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Featured Application: Enhancing Intelligent Transport Systems by accurately classifying traffic-
related social media messages.

Abstract: Classifying social media (SM) messages into relevant or irrelevant categories is challenging
due to data sparsity, imbalance, and ambiguity. This study aims to improve Intelligent Transport
Systems (ITS) by enhancing short text classification of traffic-related SM data. Deep learning methods
such as RNNs, CNNs, and BERT are effective at capturing context, but they can be computationally
expensive, struggle with very short texts, and perform poorly with rare words. On the other hand,
transfer learning leverages pre-trained knowledge but may be biased towards the pre-training
domain. To address these challenges, we propose DLCTC, a novel system combining character-level,
word-level, and context features with BiLSTM and TextCNN-based attention. By utilizing external
knowledge, DLCTC ensures an accurate understanding of concepts and abbreviations in traffic-related
short texts. BiLSTM captures context and term correlations; TextCNN captures local patterns. Multi-
level attention focuses on important features across character, word, and concept levels. Experimental
studies demonstrate DLCTC’s effectiveness over well-known short-text classification approaches
based on CNN, RNN, and BERT.

Keywords: short text classification; BiLSTM–TextCNN integration; multi-level attention mechanism;
character–word–concept embeddings; traffic-related social media analysis; intelligent transport
systems (ITS)

1. Introduction

Cities worldwide are struggling with severe traffic conditions, demanding innovative
management strategies to enhance the experience of road users. While traditional sensor-
based methods are effective, they face limitations in coverage and high maintenance costs.
Collecting data from social media (SM) platforms like X (previously called Twitter) offers a
vast, timely, and freely available source of information, including dedicated pages solely
discussing traffic, which can support and supplement sensor-based data. By exploiting
diverse sources of data, we can study its effects and potentially support and enhance
sensory data. Effectively classifying relevant traffic data from the vast streams of short
texts on social media could significantly improve traffic flow, as passersby and passengers
can submit real-time information, helping authorities make informed decisions based on
people’s immediate and real time experiences.

Furthermore, pursuing the study of social media to support traffic management is
critical as it employs new and advanced deep learning models to process and interpret social
media data, enhancing traffic flow management and forecasting capabilities. Ultimately,
integrating social media with sensor data could transform traffic monitoring, offering cities
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a scalable, cost-effective solution that supports traditional methods while opening new
pathways for data-driven, urban decision-making.

The volume of short texts being generated daily by social media (SM) platforms
introduces opportunities as well as challenges in the field of natural language processing
(NLP). Accurately classifying SM posts, especially in safety-critical domains such as traffic,
has become increasingly important yet challenging. Unlike long texts, short texts lack
the necessary context, hindering accurate interpretation of their meaning. The varied
interpretations of words and use of abbreviations or specific terms like “RT” for Route,
“WB” for Westbound, and “ETA” for Estimated Time of Arrival in traffic-related tweets
further complicate identifying relevant text, highlighting the need to address nuances for
effective short text classification. By classifying these data, incidents can be detected early,
improving traffic flow and safety through timely interventions. This research enhances
Intelligent Transport Systems by integrating social media data as supplementary to sensors
for hands-on traffic management.

The first step in utilizing social media for traffic management involves extracting
relevant traffic data accurately classified into irrelevant or relevant traffic events. To
develop effective approaches for text relevancy, NLP, machine learning (ML), and deep
learning (DL) methods should be employed to accurately categorize SM messages. This
process is challenged by data sparsity, imbalance, and ambiguity, as well as the use of slang,
acronyms, and abbreviations (SAB), further complicating semantic extraction.

Efforts went to classifying short text from social media to identify relevant text using
DL methods to resolve issues in short text, such as work on the integration of context-
relevant concepts into Convolutional Neural Networks, developing a model (DE-CNN)
that surpassed state-of-the-art methods on three classification tasks through an attention
mechanism for concept selection [1]. However, it primarily focused on performance im-
provements via concept integration and did not address challenges related to handling
novel concepts or ambiguous short texts lacking clear context. To address the issue of
context-relevant features, multi-stage attention was used, outperforming BERT on most
datasets. However, it struggled with rare words to capture character-level semantics [2]. A
real-time traffic detection system using X data was proposed, comparing various models
and embeddings. The proposed approach, RoBERTa, achieved the highest accuracy (97%),
but Word2Vec combined with BiLSTM excelled in handling tweet-length limitations by
effectively capturing word semantics [3]. The study highlights that in short texts like
tweets, Word2Vec with BiLSTM can outperform more complex models that rely on longer
context with an F1 of 96%, exceeding BERT, Word2Vec, GloVe, and XLNet. Traditional
methods such as Support Vector Machine (SVM) and Naïve Bayes, as well as DL methods
such as CNNs and RNNs, have been used widely in text classification [4]. There remain
several lingering issues in the text classification problem. First, data sparsity has been
addressed using both features from knowledge bases and part-of-speech tags as well as
neural networks to transform words into vectors. However, both have limitations where ex-
plicit representations face the problem of data sparsity, and vector representations perform
poorly on new and rare words, ignoring the is-A relation, which is important for short text
understanding [1]. Second, the ambiguity within short, social media-based texts, compared
to paragraphs or documents, does not have sufficient contextual information and suffers
from limited word count and incomplete semantics, which leads to semantic ambiguity and
poses a significant challenge for short text classification [5]. A problem in previous research
on short text classification is the limited focus on integrating multiple embedding layers,
such as character embedding, word embedding, and concept embedding, in a unified
framework. Aiming to overcome the limitations of equal embedding by capturing richer
semantic and syntactic information, leading to improved classification accuracy.

Traditional methods like N-gram-based text categorization struggle with short texts
due to data sparsity and lack of context, while SVM face challenges with scalability and
capturing complex patterns. Naive Bayes suffers from an unrealistic independence as-
sumption and performs poorly with imbalanced or rare data [6]. Existing approaches to
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traffic-related social media text classification face limitations, including a lack of multi-level
embedding, poor context capture, and difficulty handling rare or new terms, reducing
classification accuracy. Current models, such as RoBERTa, while achieving high accuracy
(97%), struggle with tweet-length limitations and fail to address the semantic ambiguity in
shorter contexts [3]. These gaps indicate a need for integrating character, word, and concept
embeddings within a unified framework to enhance semantic and syntactic information
capture, critical for improved classification [4]. DLCTC’s use of multi-level embeddings
and Probase [7] directly tackles these issues by enriching feature spaces and resolving
semantic ambiguity, which are essential for accurate social media classification.

The integration of various techniques, such as TextCNN, embedding-based methods,
and BiLSTM, plays a crucial role in enhancing short-text classification. TextCNN captures
semantic features within the text, showing adaptability for short texts. Embedding-based
techniques at character, word, and concept levels provide robust semantic representations,
helping models understand complex relationships and context. In DLCTC, character em-
beddings handle rare word issues, word embeddings provide broader contextual meaning,
and concept embeddings clarify semantic nuances, enhancing classification accuracy. BiL-
STM supports long-term dependencies and context, especially when paired with attention
mechanisms that prioritize key parts of the input. This combination—TextCNN for feature
extraction, embeddings for comprehensive representation, and BiLSTM for sequential
context—creates a unified model leveraging linguistic features and external knowledge,
significantly improving classification accuracy and robustness.

While some progress has been made, many models still fall short in handling informal
language, abbreviations, and contextual complexity of traffic-related social media data.
This study’s contributions address these gaps as follows:

1. Enhance classification through multi-level embeddings (character, word, and concept)
enriched by Probase to address data sparsity.

2. Introduce an attention mechanism to dynamically weight context-relevant features,
improving the handling of word ambiguity.

3. Combine BiLSTM and TextCNN to capture local dependencies and bidirectional
context, overcoming limitations in traditional short-text classification models. In
response to these challenges, this study introduces the DLCTC model, a unified
multi-level embedding framework that leverages character, word, and concept-level
representations and attention mechanisms, improving accuracy and robustness for
classifying traffic-related social media text.

The remainder of the paper is structured as follows: Section 2 describes an overview
of recent works in this field. Section 3 describes the proposed method using a deep
learning NLP framework (DLCTC). Our system evaluation is explained in Section 4. Finally,
Section 5 concludes the work with a discussion of the results as well as proposing some
future research directions.

2. Literature Review

Determining transport-related text relevance from social media often relies on NLP
techniques to analyze and interpret textual data. Traditional methods like Bag-of-Words,
rule-based, and dictionary-based techniques often fall short due to their lack of semantic
understanding and limited keyword coverage [8]. Supervised ML methods, such as SVM,
Naïve Bayes, and Random Forest (RF), are commonly used to automate classification [9].
However, DL models like CNN, RNN, and LSTM offer improved semantic enrichment
and relationship identification. Dabiri and Heaslip demonstrated that combining word
embeddings with CNN, RNN, and LSTM models can effectively classify traffic-related
tweets, achieving high precision [10]. Transformer models like BERT have further advanced
the field [8], achieving significant results despite challenges with large dictionaries and
term ambiguity. Therefore, modern approaches leverage DL and word embeddings for
better semantic representation.
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2.1. Short Text Classification Methods

Short text classification has seen major developments with the implementation of
various DL methods. LSTMs [11,12] are widely used due to their excellent sequential
modeling capabilities, particularly for processing word embeddings like SkipGram [13] and
GloVe [14]. Recently, the transformer model [15] has gained prominence due to its attention
mechanism, assisting modeling long-range dependencies effectively. Pre-trained models
(PTMs) [16], which include methods like MLM [17], have additionally enhanced NLP by
learning context-based word embeddings and language modeling from large datasets.

Several CNN variants have been developed to address specific challenges in text
processing and classification. For text classification and sentiment analysis, TextCNN [18],
developed by Kim et al., leveraged static word vectors from the Word2Vec model to classify
sentences effectively [19]. In the stock domain, Biswas applied a bidirectional LSTM
network with an attention mechanism for stock price classification; this led to a reduction
in the number of parameters while maintaining accuracy [20]. Similarly, a Bi-LSTM method
that integrates CNN and word embeddings to assign emotion labels to psychiatric texts was
developed, enhancing accuracy through the combination of CNN’s feature extraction and
LSTM’s sequential dependency capture [21,22]. These studies demonstrated the importance
of building a classification model by taking into consideration the integration of effective
feature extraction, such as variations of CNNs, and the importance of capturing sequential
dependencies for enhancing the accuracy and robustness of text processing tasks.

Advancements in embedding techniques have also played a crucial role in improving
text processing tasks. Character embeddings have been demonstrated in two methods in the
literature. Initially, Claveau introduced out-of-vocabulary (OOV) embedding techniques to
expand vocabulary handling, especially for rare or unseen words, which is vital in tasks
where vocabulary is large and constantly evolving [23]. Later, Wu and Zhang demonstrated
the effectiveness of character-level CNN approaches, which capture detailed linguistic
nuances by using character-level information, thus improving tasks like parsing and
tagging [24]. These developments highlight how CNN variants and hybrid models have
been tailored to specific challenges in text classification, sentiment analysis, and other
related tasks, showcasing their benefits in different contexts.

2.2. Short Text Classification Methods for Social Media Traffic Data

The analysis of traffic data across various studies highlights the potential of developed
methods on ITS. Early studies, such as the study by Yang, Bekoulis, and Deligiannis,
treated traffic event detection as a slot-filling problem. They developed a model combining
LSTM and CRF, which performed well on Dutch datasets with accuracies above 97% [25].
However, they noted the necessity for enhanced techniques to capture the entire context
within each tweet to improve detection accuracy. Meanwhile, Chen explored the use
of multi-modal generative adversarial networks (mmGAN) for traffic event detection,
integrating data from sensors and social media [26]. Their model demonstrated superior
performance compared to others, although they identified the need to apply attention
mechanisms to improve the temporal modeling of multi-modal data.

Moving into more recent research, Suat-Rojas combined doc2vec, TF-IDF, and BERT
embeddings to classify tweets related to traffic. Despite challenges with informal language
and abbreviations, their study showed the evolving methodologies in improving the
detection and classification of traffic-related events, highlighting the importance of precise
handling of informal text in social media data [27].

Raksachat and Chuawuthai [28] explored methods to improve the classification of road
traffic incident messages on X. They focused on balancing imbalanced datasets through
techniques like under-sampling, oversampling, Markov chains, and Bi-LSTM [28]. The
results indicated that while under-sampling and oversampling did not perform as well as
the baseline, the Bi-LSTM method provided the best classification performance, with an
F1-score of 0.63, outperforming the baseline by 15.44%. They concluded that Bi-LSTM is
particularly suitable for classifying traffic report messages that resemble time series data.
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Recent studies have further advanced these methodologies. For instance, Babbar
and Bedi utilized X data and deep learning techniques, notably RoBERTa, and achieved
a high accuracy of 97% in classifying traffic events [3]. However, they encountered chal-
lenges with Named Entity Recognition (NER), as it often misclassified location names,
indicating a need for improvements in location extraction from textual data. Moreover,
several novel approaches have been proposed to address challenges like semantic sparsity,
feature extraction, and label distribution. Chen et al. introduced a knowledge-enhanced,
soft-verbalizer-based prompt-tuning method for multi-label short-text classification, which
addresses data sparsity and the long-tail distribution of labels by incorporating exter-
nal knowledge and leveraging separating soft verbalizers. This approach outperformed
baseline methods across benchmark datasets by optimizing prompt templates and soft
verbalizers, which helped bridge the pre-training and downstream task gaps typical in
language models [29]. Liu et al. proposed an approach that combines BERT embeddings
with part-of-speech features for dynamic word vector training, capturing long-distance de-
pendencies in text. This integration enriched semantic recognition and achieved improved
classification accuracy on the THUCNews dataset, showcasing its effectiveness in handling
semantic insufficiency and sparse feature representation [30].

Hua et al. explored a heterogeneous graph-convolution-network-based approach
for short-text classification, enhancing feature representation by linking text with entity
and word nodes. SHGCN, tested on datasets like AGNews and R52, demonstrated su-
perior performance by combining BERT embeddings with BiLSTM for capturing deep
textual relationships [31]. Similarly, Sun et al. advanced text classification with an adaptive
segmentation model, designed to adjust segmentation according to text length and embed-
ding importance. This model, which integrates Word2Vec with positional encoding and
a co-attention network, provided flexibility in managing long-sequence truncations and
further enriched classification accuracy through deep hidden feature extraction [32]. These
studies collectively highlight diverse, graph- and embedding-based methods as valuable
for enhancing the robustness and precision of short-text classification in NLP tasks.

A crowdsourcing combined with machine learning to reduce irrelevant data, achieving
a region extraction accuracy of 80.4%, this work underscores the importance of refining
methods for filtering and categorizing relevant traffic data [33]. Azhar et al. developed a
deep learning-based traffic accident prediction model using X data, integrating features
such as sentiment analysis, emotions, weather, and geo-coded locations [34]. They achieved
an accuracy in the range of 80% to 94%. However, they identified gaps in data availability,
particularly regarding weather and location, and highlighted the challenge of detecting
fake news to improve accuracy.

Finally, Nirbhaya and Suadaa utilized various machine learning techniques, including
SVM [35], Naive Bayes, Logistic Regression, LSTM [36], and IndoBERT, to develop a
multi-label classification model for detecting traffic incidents in Jakarta from X texts. The
best-performing model achieved a 99.10% F1 score and 99.26% accuracy, offering a reliable
prediction system for traffic incidents [9].

Finally, compared to previous studies, our research introduces a novel approach to
short text classification for traffic-related social media data using a unified framework.
Aiming to capture richer semantic and syntactic information, effectively handling the
nuances of social media textual data. Unlike prior methods that often rely on single-level
embeddings or struggle with rare words and ambiguous short texts, our model uses the
influence of external knowledge from resources like Probase to enrich the feature space and
overcome data sparsity. Additionally, by merging BiLSTM and TextCNN with a multi-level
attention mechanism.

3. Materials and Methods

In this section, we discuss the architecture of the proposed model, important defi-
nitions, the problem statement and the algorithms implemented, and the technologies
utilized in this study. The study addresses significant challenges in classifying social
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media messages, particularly data sparsity, imbalance, and ambiguity, which adversely
affect classification accuracy. Data sparsity refers to the limited context and number of
words typically found in short social media posts, making it difficult to extract meaningful
patterns. Class imbalance occurs when the dataset contains significantly more instances
of one class than the other, leading to biased model predictions. Ambiguity arises from
the informal language, abbreviations, and slang commonly used in social media posts,
which complicates the process of understanding the true meaning of messages [37]. The
short text classification problem in our study is structured as follows. Given a short text
dataset, each short text is represented by a sequence of characters, words, concepts, and
sentences. The character set encompasses all unique characters in the dataset, while the
vocabulary includes all the distinct words. Each short text is composed of a sequence of
words. Additionally, concepts related to these words are extracted from the Probase knowl-
edge base developed by Microsoft Research Asia, located in Beijing, China [7], forming a set
of concepts. These characters, words, and concepts are integrated to create the final feature
space for each short text. The objective of short text classification is to train a classifier
that maps this extended feature space to the label set. This study focuses on the following
problems:

1. SM messages about traffic are often brief and informal, leading to issues like data
sparsity, ambiguity, and class imbalance, which complicate accurate classification.

2. Current models struggle with short, context-poor text and fail to effectively handle
informal language, domain-specific terminology, and abbreviations commonly found
in traffic-related messages.

3. There is a need for a model that can integrate multi-level embeddings (charac-
ter, word, and concept) with an attention mechanism to accurately classify traffic-
related messages, enhancing Intelligent Transport Systems (ITS) with reliable real-time
information.

The methodological process employed in this study is illustrated in Figure 1.
Figure 1 displays the framework of our approach with the three stages of the proposed

model—an innovative approach that integrates character-level, word-level, and context-
relevant features with an attention mechanism based on BiLSTM and TextCNN. It includes
the embedding layer, representation layer, and output layer. In the embedding layer,
in terms of short text conceptualization using the external knowledge base Probase, the
short text is transformed into vectors at the character level, word level, and receipt level,
respectively. In the representation layer, to obtain the full feature representations, we divide
this layer into multiple stages to achieve different levels of feature representation. As a
branch, each stage contains the convolutional module, TextCNN module, and attention
module. In the output layer, a softmax is used as a classifier. The framework operates
in two phases: the offline phase, where the DLCTC model is trained using labeled data,
learning to optimize embeddings and network weights, and the online phase, where the
trained model processes incoming social media messages as traffic-related or non-traffic-
related. The input to the framework consists of social media posts, represented at the
character, word, and concept levels, and the output is a binary classification that identifies
whether each message is relevant to traffic incidents. This structured approach enables the
model to capture linguistic patterns and contextual relationships, significantly improving
classification performance compared to existing methods.
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3.1. Data Preparation

The traffic dataset used in this project was obtained from a combination of the fol-
lowing datasets: GitHub, from the repository titled “Traffic Data Classification Project”
available at GitHub (https://github.com/Akanksha242/Traffic-Data-Classification-Project,
accessed on 15 October 2024) and collected through the X streaming API; data collected by
Dabiri [10], also available on GitHub (https://github.com/sinadabiri/Tweet-Classification-
Deep-Learning-Traffic, accessed on 15 October 2024) as well as the X dataset available at
Kaggle (https://www.kaggle.com/datasets/mounicapremkumar/traffic-analysis-twitter-
dataset, accessed on 15 October 2024). The datasets were combined into one dataset that
resulted in 140,000 tweets, stored in a CSV file. Each tweet in the dataset is represented by
three parameters: label, X ID, and tweet. The label parameter indicates the classification of
the tweet (where 1 denotes a traffic-related tweet and 0 denotes a non-traffic-related tweet),
the X ID is a unique identifier for each tweet, and the tweet contains the text content of the
tweet. To ensure consistency and compatibility across these datasets, we performed data
cleaning and standardization procedures. This involved unifying data formats, resolving
discrepancies, and eliminating duplicates. We first split all the tweets in the dataset into
training and test sets, with 70% of the tweets for training and the remaining 30% for testing.
Table 1 displays a sample of the data.

Table 1. Dataset fields of sample data.

Label X ID Tweet

1 s887067566329536512
Disabled Vehicle on Westbound highway WB at
Emily Drive. Use caution when traveling through
this area.

0 s898251156299927553
New Teacher Lunch & training! Marker wars
w/Greta’s buzzwords! #PowellNation
#ourcougarsourculture

1 s905917482166128641 highway eastbound, all lanes open@ MM, NSP
running pace car operations starting near MM.

In this sample, the label column indicates whether the tweet is related to a traffic
incident (1) or not (0). A X snowflake unique ID encodes details such as the creation
timestamp, datacenter, ID, and machine ID. The timestamp can be decoded to determine
the exact time when the tweet or object was created. The tweet column contains the text of
the tweet, which includes details about traffic conditions, incidents, or unrelated content.
This dataset is valuable for training models to automatically classify tweets based on their
relevance to traffic conditions.

Data Preprocessing

In the preprocessing pipeline for the dataset, several essential steps were implemented
to prepare the data for the DL and NLP models. First, the tweets were converted to
lowercase to ensure uniformity across the dataset. URLs, user mentions, and special
characters were removed, as they do not contribute meaningful information to the context
of the tweets. Hashtags were removed, but the associated words were retained to preserve
context. Tokenization was employed to split the text into individual words or tokens,
allowing the analysis of each word separately. A predefined list of English stop words
from the NLTK library was used to remove common, non-informative words such as
“the” and “is”, which are often irrelevant to the core meaning of the tweets. Additionally,
lemmatization was applied to reduce words to their base or root forms, ensuring consistency
and minimizing dimensionality. Table 2 displays a sample of the pre-processed data.

https://github.com/Akanksha242/Traffic-Data-Classification-Project
https://github.com/sinadabiri/Tweet-Classification-Deep-Learning-Traffic
https://github.com/sinadabiri/Tweet-Classification-Deep-Learning-Traffic
https://www.kaggle.com/datasets/mounicapremkumar/traffic-analysis-twitter-dataset
https://www.kaggle.com/datasets/mounicapremkumar/traffic-analysis-twitter-dataset
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Table 2. Pre-processed text sample of the tweets.

Tweet Pre-Processed Text

Disabled Vehicle on Westbound highway WB
at Emily Drive. Use caution when traveling
through this area.

disable vehicle westbound highway wb Emily
Emilye use caution travel area

New Teacher Lunch & training! Marker wars
w/Greta’s buzzwords! #PowellNation
#ourcougarsourculture

New tNewher lunch training marker
warGretaa buzzword pollination our
cougarsourculture

highway eastbound, all lanes open @ MM, NSP
running pace car operations starting near MM.

Highway eastbound lane open nbsp run pace
car operation start near mm

Handling informal language such as abbreviations and slang was particularly im-
portant for tweets, which often contain shorthand expressions or jargon. The Byte Pair
Encoding (BPE) algorithm was used to effectively manage out-of-vocabulary worse-word-
up word units, expanding abbreviations into their standard forms. Excess whitespace was
also addressed, and emojis were converted into text descriptions using the emoji library
to ensure no loss of semantic information. Finally, the processed text was stored in a new
column of the dataset and exported as a CSV file, ensuring that the data were properly
formatted and cleaned for further analysis or model training.

3.2. DLCTC Model

For the DLCTC model developed in this research, Algorithm 1 is used. The model
integrates the following key embeddings: character embedding, word embedding, and
concept embedding.

Algorithm 1. Pseudo-code for the DLCTC model for short text classification

Input: Pre-trained PCA-transformed embeddings for character, word, and concepts with FastText:
χtrain, χtest, Number of training epochs E, Class weights 𝓌𝓌𝓌class
Output: Performance metrics: Accuracy, Precision, Recall, F1 Score
X train ← Load(trainembeddings)
For (epoch = 1 to E)

For (iii = 1 to X train)
Hi←BiLSTM(64)(pool)Hi←BiLSTM(64)(pool)
Conv1D(256, 3)→ BatchNorm Conv1D(256, 4)→ BatchNorm Conv1D(256, 5)→
BatchNorm
Ai←MultiHeadAttention(4 heads,64 key dimension)←MultiHeadAttention(4
heads,64 key dimension)

End for
output← Dense(A, units=1, activation=‘sigmoid’) Output: Trained model weights θ̂.
Performance loss← BinaryCrossEntropy(output, labels) UpdateWeights(loss)
M← CalculateMetrics(model, validation_data)

End for
return model.weights, M

The model operates in two phases: an offline phase for training the model with labeled
social media data and an online phase where the trained model is applied to new messages
from the dataset. In the offline phase, the model learns optimal representations and
relationships within the training data. In the online phase, these learned representations
allow the model to classify incoming messages accurately, providing insights for ITS.
This model takes short social media messages as input, represented through multi-level
embeddings, and the output of the model is a binary classification that labels each message
as either traffic-related or non-traffic-related.

The use of embedding techniques at different levels can effectively capture connec-
tions among linguistic units. At the character level, embedding represents characters as
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vectors in a high-dimensional space, enabling the model to capture their structural and
phonetic features. At the word level, embedding represents words as dense vectors in
a high-dimensional space, allowing the model to associate words that appear in similar
contexts and comprehend a word’s meaning based on its use in a sentence. At the sentence
level, embedding represents sentences as vectors in a high-dimensional space, enabling
the model to capture the overall meaning of a sentence by considering the relationships
between individual words and their contexts [4]. The multi-level attention mechanism
dynamically assigns weights to the most relevant tokens, emphasizing the critical parts of
the text. Finally, the weighted sum of these token embeddings is aggregated to produce a
comprehensive sentence-level embedding that represents the entire text, capturing both
local token interactions and broader context, which is then used for classification.

Consider the sentence “Crash on I-95 near Exit 24”. The DLCTC model processes
each word at multiple embedding levels. At the character level, words are broken down
into individual characters, capturing morphological details—helpful for interpreting un-
known or unusual words. At the word level, each word (e.g., “Crash”, “I-95”, and “Exit”)
receives an embedding that reflects its contextual meaning. The concept level links words
to broader meanings using Probase, so “Crash” associates with “traffic accident”, while
“Exit” connects to highway terminology. These embeddings are combined within each
token and processed through TextCNN to capture local word associations (like “near Exit”)
and BiLSTM to understand sequence dependencies (e.g., “Crash on I-95”). A multi-level
attention mechanism then dynamically assigns higher weights to contextually relevant
tokens, such as “Crash” and “I-95”, to emphasize their importance. The result is a com-
prehensive sentence embedding that represents the sentence’s overall meaning, accurately
identifying it as a traffic-related event on I-95 near Exit 24.

3.2.1. Character Embedding

The aim of this layer is to map characters in a word to a low-dimensional vector
representation by using FastText embeddings; this technique uses skip-gram, which helps
in handling out-of-vocabulary words [23]. In this way, the word “I-95” can be broken down
into the characters “I”, “-”, “9”, and “5”. A character-level embedding model would capture
these characters and their patterns. The sequence “I-”, followed by a number, is a common
format for road or highway designations. The model recognizes that “I” typically stands
for “Interstate”, and the number represents a specific highway by integrating a knowledge
base to map abbreviations to their full forms and synonyms to their related terms. This can
provide additional context and improve accuracy. Figure 2 shows the character embedding
diagram using FastText.

3.2.2. Word Embedding

Word embeddings here come to represent words in a continuous vector space. Unlike
character embedding, which focuses on fine-grained features, word embeddings capture
their meanings and relationships based on the co-occurrence of words for semantic under-
standing, allowing the model to understand and differentiate between similar words as
presented in Figure 3. The skip-gram model is used to maximize the probability of a word’s
surrounding context given the word itself. Equation (1) shows the objective function used,
where T is the total number of words in the corpus, 𝒸 is the context window size, 𝓌𝓉 is the
target word at position, 𝓉, 𝓌𝓉+𝒿 are the context words within the window 𝓌𝓉.

max 1/T ∑ (t = 1)T∑ (−c ≤ j ≤ c, j ̸= 0)log p
(

w(t+j)

∣∣∣wt

)
(1)
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Equation (2) represents the positive score Scorepos, which is calculated as the dot
product between the sum of the subword vectors Zg, of the input word 𝓌I , and the vector
V𝓌0 , of the output (context) word 𝓌0. This computation captures the similarity between
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the input word and its context by aggregating subword information to enhance the word
representation.

Scorepos =

 ∑
g∈GwI

zg


⊤

vwO (2)

The loss function L combines the likelihoods of the positive and negative samples,
where σ denotes the sigmoid function as given in Equation (3). It aims to maximize the
probability of the positive context word by minimizing −logσ

(
−Scorenegi

)
, while simulta-

neously minimizing the probability of negative samples through −∑k
i=1 logσ

(
−Scorenegi

)
,

thereby enhancing the model’s discriminative capability.

L = −logσ
(
Scorepos

)
−

k

∑
i=1

logσ
(
−Scorenegi

)
(3)

For subword vectors zg and context word vectors vw, the embeddings are updated
using stochastic gradient descent, where η represents the learning rate. By computing
the gradients ∂L

∂vw
and ∂L

∂zg
, the model adjusts the subword and context word vectors to

minimize the loss function L, thus refining the embeddings to better capture linguistic
relationships in Equations (4) and (5).

vw ← vw − η
∂ℒ
∂vw

(4)

zg ← zg − η
∂ℒ
∂zg

(5)

The sentence embedding vS is obtained by averaging the embeddings of all words
in the sentence, where each word’s embedding is the sum of its subword vectors zg in
Equation (6). This process yields a fixed-dimensional representation that encapsulates
the semantic content of the entire sentence by aggregating the subword-level information
across all N words.

vS = 1/N∑ (i = 1)N[
∑ (g ∈ Gwi)zg

]
(6)

3.2.3. Concept Embedding

The polysemy of words in short texts will lead to the ambiguity problem with just word
and character embedding. Therefore, by using concept embeddings, we can distinguish
between words based on the context by understanding the variety of concepts for similar
words. For example, “crash” belongs to many concepts, such as a computer malfunction
or an accident. But it is related to the concept of “accident” because of the occurrence
with “South” and “Exit 24”. To deal with this issue, we use an external knowledge base,
Probase, which contains more concepts than any other knowledge base and has many
is-A relationships that can be used to quantify the classification of short texts. Moreover,
Probase provides a synonym set and many similar concepts, which help to improve the
classification accuracy of short texts. Thus, in terms of the API of the Probase knowledge
base, we can obtain the hidden concepts by conceptualizing all words in this short text.
For example, the concept set of “Jam” contains “fruit preserves”, “situation”, and “musical
improvisation”. By creating specialized embeddings for concepts and weighting them
more heavily, the model can better capture their significance.

3.2.4. Attention Layer

The attention layer is used to produce the feature representation for the previous
embeddings. As shown in Figure 1, we fed the character-level, word-level, and concept-
level embedding into the representation layer. In this layer, we first use the TextCNN
model to represent the contexts of short texts on the three layers and then use the attention
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mechanism to obtain the feature representation by considering the significant features.
Therefore, we can obtain different context feature representations at all phases.

3.2.5. TextCNN

TextCNN is a robust deep-learning model commonly used for classifying short text
sequences, and it has become a standard benchmark owing to its strong performance. The
core concept of this model involves aligning the size of the convolutional kernel in the
CNN with the dimensionality of the word embeddings. For example, if each word vector is
300-dimensional, the convolutional kernel can be set to a size of (4, 300). This configuration
means that during each convolution operation with a stride of 1, the kernel processes
four consecutive word vectors simultaneously. By employing multiple convolutional
kernels of varying sizes, CNN can effectively extract features from text sequences of
different lengths [38].

3.2.6. BiLSTM

LSTM networks extend traditional RNNs to address issues of vanishing gradients,
achieving this by incorporating the input, forget, and output gates and a cell state that
allows the network to retain information over long sequences. Consequently, bidirectional
LSTM (BiLSTM) is applied to capture information from both past and future contexts in a
sequence, containing two separate LSTM layers: one processes the input sequence in the
forward direction, and the other processes it backward [39].

Although the forward and backward LSTMs operate independently and have separate
parameters, they share the same input word embeddings {w1, w2, ...wn} where n is the
length of the input sentence. This structure enables the model to effectively summarize
information from both directions, enhancing its ability to understand contextual nuances
in the text.

Contextual information is important for short text classification because it captures the
semantic relationships between words and characters. Existing methods use the sequence
model based on CNN, RNN [40], LSTM [41], and BERT [42] to capture the context infor-
mation, which has already gotten a lot of attention due to its effectiveness. However, in
the handling of short texts, these RNN-based methods can only process one word in the
short text at a time and process the next word after the previous one has been processed
and do not consider the high-dimensional and sparse issues due to the limited text length.
Consequently, we introduce TextCNN and BiLSTM [38] instead of the RNN and CNN mod-
els to capture the contexts of short texts at the character, word, and concept levels. This is
because TextCNN effectively captures local dependencies through n-grams, while BiLSTM
understands context from both directions in a sequence, which is crucial in short texts [39].

After TextCNN and BiLSTM are applied, and the context of each character, word, and
concept is established, an attention layer is proposed to measure the weight of context-
relevant characters, words, and concepts, where the weight is assigned dynamically by the
attention mechanism. The larger the weight, the greater the importance of the word or the
concept; that is, these words and concepts are more important to the classification of the
short text. Multi-stage concept feature representations can be obtained by combining all
representations of different stages at the concept level. Finally, these features are merged to
produce the text representation.

3.2.7. Softmax Layer

In the proposed DLCTC model, the softmax layer plays a crucial role by converting
the final feature representations into class probabilities for short text classification. After
processing through the embedding and representation layers, the model outputs logits
for each class, which the softmax function normalizes into probabilities that sum to 1.
This normalization allows the model to determine the likelihood of a short text being
classified as “traffic-related” or “traffic-related” by providing a probabilistic interpretation
of the model’s confidence. For instance, if the softmax layer outputs a higher probability
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for “traffic-related”, the text is classified accordingly. This probabilistic output not only
facilitates decision-making but also helps evaluate the model’s performance and manage
challenges such as data imbalance.

3.3. Experimental Environment and Hyperparameter

The experiments were conducted using Google Colab and TensorFlow with its high-
level API, Keras, as the deep learning framework. Table 3 outlines the specific experimental
parameters.

Table 3. Experimental parameters.

Hyperparameter Value

Optimizer Adam

Learning rate 0.001

LSTM units 256

Batch size 64

Dropout (1st layer) 0.4

Dropout (2nd layer) 0.3

Max pool size 2

Epochs 20

Validation split 0.2

Kernel sizes (conv1d) 3, 4, 5

Conv1d filters 256

BiLSTM layer Bidirectional

Class weight Balanced

3.4. Evaluation Indicators

Accuracy is a widely used evaluation metric for assessing the performance of machine
learning models, particularly in classification tasks. It measures the overall proportion of
correctly classified samples. Accuracy is beneficial as it provides a high-level understanding
of a model’s performance, but it may not tell the whole story, especially for datasets with
imbalanced class distributions.

In addition to accuracy, other important performance metrics include precision, recall
(also known as sensitivity), and the F1 score. Precision indicates how reliable the model’s
positive predictions are. A high precision means the model rarely misclassifies negative
instances as positive. Recall, on the other hand, measures the proportion of true positive
predictions among all the actual positive instances in the dataset. The F1 score combines
precision and recall into a single metric, providing a balanced measure of the model’s
performance.

4. Results

We performed experiments on three datasets, each divided into training and testing
sets with a 70/30 ratio as discussed in Section 3.

Comparison with Other Deep Learning Models

We evaluated the performance of the following four models using the collected dataset:

• Logistic Regression (LR) [40]: A linear classification model that predicts the probability
of a class by modeling the relationship between input features and the target variable.

• Support Vector Machine (SVM) [41]: a supervised learning algorithm that finds the
optimal hyperplane to separate classes by maximizing the margin between data points.
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• Long Short-Term Memory (LSTM) networks [42]: a type of recurrent neural network
capable of learning long-term dependencies in sequence data through specialized
gating mechanisms.

• Convolutional Neural Networks (CNN) [43]: deep learning models that capture
local patterns in data through convolutional layers, often used for image and text
classification.

We also evaluated the performance of the following three combination models from
the literature on the collected dataset:

• Doc2Vec + SVM [27]: A method where documents are converted into fixed-length vec-
tor representations using Doc2Vec and then classified using a Support Vector Machine.

• RoBERTa [3]: A robustly optimized BERT pretraining approach that enhances the
BERT model by training with more data and computational power for better language
understanding.

• BiLSTM + ELMo + Attention mechanism [44]: A model combining bidirectional
LSTMs with ELMo contextualized embeddings and an attention mechanism to capture
complex linguistic patterns for improved performance.

The DLCTC model demonstrated a clear advantage over other models on the collected
X dataset, achieving an F1 score of 87.64% and an accuracy of 85.14%, as outlined in Table 4.
This enhanced performance can be attributed to the model’s unique integration of charac-
ter, word, and concept embeddings, combined with BiLSTM and attention mechanisms.
Such architecture effectively captures detailed linguistic features and context, significantly
boosting classification accuracy. The use of Probase for concept embeddings adds another
layer of understanding, allowing the model to disambiguate meanings in tweets that are
often informal and ambiguous. The model’s ability to handle nuanced language makes it
exceptionally well-suited for analyzing short social media texts.

Table 4. Comparison of the results of four commonly used base models and three hybrid models on
the collected datasets.

Model
Collected X Datasets

Precision (%) Recall (%) F1 (%) Accuracy (%)

LR 79.02 95.41 62.23 75.45

SVM 79.24 95.47 62.26 75.5

LSTM 76.53 95.01 56.92 71.04

CNN 79.02 95.9 61.53 75.11

Doc2Vec+SVM 59.74 77.90 67.62 62.94

RoBERTa 84.32 95.21 75.34 80.88

BILSTM + ELMo + Attention mechanism 78.12 94.30 84.11 79.23

Our model (DLCTC) 79.7890 99.02 87.64 85.14

In contrast, traditional machine learning models like LR and SVM achieved F1 scores of
around 62% and accuracies of approximately 75%. While these models provided reasonable
performance, their simpler designs were not capable of grasping complex language patterns
or understanding the context of social media content as effectively. Deep learning models,
such as LSTM and CNN, reached F1 scores of 56.9% and 61.53%. Although these models
can learn sequential and spatial features, they cannot handle informal language nuances
effectively and do not benefit from the character, word, and concept-level embeddings that
DLCTC utilizes.

A significant factor in the DLCTC model’s success is the extensive preprocessing it
employs. Techniques like text normalization, Byte Pair Encoding (BPE) for handling abbre-
viations and slang, and converting emojis into text all contribute to ensuring that the input
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data are both clean and semantically rich. This meticulous approach enables the model to
analyze and interpret the tweets more effectively, leading to higher performance metrics.

When comparing RoBERTa with DLCTC and BiLSTM + ELMo + Attention, the dis-
tinctions become evident. RoBERTa leverages transformer architecture, using self-attention
across tokens to capture bidirectional context and long-range dependencies [45]. This
allows it to perform very well on many NLP tasks; however, unlike DLCTC, it does not
explicitly use character or concept-level embeddings, which are vital for understanding
informal social media language. While RoBERTa may reach high levels of precision and
recall, its approach is more generalized compared to the multi-level embedding strategy of
DLCTC, which is tailored for the nuances of X data.

The BiLSTM + ELMo + Attention model, while capable of capturing word-level context
and emphasizing critical sequence parts through attention, still falls short in comparison
to DLCTC due to its lack of character and concept embeddings. ELMo’s deep contextual
word representations are powerful for text understanding, but the absence of character
embeddings limits the model’s ability to manage variations in spelling and abbreviation
common in tweets. Furthermore, without concept embeddings like those in DLCTC, the
model has a limited capacity for semantic disambiguation. Thus, although both RoBERTa
and BiLSTM + ELMo + Attention models show strong performance on various NLP tasks,
DLCTC’s design, which integrates multi-level embeddings and advanced preprocessing,
offers a distinct advantage for processing complex and informal social media text.

5. Discussion

The results of our study demonstrate that the DLCTC model outperforms traditional
machine learning models and standard deep learning architectures on the collected X
dataset. Achieving an F1 score of 87.64% and an accuracy of 85.14%, the DLCTC model
effectively addresses the challenges inherent in classifying short, informal texts like tweets.

The strengths of the DLCTC model are evident in its ability to integrate multi-level
embeddings (character, word, and concept embeddings) with advanced neural architectures
like BiLSTM and TextCNN, which allows for superior handling of informal and ambiguous
social media texts. This integration enables the model to capture linguistic patterns at
various levels, improving classification performance on short texts. Additionally, the
attention mechanism incorporated in the model ensures that the most relevant features
are weighted more heavily, further enhancing the model’s ability to correctly classify
traffic-related messages.

In evaluating the model’s performance, training and validation loss were monitored
as indicators of how well the model fit the training data and its ability to generalize to new
data. Train loss represents the error between the model’s predictions and actual labels on
the training dataset, showing how well the model learns from data it has seen. Validation
loss, on the other hand, measures this error on a separate, unseen validation dataset, which
helps assess the model’s performance on data outside the training set.

In this study, the final training results showed an accuracy of 85.14% and a train
loss of 0.2071, indicating that the model was able to learn and fit the training data well
and the validation loss of 0.2011. The close alignment between training and validation
loss suggests a good generalization ability, with no significant overfitting. The slightly
lower validation accuracy indicates a minor performance drop when encountering new
data, which is typical but well within acceptable bounds for robust model performance.
Furthermore, the precision of 79.90% and recall of 99.02% suggest the model is highly
effective at capturing relevant instances (high recall), though slightly less precise.

Despite these strengths, there are some limitations. For example, while the model
performs well on the collected X dataset, the computational complexity introduced by
multi-level embeddings and the attention mechanism also increases training time, which
may pose a challenge for real-time applications. Further optimization of the model could
be explored to address these concerns.
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5.1. Learned Word Representations

One of the key factors contributing to the performance of the DLCTC model is its
ability to learn rich word representations through the integration of character, word, and
concept embeddings. By employing FastText for character embeddings, the model captures
morphological and orthographic features, enabling it to understand variations in word
forms and handle out-of-vocabulary words. The word embeddings provide semantic
understanding based on the context in which words appear, while the concept embeddings
derived from the Probase knowledge base allow the model to disambiguate words with
multiple meanings by associating them with relevant concepts.

For instance, the word “crash” can refer to a computer malfunction or a traffic accident.
Through concept embeddings, the model associates “crash” with the concept of “traffic
incident” when it appears alongside words like “I-95 South” and “Exit 24”, enhancing its
ability to accurately classify the tweet as traffic-related.

5.2. Impact of Preprocessing Techniques

The extensive preprocessing steps were instrumental in preparing the data for effective
modeling. Converting text to lowercase, removing URLs, mentions, and special characters,
and handling abbreviations and slang using Byte Pair Encoding (BPE) ensured that the
textual data were normalized and free from noise. The lemmatization process reduced
words to their base forms, reducing dimensionality and improving the model’s ability to
generalize.

Handling informal language, which is prevalent in tweets, was crucial. By converting
emojis into their textual descriptions and expanding abbreviations, the model preserved
semantic information that could be critical for accurate classification. These preprocessing
steps mitigated the challenges posed by the informal and succinct nature of X data.

5.3. Ablation Study

To understand the contribution of each component in the DLCTC model, we con-
ducted an ablation study by modifying parts of the model and observing the impact on
performance.

5.3.1. Without Character Embeddings

Removing the character embeddings reduced the F1 score by approximately 5%, with
precision dropping to 0.65, recall to 0.78, and accuracy to 81%. This reduction highlights
the importance of character-level information, which aids the model in capturing morpho-
logical nuances and handling out-of-vocabulary words, a crucial feature when dealing
with informal and creatively spelled language typical in social media contexts. Character
embeddings thus play a vital role in refining the model’s understanding of word variations,
contributing to a balanced recall and precision.

5.3.2. Without Concept Embeddings

Excluding concept embeddings led to a significant 7% drop in the F1 score, underscor-
ing the importance of semantic disambiguation provided by these embeddings. Concept
embeddings allow the model to utilize contextual knowledge from the Probase knowledge
base, which helps differentiate between words with multiple meanings (e.g., “jam” as
a food item versus “traffic jam”). This component is particularly valuable in accurately
interpreting traffic-related text by embedding contextual meaning, as shown by the high
recall and precision retained in the original model.

5.3.3. Without Attention Mechanism

Removing the attention layer resulted in a 4% decrease in the F1 score, with precision
at 0.74, recall at 0.99, and accuracy at 81%. The absence of attention affects the model’s
capacity to focus on the most relevant parts of each text, which is essential for distinguishing
critical features. The model still achieves high recall without attention, indicating that it
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can detect most positive cases, but the slight drop in precision suggests an increased rate of
false positives when attention is omitted.

5.3.4. Using an LSTM Instead of a BiLSTM

This led to a 3% decrease in F1 score. BiLSTM’s ability to process context from both
past and future tokens enhances the model’s comprehension of short text structure and
meaning. This is particularly beneficial in traffic-related text, where word order and context
often determine the exact nature of an incident. With only a unidirectional LSTM, the model
loses some context, resulting in a slight performance decline in understanding complex
word relationships.

5.3.5. Performance of Individual Embedding Types

To further understand each embedding type’s contribution, we evaluated the model
using only one embedding type at a time:

Character Embedding Only: Precision was 0.65, recall was 0.78, the F1 score was
0.7732, and accuracy was 81%. While character embeddings alone provide substantial
recall, they lack the semantic depth needed for high precision.

Word Embedding Only: Precision improved to 0.7811, recall to 0.95, F1 score to
0.84, and accuracy to 81%. Word embeddings alone enable the model to capture seman-
tic information, achieving a more balanced precision and recall compared to character
embeddings alone.

5.4. Comparison with Other Models

Traditional models like Logistic Regression and SVM achieved F1 scores of around
62%, highlighting their limitations in handling tweet data. Deep learning models like
standard LSTM and CNN performed slightly better but still fell short compared to the
DLCTC model. Their inability to fully capture the nuances of informal language and
contextual relationships in short texts limited their effectiveness. However, the DLCTC
model introduces greater complexity compared to LSTM and CNN, with more trainable
parameters and a longer training time per epoch. This added complexity allows for a
richer understanding of linguistic features, which is crucial for handling the informal and
context-dependent nature of social media text.

The DLCTC model’s architecture, which combines multiple levels of embeddings with
advanced neural network components, demonstrates the advantage of a more sophisticated
approach. By integrating character, word, and concept embeddings, along with Probase
for effective term disambiguation, DLCTC captures linguistic patterns at various levels.
Combined with the attention mechanism to focus on the most informative features, this
approach enhances classification accuracy and robustness.

6. Conclusions

This study introduced the Deep Learning Classification of Traffic-Related Tweets
(DLCTC) model, specifically designed to tackle the challenges of classifying short, informal
texts from X data. By integrating character, word, and concept embeddings with advanced
neural architectures like Bidirectional Long Short-Term Memory (BiLSTM) networks and
attention mechanisms, the DLCTC model achieved a superior F1 score of 87.64% and an
accuracy of 85.14% on the collected X dataset. This performance significantly surpasses
traditional machine learning models such as Logistic Regression and Support Vector Ma-
chines, as well as standard deep learning models like LSTM and CNN, which struggled to
capture the complex linguistic patterns and contextual nuances inherent in tweets.

The success of the DLCTC model can be attributed to its multi-level embedding
approach, which captures morphological nuances, semantic meanings, and contextual rela-
tionships within the tweets. The incorporation of the Probase knowledge base for concept
embeddings was particularly effective in disambiguating words with multiple meanings
based on context, enabling the model to differentiate between terms like “crash” as a traffic
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incident versus a computer malfunction. The meticulous preprocessing steps—including
text normalization, handling of abbreviations and slang through Byte Pair Encoding, lemma-
tization, and conversion of emojis into textual descriptions—ensured that the data fed into
the model was both clean and semantically rich.

An ablation study underscored the importance of each component within the DLCTC
model. The removal of character embeddings, concept embeddings, or the attention
mechanism resulted in notable decreases in performance, highlighting their essential
roles in the model’s effectiveness. While the DLCTC model demonstrates significant
improvements, certain limitations remain, such as handling extremely noisy data and
computational complexity, which may hinder its deployment in real-time applications.
Future work could focus on enhancing robustness to noisy data through more sophisticated
normalization techniques, optimizing the model for speed, and extending support to
multiple languages to increase its utility in global contexts.

In conclusion, the DLCTC model represents a significant advancement in short-text
classification within social media contexts. By effectively addressing the challenges posed
by the informal and ambiguous language of tweets, it holds promise for applications not
only in traffic monitoring but also in areas like sentiment analysis, emergency response,
and public opinion tracking. The methodologies and findings from this study contribute to
the broader field of natural language processing, particularly in handling noisy and short
text data, and pave the way for future research and development in this domain.
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