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Abstract—This paper presents Graph-RAG and Self-learning
LLM-based Agent Services Framework for structured reasoning
and knowledge-driven analysis. The proposed approach inte-
grates graph-enhanced retrieval mechanisms with self-learning
Large Language Models (LLMs) to improve critical analysis
and domain-specific decision-making. The framework is eval-
uated using Air Accidents Investigation Branch (AAIB) Pub-
lications Reports, which provide structured, investigative nar-
ratives aimed at preventing future aviation incidents rather
than assigning blame. By leveraging graph-based knowledge
learning, the framework enhances causal reasoning, multimodal
response generation, and retrieval accuracy, demonstrating its
capability to support structured problem analysis based on
real-world investigative experiences. Experimental results show
significant improvements in hallucination mitigation, retrieval
precision, and real-time performance when compared to standard
Retrieval-Augmented Generation (RAG) models. The findings
highlight the potential of graph-augmented self-learning LLMs in
transforming automated analytical workflows, paving the way for
enhanced visual knowledge exploration and structured decision-
support systems.
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I. INTRODUCTION

The rapid advancement of Large Language Models (LLMs)
has enabled significant breakthroughs in automated knowl-
edge retrieval and reasoning. However, standard Retrieval-
Augmented Generation (RAG) models often suffer from hallu-
cinations, limited causal reasoning, and unstructured analytical
outputs, making them suboptimal for applications requiring
fact-driven, domain-specific insights [1], [3]. In high-stakes
fields such as aviation safety, healthcare, and risk assessment,
structured investigative reasoning is crucial to extracting reli-
able, experience-driven knowledge for decision support.

This paper introduces a Graph-RAG and Self-learning
LLM-based Agent Services Framework, which enhances re-
trieval accuracy, analytical depth, and structured response
generation through graph-based knowledge learning. Unlike
conventional RAG-based approaches, the proposed framework
dynamically updates a Corporate Knowledge Graph Memory

(CKGM) to facilitate structured, self-improving knowledge
retrieval and causal inference [2].

To demonstrate the capabilities of this framework, we
evaluate it using Air Accidents Investigation Branch (AAIB)
Publications Reports, which are systematically structured to
prevent future aviation incidents rather than to assign blame
or liability. These reports provide an ideal dataset for testing
graph-based reasoning techniques, as they contain detailed
event chains, procedural insights, and causal relationships
derived from aviation investigations [4]. By utilizing graph-
based analysis, our framework enables more transparent and
structured problem-solving approaches, which could be ex-
tended to visual analytics tools for interactive decision-making
[5].

The contributions of this paper are as follows:

e Graph-RAG Enhancement: Enhancement of retrieval ac-
curacy and causal reasoning in LLM-driven analytical
workflows through deep integration of structured knowl-
edge graphs. We do not only create knowledge graph
during the question and answering learning time, but also
build the chunk graph to represent the semantic relations
of indexed chucks when uploading documents.

e Self-learning Mechanism: Enabling dynamic updates
through reinforcement learning and structured retrieval
refinement.

e Domain-Specific Evaluation: Demonstrating the frame-
work’s effectiveness in aviation safety investigations,
where structured knowledge retrieval and analysis are
critical.

« Empirical Validation: Providing comparative performance
analysis against standard RAG models, showcasing im-
provements in hallucination reduction, retrieval precision,
and system scalability.

The rest of the paper is structured as follows: Section II re-
views related work in LLM hallucination mitigation, retrieval-
augmented generation, and causal reasoning techniques. Sec-
tion III defines key research gaps and objectives. Section
IV details the proposed Graph-RAG framework architecture.
Section V discusses the Edge LLM service development, while



Section VI presents the evaluation methodology and experi-
mental results. Finally, Section VII provides the conclusion
and future research directions.

II. RELATED WORK
A. Hallucination in Large Language Models (LLMs)

Large Language Models (LLMs) have revolutionized natural
language processing by enabling machines to generate human-
like text. However, a significant challenge that has emerged
is the phenomenon of hallucination, where LLMs produce
content that appears coherent but is factually incorrect or non-
sensical. This issue undermines the reliability of LLMs in
applications requiring factual accuracy.

Ji et al. [6] provide a comprehensive survey on hallucination
in natural language generation, categorizing hallucinations into
intrinsic and extrinsic types. Intrinsic hallucinations occur
when the generated text is not supported by the input data,
while extrinsic hallucinations involve contradictions with real-
world facts. The authors highlight that hallucinations can arise
from biased training data, model overconfidence, or limitations
in the model’s ability to access up-to-date information.

To address hallucination, various strategies have been pro-
posed. Dziri et al. [7] explore methods to increase faithfulness
in knowledge-grounded dialogue by incorporating controllable
features. They emphasize the importance of grounding re-
sponses in reliable external knowledge sources to mitigate
hallucination. Similarly, Rashkin et al. [8] investigate con-
trollable features to enhance faithfulness in dialogue systems,
suggesting that explicit control over content generation can
reduce hallucination rates.

B. Retrieval-Augmented Generation (RAG) and Challenges in
Critical Analysis

Retrieval-Augmented Generation (RAG) combines retrieval
systems with generative models to enhance the factual accu-
racy of LLMs by grounding their outputs in external knowl-
edge. While RAG has shown promise, it faces challenges
related to critical analysis and content chunking.

Lewis et al. [1] introduce the RAG model, which re-
trieves relevant documents to condition the generation process,
thereby improving factual accuracy. However, Gao et al. [9]
identify that RAG models can still produce hallucinations,
especially when the retrieved documents contain inaccura-
cies. They propose RARR (Re-rank Augmented Retrieval-
Refinement), a method that re-ranks retrieved documents to
prioritize more reliable sources, thereby reducing hallucina-
tion.

C. Chunking and Indexing in RAG Systems

Effective chunking and indexing of knowledge are crucial
for the performance of RAG systems. Improper segmentation
can lead to the omission of relevant information, resulting in
incomplete or inaccurate responses.

Guu et al. [10] discuss the importance of chunking in
retrieval-augmented language models, noting that inappro-
priate chunking can cause the model to miss pertinent in-
formation. They emphasize that the granularity of chunks

significantly impacts retrieval performance and, consequently,
the quality of generated responses.

To enhance chunking and indexing, Karpukhin et al. [11]
propose Dense Passage Retrieval (DPR), which uses dense
vector representations for passages to improve retrieval accu-
racy. By learning better chunk representations, DPR addresses
the issue of missing related content in RAG systems, leading
to more comprehensive and accurate responses.

D. Mitigation Strategies and Future Directions

Addressing hallucination and improving chunking in RAG
systems are active areas of research. Zhao et al. [12] pro-
pose methods to reduce quantity hallucinations in abstractive
summarization by incorporating constraints during generation.
They demonstrate that controlled generation can significantly
decrease hallucination rates.

Future research directions include developing more robust
retrieval mechanisms, enhancing chunking strategies, and in-
tegrating real-time fact-checking modules to further mitigate
hallucination in LLMs. Additionally, exploring user feedback
loops and reinforcement learning approaches may provide
adaptive solutions to these challenges.

III. RESEARCH GAPS AND OBJECTIVES

Despite significant advancements in retrieval-augmented
generation (RAG) and graph-enhanced large language mod-
els (LLMs) as we discussed in the related work section,
several critical challenges persist in the realm of automated,
knowledge-driven analytics. The proposed Graph RAG-LLM
framework aims to address the following key research gaps:

A. Domain-Specific Critical Analytics

Challenge: Current LLM-based analytics frameworks pre-
dominantly rely on general-purpose knowledge retrieval, lim-
iting their applicability in domain-specific critical analysis.
Studies have highlighted that LLMs trained on general data
exhibit limitations when applied to specialized domains. In-
jecting domain-specific knowledge into LLMs enhances their
performance on specialized tasks [13]. Additionally, the lack
of domain-specific adaptation in LLMs can lead to inaccu-
racies in specialized fields [14]. This generalization often
results in suboptimal performance in specialized fields such
as cybersecurity, healthcare, and finance.

Research Objective: Develop adaptive, domain-specific
retrieval mechanisms by integrating structured ontologies and
fine-tuned Edge LLMs. Expanding the Corporate Knowledge
Graph Memory (CKGM) will facilitate context-aware knowl-
edge retrieval, ensuring deeper analytical reasoning and more
reliable decision-making.

B. Reducing Hallucinations in Knowledge-Augmented Gener-
ation

Challenge: Existing RAG models are prone to generating
hallucinations—outputs containing inaccurate or fabricated
information—due to unverified or loosely associated retrieved
knowledge. Research indicates that RAG architectures can



still produce hallucinations, and integrating structured veri-
fication mechanisms is essential to enhance factual accuracy
[15]. Moreover, the susceptibility of LLMs to hallucinations
necessitates improved retrieval and validation processes [16].

Research Objective: Incorporate advanced filtering mech-
anisms, including confidence scoring in Edge LLM 2, to pri-
oritize high-certainty knowledge. Employ graph-based consis-
tency verification to cross-check retrieved information against
structured entities in CKGM, thereby mitigating erroneous
outputs.

C. Advancing Critical Analysis and Causal Reasoning

Challenge: Many LLM-driven analytical systems excel at
associative reasoning but lack explicit causal inference capa-
bilities, limiting their effectiveness in applications requiring
robust decision support and root-cause analysis. The integra-
tion of causal modeling into LLMs is crucial for applications
demanding accurate decision support and root-cause analysis
[17].

Research Objective: Enhance reasoning graphs by integrat-
ing causal modeling techniques within the CKGM framework.
Develop a multi-step logical reasoning pipeline in Edge LLM
3 to explicitly model causality, facilitating structured cause-
effect explanations in analytical tasks.

D. Multimodal and Structured Response Generation

Challenge: Traditional LLM-based systems primarily gen-
erate textual outputs, which may be insufficient for complex
analytical workflows requiring structured or visual represen-
tations. Evidence thows that the necessity for multimodal
response formats in LLMs has been emphasized to improve
interpretability and applicability in various fields [18].

Research Objective: Extend Edge LLM 3 to support multi-
modal response generation, including structured JSON graphs
for reasoning pathways, tabular outputs for data analytics,
and visual knowledge representations. This approach aims to
enhance explainability and usability across diverse application
domains.

E. Optimizing Real-Time Response in Multi-LLM Orchestra-
tion

Challenge: The orchestration of multiple Edge LLMs in-
troduces latency in sequential processing steps, impacting the
efficiency of real-time analytics applications. Existing archi-
tectures do not dynamically allocate computational workloads,
leading to suboptimal processing times under varying query
complexities. Efficient orchestration and workload distribution
are critical for optimizing real-time performance in multi-LLM
systems [19].

Research Objective: Introduce a dynamic orchestration
mechanism that intelligently distributes computational work-
loads across Edge LLMs based on query complexity and rea-
soning depth. Additionally, employ a progressive knowledge
refinement approach to incrementally update CKGM, reducing
unnecessary graph reprocessing overhead.

Addressing these research gaps will significantly enhance
the capabilities of the Graph RAG-LLM framework, leading to

improved domain-specific analytical accuracy, reduced hallu-
cinations, strengthened causal reasoning, multimodal response
generation, and optimized real-time processing. Future work
will focus on empirical validation of these methodologies
using domain-specific datasets and real-world deployments.

IV. GRAPH-RAG AND SELF-LEARNING LLM BASED
AGENT SERVICES

The proposed Graph-RAG and Self-learning LLM Frame-
work integrates retrieval-augmented generation (RAG) with a
self-learning mechanism to enhance domain-specific critical
analytics. By leveraging edge Large Language Models (Edge
LLMs) and a Corporate Knowledge Graph Memory (CKGM),
this framework addresses challenges such as knowledge re-
trieval accuracy, hallucination mitigation, causal reasoning,
and multimodal response generation. The architecture sup-
ports continuous learning through dynamic knowledge graph
updates and reinforcement mechanisms.

A. The Agent Framework Overview

The framework consists of the following key components
(illustrated in Fig. 1):

e Document Ingestion and Preprocessing: The system
ingests various domain-specific documents, including in-
cident records, historical logs, and manuals.

e Edge LLM 1 — Chunking and Vectorization: The first
stage involves ftext chunking and vectorization, where
Edge LLM 1 processes raw text and identifies contextual
relationships among document segments.

e Edge LLM 2 - Knowledge Retrieval and Graph
Construction: LLM 2 determines relevant text chunks,
retrieves contextually related knowledge, and constructs
an instant knowledge graph.

¢ Corporate Knowledge Graph Memory (CKGM): The
CKGM serves as a self-learning structured knowledge
repository, continuously updated based on interactions
with LLM 2.

o Edge LLM 3 - Service Requests and Response Gener-
ation: LLM 3 generates multimodal outputs, including:

— Analytics Q/A Responses

Reasoning Graphs

Structured Data Tables

Causal Explanations

B. Self-learning Mechanism

The framework implements a continuous self-improvement
cycle:

1) Knowledge Graph Updates: New insights extracted by
Edge LLM 2 are dynamically incorporated into CKGM.

2) Reinforcement-based Retrieval Refinement: The
framework optimizes retrieval precision by reinforcing
relevant knowledge paths.

3) Adaptive Model Fine-tuning: Periodic evaluations im-
prove domain adaptability, reducing hallucinations and
ensuring high-quality knowledge integration.
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Fig. 1. Framework Architecture

C. Reducing Hallucinations and Enhancing Knowledge Accu-
racy

o The combination of graph-enhanced retrieval and
confidence-scored ranking in CKGM mitigates halluci-
nations.

o Cross-validation with structured knowledge sources en-
sures factual accuracy.

D. Causal Reasoning and Explainability

o The framework generates reasoning graphs that outline
causal relationships among retrieved entities.

o Multimodal outputs provide a step-by-step logical infer-
ence rather than just a textual response.

E. Multimodal and Structured Response Generation

o The response format is adaptable to multiple analytical
needs, including Q/A chat interactions, structured JSON
graphs, and tabular output.

o This improves decision support in domains requiring
complex, structured knowledge representation.

The Graph-RAG and Self-learning LLM Framework rep-
resents an advanced integration of retrieval-augmented gen-
eration with self-learning knowledge graphs. By dynamically
updating CKGM and reinforcing retrieval accuracy, the system
improves critical analytics, domain-specific adaptation, and
real-time knowledge reasoning. Future research will focus on
scalability improvements, extending multimodal capabilities,
and empirical validation across multiple domains.

V. EDGE LLM SERVICES DEVELOPMENT

To enhance the modularity, scalability, and efficiency of the
proposed framework, the Edge-LLM services are designed
using a microservices architecture. Each LLM instance is
developed as an independent service, allowing seamless in-
tegration with relevant data resources and repositories. This
modular approach ensures that different LLM models can

be deployed and updated independently while maintaining
compatibility with the overall system.

A. Microservices-Based LLM Architecture

The Edge-LLM framework [23] follows a microservices-
based architecture [20], [21], where each LLM is encapsulated
as a service with dedicated functionalities. These services
interact with structured data sources, knowledge graphs, and
external repositories through well-defined API endpoints. The
interaction is facilitated using FastAPI interfaces [22], which
provide high-performance, asynchronous API communication
for handling requests efficiently.

Each microservice performs specific tasks, such as:

o Retrieving domain-specific knowledge from structured
repositories.

o Performing contextual reasoning and response generation.

o Processing multimodal queries by integrating textual and
structured data representations.

By decoupling the LLM services, the system can dy-
namically select the most appropriate model based on the
complexity and domain requirements of a given task.

B. Container Deployment for Edge Computing

To enable seamless deployment and execution on edge
computing devices, the entire backend framework is packaged
as a container. The Edge-LLM framework is built using
Ollama, an efficient local LLM serving platform optimized
for edge devices. The containerized deployment allows:

o Rapid installation and configuration on edge machines.
o Simplified management and scaling of LLM services.
o Compatibility across different hardware and operating
system environments.
The FastAPI-based backend is also containerized, ensuring
that all service interfaces remain lightweight and responsive
when deployed on edge computing environments.



C. FastAPI Interfaces for Service Communication

FastAPI is utilized as the primary communication interface
for handling service requests. Each Edge-LLM microservice
exposes FastAPI endpoints to allow:

o Query-based retrieval and reasoning from structured data.

o Dynamic LLM selection and processing based on task
requirements.

« Efficient request-response handling with asynchronous
execution.

This API-driven approach enables smooth integration with
external applications and systems, allowing different Edge-
LLM instances to be orchestrated dynamically in response to
analytical tasks.

We deployed the backend container on the NVIDIA 4090
RTX server in the edge.

Figure 2 illustrates the process of building the Corporate
Knowledge Graph Memory (CKGM) after a query has been
made. In this representation, the orange nodes correspond
to extracted text chunks, while the blue nodes represent the
system’s structured understanding and reasoning, derived from
the related chunks. The blue CKGM nodes are integrated
as additional graph content within the JSON-based FastAPI
response, accompanying the textual output. This enriched rep-
resentation allows subsequent LLM instances to generate more
precise answers, produce well-structured reasoning graphs,
and establish stronger connections to relevant data sources,
ultimately improving the overall analytical accuracy.

VI. PRELIMINARY EVALUATIONS

The evaluation of the Graph-RAG and Self-learning LLM
Framework is designed to assess its effectiveness in knowledge
retrieval accuracy, hallucination mitigation, causal reasoning,
and system efficiency. The key evaluation dimensions and their
corresponding metrics and experiments are described below.

A. Evaluation dataset

The Air Accidents Investigation Branch (AAIB) Publica-
tions Reports serve as the primary dataset for this evaluation.
The AAIB investigations are conducted in accordance with
Annex 13 to the ICAO Convention on International Civil
Aviation, as well as EU Regulation No. 996/2010 (as amended)
and The Civil Aviation (Investigation of Air Accidents and
Incidents) Regulations 2018. These regulations, along with
their counterparts in UK Overseas Territories and Crown De-
pendencies, establish strict procedural and reporting standards
for aviation accident and incident investigations.

It is important to emphasize that the sole objective of an
AAIB investigation is the prevention of future accidents and
incidents. The AAIB reports do not apportion blame or liabil-
ity, nor should they be used for such purposes. As a result, the
LLM-driven analysis within this study strictly adheres to these
principles, focusing on data structuring, knowledge retrieval
accuracy, and analytical reasoning, rather than attempting to
assign fault or determine responsibility.

Furthermore, the AAIB reports provide an excellent case
study for evaluating reasoning performance through graph-
based knowledge learning. The structured nature of these
reports allows the Graph-RAG and Self-learning LLM Frame-
work to demonstrate its capability in extracting causal relation-
ships, modeling investigative insights, and organizing knowl-
edge graphs for structured problem analysis. By leveraging
graph-based representation techniques, the proposed approach
could further enable the development of graphical analysis
tools for experience-driven accident investigation, helping
stakeholders visualize critical event chains, risk factors, and
procedural outcomes in a structured and interactive manner.

B. Knowledge Retrieval Accuracy

Objective: Assess the precision and recall of the retrieval-
augmented generation (RAG) mechanism in retrieving relevant
knowledge.

Metrics: Precision@K (P@K) measures how many of the
top-K retrieved knowledge chunks are relevant:

|Relevant Documents in Top-K]|

PQK =
@ K

(D

where:
o is the number of retrieved knowledge chunks considered.
e Relevant Documents are those judged as correct based on
a human-annotated ground truth dataset.

C. Hallucination Mitigation

Objective: Measure the framework’s ability to reduce hal-
lucinated or factually incorrect responses. A fact means a
verified sentence statement that is meaningly true in the ground
truth documents.

Metrics: Fact Verification Score (FVS) quantifies the
factual accuracy of generated responses by comparing them
against a fact-checking model:

|Correctly Verified Facts|
FVS =
|Total Retrieved Facts|

2

where:
o Correctly Verified Facts are statements classified as true
by an external fact-checking system.
o Total Retrieved Facts includes all factual claims made by
the model.

D. System Efficiency and Scalability

Objective: Measure the real-time performance of multi-
LLM orchestration and CKGM updates.

Metrics:

o Latency (ms) — Measures response time for different
types of queries.

e Memory Usage (MB) — Tracks computational efficiency
during retrieval and reasoning.

Experiment:

o Compare retrieval results with human-annotated ground
truth datasets. We conducted 5 evaluation cases with 10
questions and answers from the public dataset AAIB
(gov.uk): Air Accidents Investigation Branch report.
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Fig. 2. Corporate Knowledge Graph Memory

E. Comparative Baselines
To validate improvements, the framework will be compared
against:
1) Standard RAG-LLMs (without CKGM) vs CKGM
RAG-LLM
2) Vanilla Large Language Models (GPT, Llama, Claude)

VII. EVALUATION RESULTS

To present the effectiveness of the proposed framework, we
summarize the experimental results in the following tables.

A. Knowledge Retrieval Accuracy Results

Model P@5 (CKGM-RAG) | P@5 (S-RAG)

OpenAl-40 92% 84%

Claude Sonnet-3.7 92% 80%

Edge Llamma-3.3 90% 72%
TABLE T

COMPARISON OF RETRIEVAL ACCURACY WITH AND WITHOUT
GRAPH-BASED RETRIEVAL ENHANCEMENT.

The results demonstrate that CKGM-RAG improves re-
trieval relevance by leveraging structured knowledge. While
OpenAl-40 and Claude Sonnet-3.7 exhibit high retrieval preci-
sion in standard RAG system, incorporating CKGM introduces
minor performance reductions due to retrieval refinement
constraints. However, Edge Llama-3.3 benefits significantly
from CKGM, suggesting that small models on the edge with
moderate retrieval capabilities gain the most from structured
graph-based enhancements.

B. Hallucination Mitigation Results

The findings indicate that CKGM-RAG substantially en-
hances fact verification scores across all models. The OpenAl-
40 and Claude Sonnet-3.7 models exhibit minimal hallucina-
tion rates, but CKGM-RAG further improves their accuracy.

Model Fact Score
S-RAG OpenAl-40 93.8%
S-RAG Claude Sonnet-3.7 94.7%
S-RAG Edge Llamma-3.3 72.3%
CKGM-RAG OpenAl-40 96.4%
CKGM-RAG Claude Sonnet-3.7 96.8%
CKGM-RAG Edge Llamma-3.3 94.2%

TABLE IT
COMPARISON OF HALLUCINATION MITIGATION EFFECTIVENESS.

The Edge Llama-3.3 model benefits significantly, increasing
its fact score from 72.3% (S-RAG) to 94.2% (CKGM-RAG),
highlighting that structured knowledge retrieval aids weaker
models and edge computing in maintaining factual consis-
tency.

C. System Efficiency and Scalability Results

Model Latency (s) | Memory (MB)
S-RAG 57 236
CKGM-RAG 42 4672

TABLE III
SYSTEM EFFICIENCY AND SCALABILITY COMPARISON.

The results confirm that Graph-RAG LLM enhances system
performance by reducing latency (from 57s to 42s). But the
memory usage is increased dramatically due to running LLM
instances at the edge machine.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced a Graph-RAG and Self-learning
LLM-based Agent Services Framework to enhance domain-
specific critical analysis through structured knowledge retrieval
and reasoning. By integrating graph-enhanced retrieval, self-
learning mechanisms, and service-oriented LLM coordination,



the framework significantly improves fact-driven decision sup-
port while mitigating hallucinations and unstructured outputs.
The experimental evaluation using AAIB Publications Reports
demonstrated the framework’s effectiveness in retrieval preci-
sion, causal inference, and real-time response generation, high-
lighting its potential in aviation safety analytics and beyond.

Key findings from the evaluation indicate that:

o The graph-based retrieval mechanism substantially im-
proves knowledge precision and structured causal reason-
ing.

e The self-learning updates in CKGM enable adaptive
knowledge refinement, reducing hallucination rates com-
pared to standard RAG approaches.

o The framework enhances multimodal response genera-
tion, allowing structured visual knowledge representa-
tions for problem analysis.

While the current implementation demonstrates strong im-

provements in structured knowledge retrieval, several direc-
tions remain for future exploration:

1) Scalability and Multi-Domain Applications

« Extending the framework to support large-scale en-
terprise knowledge management systems, including
healthcare, finance, and cybersecurity.

« Exploring multi-agent coordination across dis-
tributed cloud and edge computing environments.

2) Advanced Graph Learning for Causal Reasoning

o Enhancing the causal inference engine through
graph neural networks (GNNs) for deeper semantic
reasoning and prediction.

o Incorporating reinforcement learning for adaptive
knowledge graph refinement based on user feed-
back.

3) Interactive Visual Analytics for Investigative Reasoning

o Developing graph-based visualization tools to sup-
port decision-makers and domain experts in analyz-
ing complex event relationships.

« Implementing interactive dashboards for structured
real-time knowledge exploration.
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