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Abstract

This paper reports on the application of the Lagrangian Multiplier Method (LMM) to the minimum cost design of both singly and doubly reinforced concrete rectangular beams under limit state design conditions.  Cost objective functions and stress constraints are derived and implemented within the optimisation method.  Cost sensitivity analysis, detailed testing and comparisons with conventional design office methods are performed and the results reported, showing that the Lagrangian Multiplier Method can be successfully applied to the minimum cost design of reinforced concrete beams.  The proposed approach is effective and reliable without the need for iterative trials.  Optimum design curves have been developed that can be used without prior knowledge of optimisation.  Despite the simplification of the cost model and the assumptions made, satisfactory and reliable results have been obtained and confirmed by using standard design office procedures.  

1    Introduction

The material costs of reinforced concrete beams are dependent on their dimensions, reinforcement ratios and the unit costs of concrete and steel reinforcement.  Whilst trying to optimise the cost of a beam, certain conditions have to be met so that the equilibrium of the section is maintained and the requirements of relevant standards are satisfied.  Although considered as simple structural elements, the minimum cost of beams is difficult to achieve using conventional office design methods, as theoretically speaking, there are an infinite number of alternative beam dimensions and reinforcement ratios that can yield a similar moment of resistance.  These elements are often the major components in reinforced concrete skeletal structures, and hence their economical design requires consideration as it is an important factor in achieving the overall cost reduction of a structure.  

Reviews such as that by Arora et al. (1995), report on the successful applications of LMMs in engineering optimisation, especially when constrained problems are considered.  The LMMs perform a direct transformation of a constrained problem to an unconstrained one, achieving a final solution through a series of successive unconstrained optimisation subproblems.  However, in their extensive survey Schittkowski et al. (1994) concluded that the solution of these successive unconstrained optimisation problems is likely to require a large number of function and gradient evaluations, hence affecting the efficiency of the algorithm.  To overcome this problem, the LMM is often combined with other optimisation approaches. Adamu et al. (1994) describe an application of the continuum-type optimality criteria (COC) method to the design of reinforced concrete beams where the conditions of minimality are derived using the augmented Lagrangian method.  The costs that are minimised include those of concrete, reinforcement and formwork with active constraints on maximum deflection, bending and shear strength.  In their further work, Adamu and Karihaloo (1994) outline the procedure for the application of the discretised continuum-type optimality criteria (DCOC) method, theoretically established by Zhou and Rozvany (1993), to reinforced concrete beams with similar optimum design problem formulation.  Kuhn-Tucker necessary conditions are used to obtain an explicit mathematical derivation of optimality criteria, followed by an iterative procedure for designs that consider both the depth and reinforcement ratio or depth alone as design variables.  This algorithm is further modified and applied to multispan beam structures (Adamu and Karihaloo 1994), with each span assumed to have a uniform section and varying reinforcement ratio along its length.  Han et al. (1996) describe a successful application of the DCOC method to multispan partially prestressed concrete beams both for rectangular and T- section, modifying the cost function and design constraints to suit the considered structural system. 

The application of this technique combined with genetic algorithms for automating the constraint’s penalty handling is described by Adeli and Cheng (1994).  Bental and Zibulevsky (1997) apply a non-quadratic augmented Lagrangian for which the penalty parameters are a function of the multipliers.  Other authors investigate augmented methods based on the approximation concepts to improve the performance of the algorithm.  Coster and Stander (1996) explain the application of the augmented Lagrangian method to steel space structures, with approximation based on using a partitioned secant matrix updating technique to achieve higher efficiency of the algorithm.  Singh and Yadav (1993) investigated approximation concepts to the augmented Lagrangian method for the minimum weight design of a wing box element.  Boffey and Yates (1997) describe a simplex based Lagrangian scheme for the solution of weight minimisation of structural steel trusses.
The application of the LMM in its primary form to the optimisation of concrete structural elements has been reported.  For example, Cohn and Lounis (1992) use a projected Lagrangian algorithm for the optimum design of prestressed concrete beams.  Al-Salloum and Siddigi (1994) describe a successful application of LMM, but only for singly reinforced concrete beams, not considering the region of the feasible design space where the optimum solution is that of a doubly reinforced section.  The research presented in this paper reports on the application of the LMM to the minimum cost design of both singly and doubly reinforced concrete beams of rectangular section.  As reported by Fryer and Ceranic (1997), this design approach has been successfully employed for estimating the upper-bound reinforcement ratios for skeletal structural members, giving comparable results to those obtained using genetic algorithms and an improved approximation method based on sequential linear programming.   

2   Lagrange Multiplier Method

In its original formulation, the LMM applies to the optimisation of a multivariate objective function expressed as 

y = f (x1, x2, . . . . xn )                                                         (1)

subject to equality constraints of the form 

 gi (x1, x2, . . . . xn ) = 0
i = 1,2,. . . . . m                                   (2)

where n is the number of independent variables and m is the number of constraints; m must be less than n by definition of the problem.

The procedure is to construct the unconstrained Lagrangian function L of the form



             (3)

where the unspecified constants (i are the Lagrange multipliers determined in the course of the extremisation.

The necessary conditions for L to posses an extreme (stationary point) are



                                    (4)

and



                                            (5)

Expression (5) simply restates the original constraints acting on the solution space of the objective function y = f (x1, x2, . . . . xn ).  Expressions (4) and (5) are a system of n+m equalities with n+m unknowns.  Hence, their solution will yield stationary values for x1, x2, . . ., xn and (1, (2, . . ., (m from which the optimum solution can be obtained. 

3   Implementation of the Lagrangian Multiplier Method

Reinforced concrete beams of rectangular section are primarily designed to resist the action of flexural bending and are classified in BS8110 (1985) as either singly or doubly reinforced.  In the case of the former, reinforcement is provided to resist the tensile forces, whilst for the latter, reinforcement is designed to resist both the tensile and compressive forces in the beam.  The total cost of a beam per unit length is a function of the material costs, beam geometry and area(s) of reinforcement, the latter being dependent on the classification of the beam. 

3.1   Singly Reinforced Beam

Setting the ratio of the material costs to q = Cs/Cc, the cost objective function per unit length is expressed as 

C = Cc b[q(d + (1+r)d]                                                        (6)

where Cs and Cc are the costs of steel and concrete per unit volume respectively, ( is the reinforcement ratio (As/bd), As is the area of tension reinforcement, b and d are the breadth and effective depth of the section respectively and r is the ratio of reinforcement cover to effective depth d.

If the breadth of the section is considered fixed, and it is assumed that the ratio r and ultimate design moment M remain constant, (6) can be reduced to 
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                                                             (7)

since Ccb is a constant.

The geometry of a rectangular beam is shown in Fig. 1 together with the simplified rectangular stress block as given in BS 8110.


Figure 1   Singly reinforced section with simplified

    rectangular stress block
Taking moments about the centroid of the compression block and about the centroid of the tension reinforcement, the following bending stress equilibrium constraint is obtained
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where M is the ultimate design moment, fy is the characteristic strength of steel and fcu is the characteristic concrete strength.

According to the principle outlined in (3), the corresponding unconstrained Lagrangian function( can be shown to be

 

                                        (9)

where



a1 = 0.87fyb; a2 = 0.98fy/fcu ; a3 = 1+r                                        (10)

Equating the partial derivates of this function to zero and solving the corresponding system of equations, the optimum reinforcement ratio (opt can be derived as



                                                         (11)

The corresponding optimum effective depth dopt is then expressed as 
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Expression (11) is only valid for singly reinforced beams and it is therefore necessary to determine the upper bound value of (opt beyond which the optimum solution will be a doubly reinforced section.  The maximum moment of resistance of a singly reinforced section is given by 

M = 0.156fcubd2                                                            (13)

Equating this with the expression that represents the moment about the centroid of the compression block and setting the lever arm z = 0.775d as specified in BS 8110, the boundary reinforcement ratio (bound between a singly and doubly reinforced section is derived as 



                                                            (14)

Fig. 2 is a graphical representation of the optimum reinforcement ratio given by (11), and shows the family of q-lines for a typical fixed value of r = 0.15.  Plotted values of reinforcement ratio are constrained between the maximum and minimum reinforcement ratios, as specified in BS 8110.  Although a series of similar graphs can be plotted depending on the assumed value of the ratio r, it has been found that the minimum cost is not significantly sensitive to changes in this ratio, which in itself has tightly banded values.  
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        Figure 2  Optimum reinforcement ratio versus 

 
           stress ratio for singly reinforced beams

Fig. 2 shows that for an increase in the material cost ratio q, the optimum solution requires a corresponding reduction in the reinforcement ratio (opt.  Under identical loading conditions, this reduction is compensated by an increase in the effective depth of the section d, as obtained from (12).  The q-lines are valid until they intersect the boundary reinforcement ratio curve.  Above this line the optimum solution is given by a doubly reinforced section, and hence its optimum design must be considered. 

3.2   Doubly Reinforced Concrete Beam 

The total cost of a doubly reinforced beam per unit length is given by 
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It can be shown that the relationship between the tension reinforcement ratio ( and the compression reinforcement ratio (’ is

(’ = ( - 0.2314 fcu/fy                                                                       (16)

assuming that the stress in the compression reinforcement has reached yield stress and the ratio d'/d ( 0.215, where d' is the depth from the top of the compression face to the centroid of the compression reinforcement (see Fig. 3).

 Substituting (16) into (15) gives the final form of the cost objective function as

 C = Ccb [ q(2(-0.231fcu/fy)d + (1+r)d ]                                           (17)

Fig. 3 shows the geometry of the rectangular beam section and the simplified rectangular stress block for a doubly reinforced beam.  When the ultimate design moment M exceeds the moment of resistance of a singly reinforced section (0.156fcubd2), compression reinforcement is required.  For this condition, the depth of the neutral axis is specified in BS8110 as x=0.5d, to ensure a tension failure with a ductile section.



     Figure 3   Doubly reinforced section with simplified 

   
          rectangular stress block

Considering the equilibrium of the horizontal forces and taking moments about the centroid of the tension reinforcement, the following bending stress equilibrium constraint is obtained
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Formulating the problem and solving by the Lagrangian Multiplier Method, the optimum reinforcement ratio for the tension steel can be shown to be  



                                         (19)

The reinforcement ratio for the compressive steel (' is calculated to satisfy (16) by setting ( equal to (opt.  The tension and compression cover ratios r and r' are assumed to be constant and equal to each other.  The optimum effective depth is then obtained as 
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Fig. 4 is a graphical representation of the optimum reinforcement ratio given by (19) showing the family of q-lines for typical values of r and r' of 0.15.  Plotted values of (opt are constrained between (max and (bound.  The compressive steel reinforcement ratio is obtained from (16) taking account of the minimum allowable value of 0.2% as specified by BS 8110.  As for singly reinforced beams, a series of similar graphs can be plotted for different ratios of r and r’.  However, it has been found that the minimum cost is not significantly sensitive to changes in these ratios and hence a family of graphs is not essential.
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  Figure 4   Optimum reinforcement ratio versus ratio

       fy/fcu  for doubly reinforced beams

Fig. 4 shows that for an increase in the material cost ratio q, the optimum solution requires a corresponding reduction in the reinforcement ratio (opt.  Under identical loading conditions, this reduction in (opt is compensated by an increase in the effective depth of the section d.  For q > 45 the optimum solution will be a singly reinforced beam.  The q-lines are valid until they intersect the boundary reinforcement ratio curve.  Below this line the optimum solution is given by a singly reinforced beam and hence Fig. 2 should be used.

4  Cost Sensitivity Analysis
Comparing the optimum solutions for singly and doubly reinforced beams for different values of the material stress ratio fy/fcu, identifies the distinctive zones for which a particular solution gives a minimum cost.  To ensure a valid singly reinforced optimum solution, the amount of reinforcement given by (11) has to be less than the boundary value given by (14), or more precisely 

 

                                                           (21)

Similarly, for the optimum solution to be a doubly reinforced beam the reinforcement ratio for the tension steel given by (19) has to be greater than the boundary value given by (14). Therefore, we have
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With respect to (21) and (22), three distinct zones of optimum reinforcement ratio can be identified over the defined range of the material stress ratio fy/fcu.  The boundaries between these zones will depend on the values of ratios q and r. Fig. 5 shows a graphical representation of these zones for q=25 and r=0.15, with fy/fcu ratio taken to be between 5 and 25 covering the possible range of values given in BS8110.  Zone 1 corresponds to a singly reinforced section with the ratio of fy/fcu between its lower bound value of 5 and the point of intersection with the boundary curve at 9.2.  Zone 2 corresponds to a singly reinforced section with its optimum reinforcement ratio being set at the boundary value (b for the range of fy/fcu between 9.2 and 13.4.  Zone 3 corresponds to a doubly reinforced section with the ratio of fy/fcu between the point of intersection with the boundary curve at 13.4 and its upper bound value of 25. 
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             Figure 5   Optimum reinforcement ratio

       
     for q=25 and r=0.15

For any other values of q, it is possible to mathematically define the valid material stress ratio range for different optimum solutions.  For example, Table 1 has been derived using values of r and r' equal to 0.15.

Material

Cost

Ratio 

(q)
Single Reinforcement Optimum Range
Boundary Reinforcement 

Optimum Range
Double Reinforcement

Optimum Range


fy/fcu
fy/fcu
fy/fcu

25
5.0-9.2
9.2-13.4
13.4-25.0

35
5.0-12.8
12.8-18.8
18.8-25.0

45
5.0-16.5
16.5-24.1
24.1-25.0

55
5.0-20.2
20.2-25.0


65
5.0-23.8
23.8-25.0


75
5.0-25.0
Outside 
the practical

85
5.0-25.0
 
range (>25)

95
5.0-25.0



 

       Table 1   Valid ranges of fy/fcu  for different optimum

          reinforcement ratios

A series of tables of this type can be produced for different values of r and r’, which by definition must be less than 0.215 if the compression reinforcement is to have reached yield.  Hence, for a given design problem, it is possible to select the optimum reinforcement ratio formula directly without recourse to repetitive calculations.  The proposed approach therefore offers a convenient and easy method of selecting the appropriate optimum solution and corresponding formulae.  In practice, the material stress ratio fy/fcu has discrete values which are predetermined by the possible combinations of fcu and fy that are permitted by BS 8110 (1985).  To assist the designer in the selection of an appropriate optimum solution, a graph showing the optimal zones for singly (SRO), boundary (BRO) and doubly reinforced (DRO) sections have been developed.  An example of such a graph is given in Fig. 6, for typical values of r and r’ ranging from 0.05 to 0.20.
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       Figure 6   Optimum solutions - r-curves

Having selected values of q and r, the boundary allowable material stress ratios are read off the vertical axis.  For example, with q=45 and r=0.10, the upper bound fy/fcu value for a singly reinforced section is 17.26 and the lower bound value for a doubly reinforced section is 23.33.  If the values of fy and fcu are chosen such that their ratio is less than 17.26, the optimum solution will give a singly reinforced beam.  If the values of fy and fcu are selected so that their ratio is greater than 23.33 then the optimum solution will give a doubly reinforced beam.  Ratios between 17.26 and 23.33 result in a singly reinforced beam with boundary reinforcement as the optimum solution.  

To compare the individual material costs with their total cost at the optimum solution, cost factors Ctc/Ct and Cts/Ct are introduced, where Ctc and Cts are the costs of concrete and reinforcement respectively, and Ct is the total material cost.  The value of Ctc per unit length is given by
Ctc = Ccbd(1+r)                                                             (23) 

For a singly reinforced section the ratio Ctc/Ct can be expressed as 
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where Ct  is given by (6) and (s opt is the optimum reinforcement ratio for a singly reinforced beam.

The ratio Cts/Ct can be expressed as 
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 For a doubly reinforced section, the ratio Ctc/Ct can be expressed as 
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where (d opt is the optimum reinforcement ratio for a doubly reinforced beam.

Correspondingly, ratio Cts/Ct can be expressed as 
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For different values of stress ratio fy/fcu, r, and q, the material costs ratios can be compared.  The example given by Fig. 7 shows the material cost factor comparison for fy=460 N/mm2, fcu=30 N/mm2 and r=0.10.
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      Figure 7   Percentage material costs (fy=460 N/mm2,

 
                                    fcu=30 N/mm2 and r=0.10)

Three distinct zones are defined, depending on the beam having a singly (SRO), doubly (DRO) or boundary (BRO) reinforcement ratio as the optimum solution.  The lower bound value of q for a singly reinforced section is 40.  At the interface between boundary and double reinforcement the optimum reinforcement ratio for a doubly reinforced section is equal to (bound plus the minimum compression steel ratio of 0.002 as specified by BS8110 (1985).  For this condition, it can be calculated that the upper bound value of q is 27.  It is noted that the cost of concrete compared to the total costs shows a steady decrease as the value of q increases, behaving asymptotically to the median in the zone of the singly reinforced optimum solution.  To further investigate this behaviour the ratio Ctc/Ct for a singly reinforced section is re-defined by substituting (11) into (24) to give 
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Considering the limited practical range of fy/fcu between 5 and 25 it can be seen that
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Hence, for the practical range of q values in the singly reinforced zone it can be concluded that the material costs of the concrete will never fall below 50% of the total costs regardless of the values of fy/fcu.

5   Numerical Examples

Three typical design examples are given, illustrating situations where the optimum solution is either a singly, boundary or doubly reinforced section.  For given values of q, r and fy/fcu, the optimum solution is obtained and presented graphically.  The optimum solution is compared with the standard design approach specified in BS8110 and the results are presented in a tabular form.  
5.1 Design Example 1 - Singly Reinforced Beam    A beam of width b=260 mm is subjected to the maximum bending moment of 185 kNm.  The ratio r is taken as 0.15, material cost ratio q as 75, and the costs of concrete Cc as 50 £/m3.  Characteristic strength of steel and concrete are 460 and 30 N/mm2 respectively, giving a material stress ratio fy/fcu of 15.3. The lower- (dl) and upper- bound (du) effective depths are taken to be 300 mm and 800 mm, respectively.

Using Fig. 6, the optimum solution is shown to be a singly reinforced section.  Hence, from (11) (opt is 0.0105 giving the corresponding optimum effective depth of the section dopt obtained from (12) as 448 mm.  The required area of the reinforcement As req is calculated to be 1223 mm2.  The corresponding total material cost of beam per unit length C is then obtained from (6) to be 0.2256Cc £/m at its minimum. 

A graphical representation of the results is given in Fig. 9, showing the optimum to lie on the bending stress constraint boundary with the cost objective function being tangential to the curve.
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                                         Figure 9   Singly reinforced optimum solution 
The feasible region is bounded by the bending stress constraint, the upper bound effective depth and the maximum area of reinforcement As max which corresponds with the intersection of the boundary reinforcement line with the bending stress constraint.  Table 2 shows the results using the standard design approach. It is evident from this table that the derived optimum design formulae for singly reinforced sections gives an accurate estimate of the minimum material cost.
Effective Depth 

d

(mm)
Area of Tension Reinforcement As

(mm2)
Tension Reinforcement Ratio

(s
Total Material Costs(*Cc)
(£/m)

390
1525.5
0.0150
0.2310

400
1459.1
0.0140
0.2290

440
1254.5
0.0110
0.2256

448
1221.8
0.0105
0.2256

460
1176.5
0.0098
0.2258

480
1109.2
0.0089
0.2267

500
1050.3
0.0081
0.2283

540
951.7
0.0068
0.2328

580
871.7
0.0058
0.2388

640
775.9
0.0047
0.2496

680
723.7
0.0041
0.2576

760
640.3
0.0032
0.2753

800
608.2
0.0029
0.2848

   Table 2     Comparison between the LMM and 

                                  standard design approach - Example 1

Design Example 2 - Boundary Reinforced Beam    The same design parameter values are used as in the previous example with the following exceptions.  The material cost ratio q is 45, characteristic strength of concrete is 25 N/mm2 and the lower- and upper-bound effective depths are 340 mm and 680 mm respectively.

With fy/fcu=18.4, Fig. 6 indicates that the optimum solution is a boundary reinforced section.  From (14) (opt is 0.01255 giving a corresponding dopt obtained from (12) of 428 mm.  
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The required area of the reinforcement is therefore calculated to be 1397 mm2. The corresponding total material cost of the beam per unit length C is then obtained from (6) to be 0.1904Cc £/m at its minimum. The optimum result is presented graphically on the 2D-design surface (As,d) in Fig. 10.
Figure 10   Boundary reinforced optimum solution
Fig 10 shows that the design space is discontinuous with the feasible region consisting of a singly (SRS) and a doubly (DRS) reinforced solution space.  The optimum solution lies on the bending stress constraint boundary at the point of intersection with the boundary reinforcement.  As in the previous example the cost objective function is tangential to the bending stress constraint curve.  Table 3 shows the results using the standard design approach with the optimum solution being comparable to that given by the Lagrangian Multiplier Method.

Effective Depth 

d

(mm)
Area of Compression Reinforcement As’ (mm2)
Area of Tension Reinforcement As  (mm2)
Total Material Costs(*Cc)
(£/m)

340
586.1
1697.6
0.2044

360
437.6
1614.5
0.2000

380
298.4
1540.8
0.1964

400
208.0
1515.7
0.1972

428
0.00
1388.0
0.1904

440
0.00
1322.6
0.1911

460
0.00
1229.9
0.1929

480
0.00
1152.3
0.1954

500
0.00
1085.9
0.1984

540
0.00
977.0
0.2054

580
0.00
890.6
0.2135

620
0.00
819.7
0.2223

660
0.00
760.3
0.2316

680
0.00
734.0
0.2364

Table 3     Comparison between the optimum and 

     standard design approach - Example 2
Design Example 3 - Doubly Reinforced Beam    The design parameter values are as those specified in Example 1 with the exception that the material ratio q is 25 and  the lower-bound effective depth is 300 mm.  With fy/fcu=15.33, Fig. 6 indicates that the optimum solution is a doubly reinforced section.  The optimum result is presented graphically on the design surface (As,d) in Fig 11.
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      Figure 11   Doubly reinforced optimum solution 
Applying (19) (opt is 0.01796 giving a corresponding dopt obtained from (20) as 354 mm.  The required area of tension reinforcement is calculated to be 1653 mm2. The corresponding total material cost of beam per unit length C is then obtained from (17) to be 0.1541Cc £/m at its minimum.  The optimum solution lies on the doubly reinforced stress constraint boundary with the objective function being tangential to the curve.  The feasible region is bounded by the effective depth corresponding to a boundary reinforced section, its corresponding area of steel and the bending stress constraint for a doubly reinforced section.  Table 4 shows that the Lagrangian Multiplier Method and the standard design approach give comparable solutions.

Effective Depth 

d

(mm)
Area of Compression Reinforcement As’ (mm2)
Area of Tension Reinforcement As  (mm2)
Total Material Costs(*Cc)
(£/m)

300
739.7
1916.7
0.1561

310
645.5
1861.7
0.1554

320
554.9
1810.3
0.1548

330
467.6
1762.3
0.1544

340
383.4
1717.2
0.1542

354
270.0
1658.8
0.1541

370
192.4
1644.0
0.1565

380
197.6
1688.4
0.1608

390


202.8
1732.8
0.1650

 Table 4     Comparison between the optimum and 

                   standard design approach - Example 3
6  Conclusions 

The presented results demonstrate that the LMM can be successfully applied to the minimum cost design of both singly and doubly reinforced concrete beams, offering an approach that can be used without prior knowledge of mathematical optimisation.  Comparisons with the standard design approach have clearly shown that solutions achieved using the LMM will indeed reach the minimum material costs.  Three distinct optimal solutions have been identified depending on whether the beam is singly, boundary or doubly reinforced. The boundaries between these zones are defined over the practical range of the material stress ratio fy/fcu, and are shown to be dependent upon the adopted values of ratios q and r.  The flexural stress constraints are shown to be critical with the minimum cost contour being a tangent to its boundary.  For an increase in the material cost ratio q, the minimum material costs are achieved through a reduction of the percentage reinforcement in the beam.  Under identical loading conditions this reduction is compensated by an increase in the effective depth of the section.  

To help the designer to select the optimum reinforcement ratio, parametric design curves and tables have been developed to simplify the design process.  However, in using either of these design aids or the optimum design formulae, consideration should be given to the assumptions made.  In that context, it is important to emphasise that this cost analysis has been performed on the material costs only and do not include the additional costs of formworking and labour, which in practice often make a significant contribution to the total costs.  In contrast to the precast concrete industry, where labour and formworking costs are significantly lower than those of concreting in situ, the inclusion of these additional costs is of essential importance for an economical approach to design and manufacture.  Not withstanding this, the proposed approach based on the LMM is simple and effective, without the need for iterative trials.  Further practical requirements can also be implemented, such as aesthetic and stock requirements, leading to an economical approach to reinforced concrete beam design.
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