substantial body of work on the Catalan sequence and
secured its place at the forefront of the world of integer sequences.

One wonders what Catalan—who as well as being politically active was
quite eclectic in his mathematical endeavours—would have made of the way
the sequence has captivated academics eager to understand its fundamental
nature and application; certainly, it is testimony to the importance of the
Catalan numbers that so many people, at all academic levels, continue to
develop and often retain an interest in them, and there is no sign of this end-
ing. It is, therefore, a great pleasure to write this Foreword in my capacity
as Guest Editor, as the 1.C.A. formally celebrates both the significant and
longstanding impact of the Catalan sequence within discrete mathematics.
The invited contributions on offer here are as varied as they are interesting,
forming a timely and fitting tribute to Catalan and the Catalan sequence.

Enjoy ! ?
04” .d-,//
Peter J. Larcombe
Professor of Discrete and Applied Mathematics
Office E319 (Gateway to ‘Cataland’)
School of Computing and Mathematics
University of Derby
Kedleston Road
Derby DE22 1GB

England, UK.
[P.J.Larcombe@derby .ac . uk|
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Major Contributions to the Literature
on Catalan Numbers by Stanley and Koshy

R.P. Stanley (1999). “Enumerative Combinatorics”, Volume 2
(Cambridge Studies in Advanced Mathematics No. 62), Cam-
bridge University Press, Cambridge, U.K.

Some useful background information on the Catalan numbers (with refer-
ences) appears in the Notes section at the end of Chapter 6 of this ad-
vanced level book, with the subsequent Exercises 6.19 offering a number of
combinatorial illustrations. Stanley continues to update the origingl pre-
sentation in the textbook with an “EC2 Supplement” (available from his
M.LT. homepage) which contains errata, updates a nd new material. In
addition, a “Catalan Addendum” offers new problems related to Catalan
numbers, with solutions, reflecting his deep and enduring interest in them
and a determination to see them disseminated; Catalan interpretations in
the Addendum currently stand at over 200 in number, the collation of which
is a commendable achievement on the part of Stanley.

T. Koshy (2009). “Catalan Numbers with Applications”, Ox-
ford University Press, New York, U.S.A.

Koshy’s text is aimed at a broad readership (of mathematical amateurs,
high school students/teachers, and both undergraduate and postgraduate
level students), in which he pulls together and catalogues many different
aspects of the Catalan sequence and its numerous contexts. The book—as
the author rightly states—is the first to collect and present an orderly trea-
tise on the various occurrences, applications and properties of the Catalan
numbers, and Koahy draws on a multitude of reference material to create
8 very useful resource.




Somq Other Works of Note on Catalan

In 1996 the Société Belge des Professeurs de Mathématique d’Expression
Francaise (Mons, Belgium) published “Eugéne Catalan: Géométre sans
Patrie, Républicain sans République”, a 200+ page book by F. Jongmans
on the life and work of Catalan. [Prior to this, and as a precursor, the author
had contributed a chapter (Chapter 3, pp.23-41) with the same title in a
publication “Regards Sur 175 Ans de Science & I'Université de Liége 1817-
1992 (Ed. A.-C. Berns) which was produced in 1992 under the auspices
of the University’s Centre d’Histoire des Sciences et des Techniques to mark
this period of general scientific activity at the university.]
Other works of note are the articles “Eugéne Catalan and the Rise of
Russian Science” (Acad. Roy. Belg. Bull. Class. Sci., 2 (1991), pp.59-90)
by P.L. Butzer and F. Jongmans, “Les Relations Epistolaires Entre Eugéne
Catalan et Ernesto Cesaro” (ibid., 10 (1999), pp.223-271) by Butzer et al.,
and “Quelques Pidces Choisies dans ls Correspondance d’Eugéne Catalan”
(Bull. Soc. Roy. Sci. Liége, 50 (1981), pp.287-309) by Jongmans. All
bar the final reference are predated by about a century by P. Mansion’s
“Notice sur les Travaux Mathématiques de Eugéne-Charles Catalan” which
appeared in Ann. U’Acad. Roy. Sci. Lett. Beaux-Arts Belg. in 1896 (62,

pp.115-172).
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