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Abstract

Clustering in the Internet of Things (IoT ) involves organizing devices into

groups to streamline network management and optimize resource utilization, in-

cluding Internet connections, energy usage, coverage, quality of service, and con-

nectivity. DCOPA (A Distributed Clustering Based on Objects Performances

Aggregation for Hierarchical Communications in IoT Applications) is a recent

distributed clustering protocol based on a timer for cluster formation where

the election of Cluster Heads (CHs) is modeled as a multicriteria problem. In

this paper, three contributions are presented. Firstly, the DCOPA protocol is

analyzed with a focus on its multi-criteria aggregation function T(i) which di-

rectly contributes to the election of the CHs and the formation of the network’s

clusters. This is then followed by an in-depth analysis of the impact and the

variation of the weights assigned to the two aggregated criteria which are the

energy and the distance from the base station. A verification of the scalability,

load balancing and distribution of the clusters and CHs will follow. Secondly,

a new formal notation for the performance analysis, specifically focusing on the

mortality and lifetime based on the Vector of Performance Indicators (VPI ),

will be introduced for IoT. As a third contribution, a revised version of DCOPA
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is introduced called ADCOPA (Adaptive DCOPA Using Dynamic Weighting for

Vector of Performances Indicators Optimization of IoT Networks). ADCOPA is

based on a new property which is the dynamicity or the variability of the weights

of the criteria used in the election function of CHs. The simulation results show

that the ADCOPA algorithm, which dynamically adjusts the weights of the cri-

teria during the network’s lifetime, outperforms the DCOPA algorithm. The

latter uses static weights for the criteria that remain unchanged for the entire

lifetime of the network. This confirms that the ability to dynamically adjust the

weighting of the criteria is an important factor in achieving better performance.

Keywords: IoT, DCOPA, clustering, data communication, energy efficiency,

multi-criteria analysis, dynamic weights of criteria, VPI.

1. Introduction, research questions and motivations

1.1. Introduction

The Internet of the future contains billions of communicating smart ”things”

of which the IoT is a part of (Li et al., 2015). The global reach of IoT is im-

mense and increasing exponentially (Nord et al., 2019). The advancement of5

IoT is achieved through the development of several technologies such as Radio-

Frequency IDentification (RFID) and sensor networks (Al-Fuqaha et al., 2015).

The vast majority of electronic devices used are sensors derived from recent

advances in Micro-Electro-Mechanical Systems (MEMS) (Akyildiz et al., 2002).

In a sensor network application dedicated to IoT, the data collected by a node10

is sent to a processing station called Base Station (BS ). The research work on

the functioning of communication protocols with energy resource optimization

for this type of network is still relevant. IoT is virtually organized in sev-

eral groups called ”clusters”. Each cluster has a specific node or coordinator

called Cluster Head (CH ) which is used to aggregate the data received from15

the nodes of the same cluster and then communicate it to the BS. This division

into clusters is called ”clustering”. Energy awareness is one of the main con-

cerns in recent advances in wireless sensor networks (WSNs) for IoT. Clustering
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is the most commonly used strategy in data communication to achieve energy

efficiency in WSNs frequently deployed in hostile environments, often charac-20

terized by inaccessibility. Its main objective is to extend the life of networks

and keep their applications operational. In this type of environments, where

battery replacement may be impossible, clustering optimizes energy usage by

minimizing data transmissions and the number of Internet connections in the

case of IoT applications, thereby increasing the battery life of equipment and25

sensors, enabling them to continue operating for long periods. This approach

is very useful in hostile environments such as geographically isolated regions,

deserts or high-risk security locations. It is used, for example, to monitor rare

species, toxic environments, critical infrastructures and to collect measurements

in difficult circumstances. The clustering technique enables surveillance to be30

extended, optimizing energy consumption in particular. Due to the selection of

inappropriate CHs, long distance data transmissions have a negative effect on

the network efficiency in terms of stable period, lifetime and quality of service

(QoS) (Benelhouri et al., 2023). Dedicated clustering for data transmission op-

timizes energy consumption in WSNs applications, which is an expanding field35

especially with the emergence of IoT. The choice of nodes that will take the role

of CHs is a complex task that must take into account several challenges. There

are two types of approaches for selecting the CHs: distributed as illustrated in

(Heinzelman et al., 2000) and centralized as described in (Heinzelman et al.,

2002). Furthermore, it is necessary to define the algorithm that rotates the40

nodes of the network in the role of CH, as well as the criteria determining this

election. The selection of these nodes must be based on a careful analysis of

several parameters and factors while ensuring optimal network operation. This

process must also take into consideration the efficient and balanced energy man-

agement of the nodes and the entire network to guarantee a better lifetime of the45

nodes and the entire network. LEACH is one of the first dedicated probabilistic

and distributed clustering protocols for hierarchical routing that proceeds in

two main phases. DCOPA (Mir & Meziane, 2023) is a distributed clustering

algorithm based on Multi-Criteria Decision Making (MCDM) modeling (Tri-
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antaphyllou, 2000). The election of the CHs is achieved through the use of a50

competition where all the sensors are engaged based on a timer T(i) computed

according to two local criteria, the residual energy of the node and its Distance

from the Base Station (DistBS ). T(i) is computed based on multi-criteria ag-

gregation with predefined weights that are associated to the two chosen criteria.

DCOPA considerably improves the deficiencies present in the LEACH proto-55

col, namely the distribution of the CHs, the announcement of a CH which is

done by the sending of a message on a maximum distance which covers all the

network and the number of CH which is purely random. The aim of our work

is to analyze and enhance the existing DCOPA protocol further in such a way

that it increases the network lifetime with balanced clustering and better energy60

efficiency. DCOPA incorporates the energy and the DistBS of a node as two

main criteria that determine its eligibility to win the role of the CH by calcu-

lating a T(i) which is a weighted sum of these two parameters. Each criterion

is assigned a specific weight that reflects its relative importance compared to

the other criteria. This weighting allows to prioritize certain criteria over others65

when evaluating alternatives.

1.2. Research questions

This study is guided by a number of research questions focusing on (i) the

analysis of the multi-criteria aggregation function of the DCOPA protocol (re-

cently proposed in the field of clustering with energy optimization in IoT appli-70

cations); (ii) the impact of dynamic weighting on the criteria used (energy and

distance); (iii) and the design of a new mechanism for analyzing IoT perfor-

mance, in particular energy management and mortality rates. These research

questions are formulated as follows:

1. What is the impact of applying different combinations of static weights75

(maintained until the loss of all nodes) when applied to the multi-criteria

aggregation function of the DCOPA protocol on the CHs election process,

cluster formation and network energy management?
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2. What impact will the different combinations of static weights have on

scalability, energy load balancing and the distribution of clusters and CHs?80

3. To what extent do the weight of the energy criterion and the distance to

the base station influence the CH designation process?

4. To what extent do the performance parameters mentioned above improve

with the incorporation of dynamic weighting in the DCOPA protocol?

5. What are the key factors and metrics that indicate when the weights85

can be modified to contribute to a better performance, such as energy

optimization and mortality rates?

6. What new mechanism could be designed to effectively analyze IoT per-

formance based on mortality rate parameters (lifetime)?

To provide systematic answers to these research questions, several simulation90

cases of the DCOPA protocol were performed by varying the (α, β) combinations

as well as the number of nodes in the network in order to evaluate the parameters

of lifetime, scalability, load balancing and distribution of CHs and clusters. A

formal notation is introduced to evaluate and compare two protocols in terms

of network degradation or node failure rate. After an evaluation of DCOPA, an95

improvement is proposed. The BS has the privilege to influence the function

T(i) by sending to the nodes the combination of the weights of the parameters

(criteria). The change of the weights of the criteria is operated according to the

data and the state of the network which was communicated to it through the

CHs nodes of each round. This implies that the dynamicity of the weights has100

been introduced in the multicriteria evaluation, precisely in the weighted sum.

Therefore, a revised version of DCOPA is introduced named ADCOPA, adapting

the principle of dynamicity of the weights of the criteria and context awareness

regarding the mortality identified by the BS, which then decides to change the

weights of each criterion in an attempt to slow down the flow of node failures.105

For this reason, only one change of the criteria weights is performed during

the lifetime of the network, in order to illustrate the interest of the dynamicity

of the criteria weights that will be operational during a specific round number

5



that was considered significant. An analysis was carried out to determine the

best combination of weights for the two aggregated criteria. In other words, a110

process was undertaken to identify the criterion that has the greatest impact

on the VPI parameters, assigning it more importance (weights) before or after

a chosen round number. The performance analysis of ADCOPA, in this case,

shows its efficiency by comparing it to DCOPA on the level of mortality rate

and lifetime considered parameters.115

1.3. Research motivations

The main motivations of the current work is to improve energy management

in WSNs which remains a challenging issue to improve their life and develop

new protocols to extend their lives and operations. Specifically, the motivation

of the current work can be summarized as follows.120

• It is often more beneficial to improve existing solutions for energy-efficient

clustering for IoT networks than designing an entirely new one. In our

case, we examine and improve the DCOPA protocol by leveraging its

strengths and addressing its weaknesses. The goal is to optimize the clus-

tering process by incorporating a new property that enhances efficiency in125

terms of energy management and CHs selection.

• Understanding the mortality and lifetime of a data communication clus-

tering protocol in an IoT network is crucial for its improvement. The

introduction of a new formal notation for performance analysis, using a

set of performance indicators, can provide a valuable tool to evaluate the130

energy efficiency and mortality rate of a clustering protocol in an IoT net-

work. This allows us to better understand the strengths and weaknesses

of a protocol and to make improvements to optimize its performance, es-

pecially in terms of energy efficiency and lifetime extension.

• Multi-criteria analysis is a powerful tool for decision making when several135

parameters need to be optimized simultaneously. The DCOPA protocol
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uses multi-criteria aggregation to select the CHs in each round by assign-

ing specific weights to different criteria. However, the changing state of

the network may require adaptation to improve its energy efficiency and

preserve a maximum number of nodes for an extended period of time.140

This led to the introduction of a new aspect based on dynamic criterion

weights sensitive to the energy context and the mortality of the network.

The paper is organized as follows. Related works are described in section 2. A

brief overview of the DCOPA protocol and the energy model used are described

in section 3. Section 4 is reserved for the simulation and analysis of the influ-145

ence of the energy, the distance to the base station BS in the performances of

DCOPA. In section 5, a new formal notation named VPI is introduced for eval-

uating the performances of a network in terms of node mortality rate. Section

6 is dedicated to the description of the ADCOPA protocol and its performance

evaluation. The last section is dedicated to the conclusion and the future per-150

spectives of our approach.

2. Related works

The authors in (Hosseinzadeh et al., 2022) conducted a qualitative study of

the clustering algorithms in IoT precisely in the field of smart cities following

a systematic literature review published between 2017 and 2021. They showed155

through their work the usefulness of clustering in IoT especially for energy ef-

ficiency, scalability, robustness, mobility, and load balancing. This section is

dedicated to the presentation of some protocols and approaches used in the lit-

erature on clustering in IoT networks mainly based on WSNs. (Heinzelman

et al., 2000) proposed LEACH, a distributed protocol for dynamic and proba-160

bilistic clustering. A threshold T(i) is computed by each node of the network

based on a chosen percentage of CHs and the number of the current round.

Afterwards, T(i) is compared to a random number between [0, 1]. LEACH runs

in two phases, set-up and steady-state. A node N(i) calculates the value T(i) in

the set up phase. If the random number is less than T(i) then the node N(i) de-165
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clares itself as CH and sends an advertisement message (ADV-CH) to the whole

network. The steady state phase is reserved for cluster formation and data com-

munication. Ordinary nodes solicited with ADV-CH messages will choose the

nearest CH by sending a JOIN-CH message. A Time Division Multiple Access

(TDMA) schedule will be planned and broadcasted for intra-cluster communi-170

cation to avoid collisions. The CHs aggregate the received data and send it to

the BS. LEACH has attracted other researchers to improve it for better results.

This is due to its interesting properties, namely the simplicity of its algorithm,

the probabilistic and distributed character, the rotation of the role of the CH

in a balanced way between the different nodes of the network. (Hani & Ijjeh,175

2013; Rahayu et al., 2014; Arora et al., 2016; Singh et al., 2017) are examples of

surveys in the literature, highlighting their significant contributions in collecting

and discussing improvements of the LEACH protocol. (Heinzelman et al., 2002)

improved LEACH by proposing LEACH-C, where the BS is responsible for the

election of the CHs and the formation of the clusters by knowing the positions180

and the energy level of the nodes at the beginning of each round. The simulated

annealing algorithm (Murata & Ishibuchi, 1994) is used to find the optimum

number of clusters which is considered as an NP-Complete problem. (Junping

et al., 2008) proposed the distributed Time Based LEACH (TB-LEACH) pro-

tocol to improve the CHs selection procedure proposed in the LEACH protocol.185

The authors specified the number of CHs required. At the beginning of each

round, a node creates a random number that is considered as a time. If a node’s

time expires before the number of CHs in the network is reached, it declares

itself CH. Otherwise, the node decides to leave the competition. After the elec-

tion of the CHs, the process is identical to that of LEACH. The optimal number190

of clusters is a predefined value (Kopt) in the LEACH protocol, but this value

can vary randomly during the execution of the clustering algorithm. This is

one of the major drawbacks of the protocol. (Batra & Kant, 2016) introduced

LEACH-MAC (a new cluster head selection algorithm for WSNs) describing a

new strategy to make the number of CHs and clusters stable by using MAC layer195

information to control the randomness used in the LEACH clustering process.
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The main idea of this approach is to limit the number of ADV (Advertisement)

messages from the CH s. A variable named CHheard is initialized to 0 when

the selection of the CHs is launched. It is incremented by 1 when an ADV

message is received. A random time between [0, total adv time] is chosen by200

the node, where (total adv time) is the transmission and reception time for the

CHs. The chosen time is (Rt), then the time to send the announcement tadv−CH

can be evaluated as (tadv−CH=(Rt/Current Energy)). At the time tadv−CH ,

the node examines the variable CHheard to determine the number of ADV mes-

sages received, if the value of CHheard is lower than the optimum number of205

clusters, it declares itself CH and sends an ADV message. (tadv−CH) ensures

that nodes with more energy can send ADV messages before those with less.

Maintaining a constant number of CHs and cluster balancing is the focus of

LEACH-Balanced (LEACH-B) (Tong & Tang, 2010). The CHs of the LEACH

set up phase broadcast a message for the whole network with their residual en-210

ergies. If the number of CHs is greater than (N ∗ P ), where N is the number

of nodes and P the percentage of desired CHs, the CHs that do not contain

enough energy will become normal nodes. If it is the opposite, some normal

nodes will become CHs according to a timer calculated so that the number

(N ∗P ) of CHs is ensured. Improving the T (n) formula for the election of CHs215

in LEACH is the goal of the Improved-LEACH (I-LEACH) protocol (Beiran-

vand et al., 2013). The authors considered new criteria which are the residual

energy of the node, the DistBS and the number of neighbors. A hybrid approach

(centralized and distributed) is adopted for the selection of CHs and clusters

in LEACH-G proposed in (Chen et al., 2013). The authors try to remedy the220

disadvantages of LEACH which are: (i) the optimum number of clusters (Kopt,

see Formula 12) of CHs which is not reached in the majority of rounds, (ii)

the number of CHs which is variable, (iii) the elected CHs are not distributed

in a balanced way in the network. R-LEACH is proposed by Behera et al. in

(Behera et al., 2019) containing the same phases of LEACH. The selection of225

CHs is similar to LEACH in the first round. A new T (n) will be considered

from the second round. T (n) is calculated based on the residual energy of the
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node, the old LEACH T (n), the initial energy of the node and Kopt (defined

in (Hussain & Matin, 2005)). However, the steady state phase of LEACH was

maintained. (Zhao et al., 2019) in Modified LEACH (MLEACH) focuses on the230

optimum number of CHs and considers energy as a key factor for the election

of CHs. A new T (n) is given as a function of the residual energy of the node,

the total residual energy of the network, the energy consumed in the previous

round and the average energy consumed in the previous round and by the whole

network. The authors in (Chang et al., 2022) attempted to solve two drawbacks235

of LEACH which are the random selection of CHs and the unequal cluster size.

The improvement is based on the distribution density of the nodes and the allo-

cation of the remaining nodes. The authors in (Kumar et al., 2023) introduced

a novel energy-efficient clustering approach for WSNs that aims to reduce en-

ergy consumption. The approach involves selecting CHs using a threshold-based240

advanced LEACH (ADV-LEACH2) approach and formulating clusters using a

Modified Fuzzy C-Mean (MFCM) approach. The ideal CH is selected based on

factors such as remaining energy, number of neighbor (SNs), and DistBS. The

proposed TEEECH approach considers these factors and uses the current energy

of the SNs per round to measure optimal CH selection. The TEEECH balances245

sensor node distribution among cluster heads and maintains CH energy. (Mir &

Meziane, 2023) presented a new distributed method called DCOPA for cluster-

ing with energy optimization in IoT networks. DCOPA uses MCDM (weighted

sum) theory to elect CHs in each round. Section 3 provides a complete and

detailed description of the DCOPA protocol. The authors in (Srinidhi et al.,250

2019) presented a comprehensive study of network optimization for IoT com-

munication, focusing on different achievements and emerging challenges in this

field. The survey covers new methods and algorithms for multi-objective ques-

tions, routing protocols, energy efficiency and security in IoT networks. They

provided a literature review of recent research papers and also identified rele-255

vant parameters such as routing, energy conservation, congestion, scalability,

reliability, QoS and security. Advanced network optimization techniques and

their limitations are categorized, including issues such as packet transmission,
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network overhead reduction, network attacks, device interoperability and node

mobility. In contrast to traditional recommendation algorithms, which only260

consider accuracy as the objective of optimization, (Cao et al., 2021) investi-

gated the building of a novel multi-objective matrix factorization model to in-

crease the recommendation performance, LSMaOA (large-scale many-objective

optimization algorithm based on problem transformation), for personalized rec-

ommendation in IoT systems. The model considers six objectives: F1 mea-265

sure (comprehensive evaluation index for precision and recall), novelty, cover-

age, customer satisfaction, landmark similarity and overfitting. The proposed

LSMaOA enhances optimization efficiency by making the large-scale problem

smaller. Experimental findings confirm that it outperformed four different al-

gorithms. (Shreyas et al., 2021) introduced an energy-efficient optimal routing270

technique for IoT networks. By choosing an efficient cluster head, an optimal

path from source to destination is obtained. The proposal adopts Genetic Al-

gorithm (GA) as an optimization approach to achieve optimal routing results.

The fitness function is applied to allow the selection of multi-path routing, min-

imizing energy consumption and enhancing network lifetime. Performance eval-275

uation has confirmed the robustness of the algorithm, proving its performance

in terms of energy consumption, end-to-end delay and number of failure nodes.

EFC-ISFLA is proposed in (Kongsorot et al., 2022), a fuzzy-based clustering

protocol optimized by the Improved Shuffled Frog Leaping (ISFLA) algorithm,

for energy-efficient energy consumption in WSNs. EFC-ISFLA selects adequate280

CH nodes based on an energy threshold and optimized fuzzy inference systems

(FIS). Cluster building and next hop (NH) identification are also controlled

by FIS probabilities. ISFLA both optimizes the network parameters and the

FIS components simultaneously, using opposition-based operators and a substi-

tution model. Simulation analysis revealed that EFC-ISFLA is more efficient285

than existing protocols in terms of network lifetime, stability and packet deliv-

ery to the base station. (Abdulzahra et al., 2023) presented an Energy-Efficient

Fuzzy-based Unequal Clustering with Sleep Scheduling (EFUCSS) protocol for

WSN-based IoT networks. The EFUCSS protocol acquires more network life-
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time and minimizes energy consumption by performing clustering, scheduling290

and data transmission. It adopts fuzzy logic for CH selection (Fuzzy inference

is obtained by using the Mamdani technique), taking into account factors such

as a node’s residual energy, centrality and node-GW (GateWay) distance. The

proposed protocol addresses the energy hole issue by creating unequal clusters

using Fuzzy C-Means. It also introduces a CH re-selection mechanism based295

on an energy threshold and a node matching method to decrease the number of

transmitting nodes.

3. DCOPA, the used energy consumption model and the optimum

number of clusters

3.1. Energy consumption model300

The energy dissipation model of (Heinzelman et al., 2002) is used in the

simulations of the DCOPA protocol. It accounts for the energy required for

transmission as a function of the size (l) of the message and the communication

distance (d). The energy of reception is calculated just according to the size of

the received message (l). The energy of data aggregation is considered by this305

model.

During transmission, the energy consumed is defined by ETx(l, d) in Formula 3

and detailed in the Formula 5. Depending on the distance d, two power control

settings and two channel models are used to define the parameter ETx−amp(l, d)

as follows:310

• If (d < d0), d0 is given in Formula 6, the free space model channel (d2

power loss) and the free space power amplifierEfs are used.

ETx−amp(l, d) = Efs ∗ l ∗ d2 if d < d0. (1)

• Otherwise (d ≥ d0), the multipath fading model channel (d4 power loss)

and the multipath power amplifier Emp are used.

ETx−amp(l, d) = Emp ∗ l ∗ d4 if d ≥ d0. (2)

12



ETx(l, d) = ETx−elec(l) + ETx−amp(l, d) (3)
315

ETx−elec(l) = Eelec ∗ l (4)

As a conclusion from Formulas 1, 2, 3 and 4, the total energy consumption of

transmission can be defined using Formula 5.

ETx(l, d) =

 Eelec ∗ l + Efs ∗ l ∗ d2 if d < d0.

Eelec ∗ l + Emp ∗ l ∗ d4 if d ≥ d0.
(5)

d0 =

√
Efs

Emp
(6)

Eelec, Emp, Efs are defined in Table 1.

The reception energy ERx(l, d) de l bits is defined in the Formula 7.320

ERx(l, d) = ERx−elec(l) = Eelec ∗ l (7)

From Formulas 4 and 7, it is evident that Formula 8 is verified.

ETx-elec(l) = ERx−elec(l) = Eelec ∗ l (8)

The electronics energy, represented by Eelec, is influenced by various factors

including digital coding, modulation, filtering, and signal spreading (Heinzelman

et al., 2002).

The nodes CHs aggregate the data (signals) with an energy called EDA, see325

Table 1, to send them to the BS.

Table 1: Energy model parameters

Parametres Values Description

Eelec 50 nJ /bit Required energy to run electronic circuit

Emp 0.0013 pJ /bit/m4 Free space propagation

Efs 10 pJ /bit/m2 Multi path propagation

EDA 5 nJ /bit/ signal required energy for Data aggregation
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3.2. The optimum number of clusters Kopt

The optimal number of clusters (Kopt) given by (Heinzelman et al., 2002),

which is presented in Formula 12, is computed as a function of the energy

consumption of a CH node (Formula 9), a non-CH node (Formula 10), the330

energy consumed by a cluster (Formula 11), the network parameters and the

radio characteristics of the used devices (see Table 1). The essential steps are

described in detail in the following. The complete formal demonstration is in

(Heinzelman et al., 2002). The monitoring area is M*M m2, K is the number

of clusters, dtoCH is the average of the distances of the CHs from the DistBS335

and N is the number of initial nodes.

ECH = lEelec(
N

K
− 1) + lEDA

N

K
+ lEelecd

4
toBS (9)

ENon−CH = lEelec + lEfs
1

2Π

M2

K2
(10)

ECluster = l(NEelec + NEDA + KEmpd
4
toBS + NEelec + NEfs

1

2Π

M2

K2
) (11)

Kopt =

√
N√
2Π

√
Efs

Emp

M

d2toCH

(12)

3.3. The architecture of the DCOPA Protocol340

DCOPA is a distributed hierarchical protocol for clustering-based data com-

munication. A competition is initiated by all nodes in the network with the com-

putation of a timer T(i) based on the residual energy as well as the DistBS for

the election of CHs. The nodes will just need local information. T (i) ∈]0, τ −δ[,

considered as a time strictly less than the duration of the period dedicated to345

the election of the CHs which is (τ). (τ) is a very small time to avoid that

a node becomes a CH once the time of the period (τ) is finished. DCOPA

proceeds in two phases to compose a round. In the set up phase, dedicated

to the designation of the CHs of the current round, each node decrements its

T(i) (see Formula 13) at the beginning of each round. If T(i) runs out, the350

node declares itself CH and informs all its neighbors withn a specific radius

RC which, in turn, withdraw their candidacy for the role of CH by acting as
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normal nodes while waiting for cluster membership solicitations. The steady

state phase, is divided into three periods. During the first period, the normal

nodes send acknowledgment control messages to the nearest CH. In the second355

period, the CHs broadcast a TDMA schedule for the nodes in the cluster to

send their data messages. This period is reserved for the routing of data within

the cluster. During the third period, the CHs aggregate the data and send it to

the BS using the MAC CSMA protocol (Carrier-Sense Multiple Access Media

Access Control). Table 2 describes the variables used in the specification of360

T(i).

Table 2: Variables of T(i)

Variables Description

ditoBS The distance between the node N(i) and the BS.

dMaxtoBS The maximum distance to the BS.

dMintoBS The minimum distance to BS.

EMax The initial energy of the node.

Eri The residual energy of node N(i).

(α) The weight of the energy criterion.

(β) The weight of the distance criterion.

τ the time of the self-election period of CHs.

δ A small positive real number.

T (i) =

 (αEi + βDi)(τ − δ) if i ∈ G

τ − δ otherwise.
(13)

α + β = 1 (14)

Where

• G is the set of nodes which were not CHs during the previous (1/P )

rounds,365

• P = K
Nbrinit

.

• Nbrinit is the initial number of nodes.
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• Ei given in Formula 15 and Di given in Formula 16, are defined as follow

after the normalization process.

370

Ei = (
EMax − Eri

EMax
) (15)

Di = (
ditoBS − dMintoBS

dMaxtoBS − dMintoBS
) (16)

0 ≤ α
EMax − Eri

EMax
+ β

ditoBS − dMintoBS

dMaxtoBS − dMintoBS
< 1 (17)

Formula (17) is verified and demonstrated in (Mir & Meziane, 2023).

4. Simulation and analysis of the impact of the energy and the DistBS

on the performance of DCOPA375

4.1. Network lifetime parameters

Lifetime is considered an important metric in analyzing the performance of

IoT networks, particularly those based on WSNs and which are subject to energy

constraints. The number of live nodes, as a function of time or rounds, is one

of the most frequently used definition of network lifetime. Various descriptions380

and a comprehensive review of WSNs lifetime metrics are provided in (Dietrich

& Dressler, 2009). In our simulations, we used the definitions for the number (or

percentage) of live (or dead) nodes in the network as a function of the number of

rounds (see Figure 13), namely the First Node Dead (FND), the Quarter Node

Dead (QND), the Half Node Dead (HND), the Seventy-Five Percent Node Dead385

(SFND) and the Last Node Dead (LND).

4.2. Analysis of the energy management and the mortality rates

The network consists of (N) nodes deployed randomly in a uniform mode

over an area of M*M m2, the initial energy is the same for all nodes. Two types

of messages are used, control message and data message. Table 3 illustrates390

the network and nodes parameters used in the simulations carried out using

MATLAB 1. The authors in DCOPA used (α = 0.5, β = 0.5), where (α) is the

1https://www.mathworks.com/
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degree of importance (weight) of the energy parameter and (β) the degree of

importance of the DistBS parameter.

395

Table 3: Simulation parameters

Parameters Values Description

M ∗M 1002 m2 Area network

EMax 0.5 J Initial energy

dMintoBS 75 m Nearest point to BS

dMaxtoBS 183 m Furthest point to BS

Sinkx 50 m sink x-axis

Sinky 175 m sink y-axis

MsgCtrl 25 bytes Control Message length

DataMsg 200 bytes Data Message length

Kopt 5 clusters Optimum clusters number (Heinzelman et al., 2002)

In the current simulations, the same assumptions as those made in DCOPA

are applied. The BS has an unlimited energy capacity, the nodes are not dy-

namic and have no hardware system to know their positions, the batteries of the

nodes cannot be recharged or replaced, energy exhaustion is the only cause that

makes a node fail. The nodes can set their communication ranges not exceeding400

the maximum range. In addition to this setting, the weight of the energy and

the DistBS will be varied. The objective of this, is to determine how energy and

DistBS influence the selection of the CHs in each round through a competition

based on the two parameters. Examples of combinations of (α), representing

the weight of energy, and (β), representing the weight of DistBS, have been405

provided, namely the two monocriteria cases((0,1) and (1, 0)) to illustrate the

relevance of the multi-criteria approach and the equitable sharing cases (0.5, 0.5)

and non-equitable ((0.3, 0.7) and (0.7, 0.3)) weights. The simulation results of

these combinations are illustrated in Figures 1 and 2 which contain 6 and 4

sub-figures respectively, each for a particular evaluation.410

In what follows, the focus will be on the aspect of managing the overall

network energy network and the nodes mortality to explain the strength of the
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multi-criteria approach that integrates the nodes energy as well as their DistBS

in the clustering and data communication process.

• Figure (1a), enlarged in Figure (1b) for more clarity, illustrates the amount415

of the total energy in the network as a function of rounds. In the case

(α = 0, β = 1), the network conserves energy for longer periods of time

and consequently obtains a better score for the Last Node Dead (LND)

metric when compared to other combinations. The loss of the first nodes

occurred very early. This behaviour is due, in the first place, to the elec-420

tion of the nodes closest to the BS as CHs because the DistBS is the only

criterion for choosing CHs. The nodes closest to the BS win the competi-

tion for the role of CHs several times through a very short round spacing.

This makes these nodes hot spots with high communication activity in the

network. As a result, their failures would be very early, causing the first425

nodes to dissipate all their energy. The nodes in the middle areas that

were not elected as CHs ensure the preservation of energy. This makes

the network resistant to the last sensor metric that will dissipate all its

energy. The loss of the first nodes occurred very early. This behaviour is

due, firstly, to the election of the nodes closest to the BS as CHs because430

the DistBS is the only criterion for choosing CHs. The nodes closest to

the BS win the competition for the role of CHs several times through

a very short round spacing. This makes these nodes hot spots with high

communication activity in the network. As a result, their failures would be

very early, causing the first nodes to dissipate all their energy. The nodes435

in the middle areas that were not elected as CHs ensure the preserva-

tion of energy. This makes the network resistant to the last sensor metric

that will dissipate all its energy. Secondly, the first elected CHs are the

closest to the BS. By applying the concept of the minimum distance be-

tween the CHs, other CHs will be located at the end of the network, i.e.440

the nodes furthest away from the BS, this combination means that there

will not be a large number of CHs because the distance separating the
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CHs is RC = 50m. Clusters will be formed with a significant number

of normal nodes. Consequently the number of communications with the

BS will be reduced. For the monocriteria combination (α = 1, β = 0),445

the network shows a performance in the FND metric. Once the loss of

the first nodes appears, the mortality would be considerable, i.e. in few

rounds the network undergoes a significant failure of its membership. This

accelerates the loss of the whole network, resulting in the lowest LND of

any other combination. The consequences described above are caused by450

the fact that the nodes with more energy assume the role of CHs because

all the nodes have enough energy (the first few rounds) and that the Dis-

tBS does not intervene in the election condition of CHs. The nodes are

more resistant to failure. A minor energy difference may be a factor in

having CHs nodes that will be different from one round to another. These455

elements can retard the achievement of FND. Nodes which are far from

the BS can proclaim themselves as CHs. Ensuring the aggregation and

sending of data to the BS over very long distances as well as the man-

agement of cluster join messages, cause their failures which engenders an

LND very early. These performances are due to the fact that this combi-460

nation is monocriterion where there is just the consideration of energy as

the only decisive factor for a node to proclaim itself CH. In cases where

both criteria share weights, the results are balanced between better en-

ergy management and better mortality rate compared to the previous two

monocriteria cases. This supports the multi-criteria consideration of the465

authors of DCOPA and more specifically the equitable sharing (α = 0.5,

β = 0.5) of the influence of the energy and DistBS criteria due to their

very close relationship.

• Figure (1c), zooming into Figure (1d) for better visibility of the results,

shows the average energy per node as a function of the rounds. The results470

show that the 5 combinations behave similarly up to round 600. However,

it should be noted that the combination (α = 0, β = 1) resulted in the
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highest average residual energy per node. The combination (α = 1, β = 0)

has the worst result of all combinations. The non consideration of the

parameter DistBS has a very negative influence on the results, this can be475

justified by the fact that choosing nodes as CHs and which are very far

from the DistBS generates an excessive consumption of energy of the CHs

and what is directly reflected on the average energy of the totality of the

nodes of the network. The other combinations, including (α = β = 0.5),

obtained results between the two monocriteria cases (α = 0 ,β = 1) and480

(α = 1 ,β = 0).

• Figure (1e), zooming into Figure (1f) for clarity, gives us information on

the average energy consumed by a node as a function of rounds. When

examining the results, it becomes apparent that if the DistBS is discarded

from the competition function for the role of CH, there will be a noticeable485

improvement in the average consumption compared to the other cases of

combinations with stability and balancing in terms of average energy per

node. This also shows a balanced consumption throughout the lifetime of

the network. In the case of considering the DistBS as the only criterion,

this results in an average energy per node that is not stable with a variation490

that is considered unbalanced. This is due to the fact that there are nodes

which are closer to the BS and which are highly solicited in the role of the

CH independently of their residual energies. This constitutes hot spots

in the network and an unbalanced load distribution. In the cases where

(α) and (β) are varied, there will be average variations between the two495

monocriteria cases.

• Figure (2a), zooming into Figure (2b) for more precision and visibility

of the results, shows the average energy consumed by the network as a

function of the rounds. It is noticeable that in the case of not considering

the energy in the election equation of CHs, the average consumption of500

the network varies in an interval of values which is wider than the other

cases until round 400. A slight decrease is observed in the interval between
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rounds 400 and 600. Starting from round 600, the consumption decreases

in a considerable and accelerated way. This allows us to conclude that

the absence of the consideration of energy as one of the factors in the505

election of CH generates an unstable and unbalanced consumption across

the rounds. This is due to the hot spots which are the nodes bordering

the network which and closest to the BS, i.e. they are highly solicited

for the role of CH, this excludes the nodes in the middle for the role of

CHs because of the considered clustering radius in DCOPA. The case510

where considering just the energy as the main factor in the equation, the

balancing is maintained until round 800 with a slight variation. From the

round 800, a gradual decrease is observed, which is not abrupt compared

to the previous case. For the cases of variation of (α) and (β), the average

consumption is between the two preceding cases.515

• Figure (2c), zooming into Figure (2d) in order to visualise better the

variations of the graphs, gives us an indication of the mortality of the

nodes in the network. For (α = 0, β = 1), i.e. the energy is excluded in

the selection process of CHs, the mortality and the loss of nodes is very

considerable and sudden compared to other combinations. This sudden520

loss of nodes continues until round 900 where there is an improvement in

mortality compared to other cases. In the case of the combination (α = 1,

β = 0), the obtained results are very satisfactory compared to other cases

until around round 900 where the network loses its performance in terms

of mortality rate comparing it to all the other combinations. In the cases525

where (α) and (β) share the weights, the performance of the network is

between the two extreme cases (monocriteria). This justifies the multi-

criteria approach to preserve the two positive impacts of including energy

and DistBS in the competition of election of CHs and the formation of

their clusters.530

Discussion 1: Through the simulations, some very interesting conclusions

were extracted, in particular the degree of influence of the weights of the criteria
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Figure 1: DCOPA performances With (α, β) variation

(Total network energy and Average node’s energy (consumed and residual))
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Figure 2: DCOPA performances With (α, β) variation.

Average network energy consumption and Number of alive nodes

(energy and DistBS ) in the election competition of the set of CHs in the net-

work and their impacts on the performance of the network in terms of energy

management of the nodes and the network, load balancing, rotation of the role535

of the CH between nodes and the degree of loss of nodes in the network. The

aspect of global network energy management and node mortality is emphasized

in our conclusions to explain the advantage of the multi-criteria approach that

integrates the energy of the nodes as well as their DistBS into the clustering
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process. It was noted that the network preserves the energy with the combi-540

nation (α = 0, β = 1), this is the result of the election of the nodes close to

the BS as CHs. With the application of the concept of the minimal distance

between the CHs there will be other CHs at the extremity of the network. This

ensures that there is not a large number of CHs because of the constraint of the

minimum distance between two CHs (greater than 50 m in our case). There will545

be clusters with a large number of normal nodes. This means that the number

of communications with the BS is reduced. As the same nodes can assume the

role of CH several consecutive times, early nodes will be present that deplete

their energies very early and will have a high mortality. On the other hand,

nodes that did not obtain the role of CH that are in the middle regions of the550

network can preserve their energies and improve the LND metric accordingly.

Concerning the combination (α = 1, β = 0), a better energy balancing result

will be obtained. This keeps the network in its entirety for more time than the

previous cases. After this stable period, the network is not impacted abruptly

by the mortality rate. In the cases where the two criteria share the weights, the555

results are balanced between a good energy management and a better mortality,

which supports the consideration and the choice of the authors of DCOPA for

the combination (α = 0.5, β = 0.5). This is clearly illustrated in Figures 1 and

2.

4.3. Simulations and analysis of scalability performance560

Scalability is one of the most important properties of any protocol, espe-

cially those dedicated to clustering and routing in IoT networks because of the

large number of devices and nodes in their applications. This means that if a

protocol does not guarantee scalability, it has a significant drawback. In what

follows, this aspect is evaluated for the DCOPA protocol with different weights565

of the criteria involved in the selection of CHs, namely energy and DistBS. A

total of 9 networks were generated, ranging from 100 to 500 nodes with an

increment of 50 nodes for each network, deployed under the same previously

stated conditions. Three combinations of (α) and (β) were simulated for the 9
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networks. The results were then compared to the same protocols used in (Mir570

& Meziane, 2023), namely LEACH, LEACH-MAC and TB-LEACH in terms of

network lifetime for which The FND, QND, HND, SFND, and LND were cho-

sen. The simulations results shown in Figures 3, 4 and 5 for the combinations

(α = 0.5, β = 0.5), (α = 0.3, β = 0.7) and (α = 0.7, β = 0.3) respectively,

illustrate that the DCOPA protocol supports scalability compared to other pro-575

tocols.

Discussion 2: As observed through all the sub-figures of all the Figures (3,

4 and 5) presenting FND, QND, HND, SFND and LND for the different sizes

of the network (initial number of nodes), DCOPA shows that it outperforms580

other protocols in terms of scalability by keeping its energy conservation prop-

erties and better lifetime in all the metrics considered. Concerning LEACH

and TB-LEACH, the results show that they do not support scalability. As

the number of nodes increases, these protocols exhibit a decrease in lifetime

metrics. LEACH-MAC shows through the results its support of scalability by585

keeping this performance for the considered metrics. In addition to the fact

that energy and DistBS are involved in the competition of nodes for the role of

the CH, there are other well-founded and convincing arguments that DCOPA

is a scalable protocol and that this performance will not be affected in large-

scale IoT networks. The arguments presented below apply to both combina-590

tions with equitable (α = β = 0.5) and non-equitable ((α = 0.3, β = 0.7) and

(α = 0.7, β = 0.3)) criteria weights. The main properties of DCOPA ensure

that increasing the number of nodes also causes an increase in the number of

competing nodes. To avoid having a small number of clusters with a large num-

ber of normal nodes, the optimal number of CHs must also increase. Similarly,595

to avoid the formation of large clusters and a large inter-cluster communication

radius, the clustering radius must decrease as the number of nodes increases.

DCOPA is less efficient in terms of the FND metric, this is the result of the

re-election of some isolated nodes as CHs for many rounds consecutively until

their total exhaustion. These nodes were not solicited by other CHs nodes al-600
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though their competition times are pushed towards (τ − δ) which makes their

energy consumption very considerable in each round.

4.4. Analysis of clusters load balancing and distribution of CHs and their mem-

ber nodes

A clustering protocol in IoT environments need to take into consideration605

other very important metrics such as load balancing between clusters in terms

of the number of nodes, the distribution of member nodes and the area of its

extent as well as its shape and the distribution of CHs along the entire deploy-

ment area. If these properties or metrics are ensured by a clustering protocol,

inevitably, there will be a better management of the energy constraints related610

to the activities of the clustering process and the data communication processes.

This means that a better energy efficiency and a prolonged lifetime of the net-

work are obtained. In this same context, the Figures 6, 7, and 8 are used to

illustrate the load balancing of the clusters, their density, their distribution as

well as the positioning of the CHs across the network. The exploration of these615

properties was performed for 100 nodes in Figure 6, 300 nodes in Figure 7, and

500 nodes in Figure 8. The parameters (α = 0.5, β = 0.5) were maintained.

The objective of repeating the same experiments and simulations, varying the

number of nodes, is the checking of the scalability support at the clusters load

balancing level, the clusters density, the number of clusters and the distribu-620

tion balancing of the CHs at the scaling up. This property is a key element of

IoT applications, in particular those based on wireless sensor networks. The

following will provide a description of the Figures 6, 7, and 8. Subsequently, the

conclusions will be synthesized and the factors that impact their results will be

discussed.625

• It is clearly apparent from Figures (6a), (7a), and (8a) for the 100, 300,

and 500 nodes, respectively, that it is possible to distinguish between the

different clusters by their colours and shape as well as by the distribution
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Figure 3: Percentage Nodes Dead as a function of initial number of nodes for (α = 0.5) and

(β = 0.5)
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Figure 4: Percentage Nodes Dead as a function of initial number of nodes for (α = 0.3) and

(β = 0.7)
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Figure 5: Percentage Nodes Dead as a function of initial number of nodes for (α = 0.7) and

(β = 0.3)
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of the CHs in the deployment surface. In addition, the degree of concen-630

tration or density of nodes within the same cluster in well-defined areas

can also be observed.

• In Figures (6b), (7b) and (8b) for respectively 100, 300 and 500 nodes, lin-

ear plots, which are the result of applying the concept of multiple linear635

regression(Saporta, 2006), have been carried out. It consists in applying

the linear regression for each cloud of points of the same colour or of the

same cluster in our context. This regression aims to graphically represent

the most appropriate straight line to be applied to a cloud of points from

the same cluster by minimising the sum of the squares of the distances640

between the points and the line. This makes it possible to check for the

presence or absence of nodes that are far from the line drawn.

• The pairs of Figures (6c, 6d), (7c, 7d) and (8c, 8d) for 100, 300 and 500

nodes respectively, plot the joint distribution of two variables X and Y ,645

which represent the position of each node in the network, adding marginal

axes that show the univariate distribution of each separately.

• Figures (6e), (7e) and (8e) for 100, 300 and 500 nodes, respectively, show

the residual energies of the nodes that did not dissipate a large amount of650

energy because they do not have any communication to the BS, contrary

to the CHs that communicate their aggregated data.

• Figures (6f), (7f) and (8f) for respectively 100, 300 and 500 nodes, show

the DistBS of the nodes and the CHs that form a same cluster.655

Discussion 3: The very interesting properties of DCOPA are highlighted from

simulations of its functioning and architecture. These properties concern key
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aspects of any clustering protocol. The results shown in Figures 6, 7 and 8

illustrate that the DCOPA protocol ensures a homogeneous distribution of CHs660

and clusters on the deployment surface and a load balancing of clusters on the

density aspect in terms of number of member nodes (distribution). These results

are well maintained even when increasing the number of nodes in the network,

which attributes to DCOPA the property of scalability. The achievement of

these characteristics is due to the functioning of DCOPA and its architecture.665

All the nodes of the network participate in a competition to win the role of CH.

Nodes with a minimum weighted sum have more chance to declare themselves

as CH, then broadcast an announcement message on a Communication Radius

called RC, see (Mir & Meziane, 2023), which is calculated based on the optimum

number of CHs in the network which is sensitive of the initial number of nodes.670

The value of RC decreases as the number of nodes increases to obtain a greater

number of clusters, to avoid clusters which contain a sizeable number of nodes

and to distribute the load of member nodes over a large number of clusters.

Figures (6c, 6d), (7c, 7d) and (8c, 8d) for 100, 300 and 500 nodes respectively,

show this highly connected relationship between the number of initial nodes,675

the RC, the number of clusters and the load distribution of member nodes and

CHs. The support of scalability is well demonstrated by DCOPA by providing

a smooth distribution of CHs and clusters. In conclusion, DCOPA produces a

virtual and dynamic grid of CHs and their clusters by analysing the Figures

(6a), (7c), (8a) for respectively 100, 300 and 500 nodes.680

4.5. Covariance and linear correlation

In what follows, it is necessary to define the statistical elements required for

the analysis of the impact of the initial number of nodes and the variation of

(α, β) on the defined lifetime parameters. To better understand the influence of

one parameter on another, the linear correlation coefficient and the covariance685

of two statistical series (Saporta, 2006) were used.
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(f) The DistBS of CHs nodes and normal nodes

that form the same cluster

Figure 6: Analysis of clusters load balancing and distribution of CHs and their member

nodes (100 nodes)
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regression

0 20 40 60 80 100
X

20

0

20

40

60

80

100

Y

CHLabel
63
101
133
178
219
221
273
298

(c) Joint distribution and univariate distribution

(Clusters)

20 0 20 40 60 80 100 120
X

20

0

20

40

60

80

100

120

Y

CHLabel
63
101
133
178
219
221
273
298

(d) Joint distribution and univariate distribution

(Nodes)

80 100 120 140 160 180
DistBS

0.4825

0.4850

0.4875

0.4900

0.4925

0.4950

0.4975

0.5000

En
er

gy

CHLabel
63
101
133
178
219
221
273
298

(e) The residual energies of the CHs nodes and

the normal nodes that form the same cluster

N CH
Role

80

100

120

140

160

180

D
is

tB
S

CHLabel
63
101
133
178
219
221
273
298

(f) The DistBS of CHs nodes and normal nodes

that form the same cluster

Figure 7: Analysis of clusters load balancing and distribution of CHs and their member

nodes (300 nodes).
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(f) The DistBS of CHs nodes and normal nodes

that form the same cluster

Figure 8: Analysis of clusters load balancing and distribution of CHs and their member

nodes (500 nodes)
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4.5.1. Covariance of two statistical series

The covariance of two statistical series x = x1, x2, . . . , xn and y = y1, y2, . . . , yn

having the same number of elements is defined by:690

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (18)

=
1

n− 1
[

n∑
i=1

xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
] (19)

=
1

n− 1
[

n∑
i=1

xiyi − nxy] (20)

x =

∑n
i=1 xi

n
=

x1 + x2 + ... + xn

n
(21)

y =

∑n
i=1 yi
n

=
y1 + y2 + ... + yn

n
(22)

This is the average of the products of the deviations of the values from the mean

of each series.

• If x and y are positively associated, then Cov(x, y) will be large and695

positive

• If x and y are negatively associated, then Cov(x, y) will be large and

negative

• If the variables are not positively nor negatively associated, then Cov(x, y)

will be small700
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4.5.2. Linear correlation coefficient

The linear correlation coefficient of two statistical series is defined by : r

r =
1

n− 1

n∑
i=1

(
xi − x

sx
)(
yi − y

sy
) (23)

sx =

√∑n
i=1(xi − x)2

n− 1
and sy =

√∑n
i=1(yi − y)2

n− 1
(24)

r =
Cov(x, y)

sxsy
(25)

The linear corelation coefficient quantifies the strength of the linear relationship705

between x and y

• Always falls between −1 and +1

• A positive r value indicates a positive association

• A negative r value indicates a negative association

• r value close to +1 or −1 indicates a strong linear association710

• r value close to 0 indicates a weak association.

4.5.3. Correlation matrix

When there are several variables defined on the same set of individuals, often,

the calculation of all correlation coefficients between variables taken two by two715

is desired. It is useful to gather these coefficients in a single table (matrix) of

which :

• The rows and columns represent the variables.

• The intersection of the row l and the column k, is r(l,k), correlation coef-

ficient between the variables l and tk.720

This table is symmetrical: r(k, l) = r(l, k). Its diagonal has only the value 1:

r(k, k) = 1.
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alpha beta FND QND HND SFND LND

alpha 1

beta -1 1

FND 0.464682 -0.46468 1

QND 0.852182 -0.85218 0.27123 1

HND 0.556355 -0.55636 0.393084 0.726483 1

SFND -0.75399 0.753987 -0.28545 -0.91548 -0.83547 1

LND -0.86921 0.869208 -0.58465 -0.92572 -0.79682 0.863776 1

Figure 9: Correlation Matrix of lifetime parameters for a network of 100 nodes depending on

the (α, β) variation

4.6. Analysis of the impact of the variation of the initial number of nodes and

the weights (α, β) on the lifetime parameters

4.6.1. Setting the initial number of nodes and varying the weights (α, β)725

Simulations were performed on networks of varying sizes in terms of the

initial number of nodes (NbrNdInit), ranging from 100 to 500 nodes with an

increment of 50 nodes at each iteration. For each network, the variations of

the (α, β) combinations were examined as well as the initial number of nodes

in order to evaluate the simultaneous impact of these two parameters on the730

lifetime parameters such as FND, QND, HND, SFND and LND. In other words,

the lifetime parameters were studied as a function of scalability and the interest

given to each criterion included in the selection process of the CHs. The lifetime

parameters obtained for networks of 100, 300, and 500 nodes with variations of

the (α, β) combinations are given in Tables 4, 5, and 6, respectively. Next, the735

correlation matrices of the lifetime parameters as a function of the variation of

(α, β) were presented. These matrices are shown in Figures 9, 10, and 11 for

networks of 100, 300, and 500 nodes, respectively. Mathematical and statistical

methods mentioned and explained in sections 4.5.1, 4.5.2, and 4.5.3 were used to

analyze the data and determine the correlation between the different parameters740

considered.

Discussion 4: As so well illustrated by the values given in the Tables 4, 5 and 6

and by the correlation coefficients defined in Figures 9, 10 and 11, it is observed,

firstly, that scalability is well ensured. The number of nodes in the network

does not influence the results of the correlation coefficients in all combinations745
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Table 4: Lifetime parameters obtained based on the variation of (α, β) weights with 100

nodes

Lifetime Parameters

NbrNdInit (α, β) VALUES FND QND HND SFND LND

100

(0, 1) 426 733 860 1071 1410

(0.1, 0.9) 430 749 890 1024 1390

(0.2, 0.8) 428 806 889 983 1362

(0.3, 0.7) 420 841 889 992 1346

(0.4, 0.6) 423 834 899 990 1332

(0.5, 0.5) 435 834 900 994 1328

(0.6, 0.4) 438 848 897 985 1323

(0.7, 0.3) 443 855 899 974 1301

(0.8, 0.2) 454 851 895 976 1304

(0.9, 0.1) 412 860 887 976 1338

(1, 0) 454 858 897 977 1299

Table 5: Lifetime parameters obtained based on the variation of (α, β) weights with 300

nodes

Lifetime Parameters

NbrNdInit (α, β) VALUES FND QND HND SFND LND

300

(0, 1) 283 645 904 1301 1717

(0.1, 0.9) 349 704 912 1233 1738

(0.2, 0.8) 432 751 931 1199 1694

(0.3, 0.7) 447 805 967 1132 1555

(0.4, 0.6) 605 869 974 1083 1393

(0.5, 0.5) 639 911 982 1053 1299

(0.6, 0.4) 525 932 991 1044 1230

(0.7, 0.3) 563 957 993 1047 1179

(0.8, 0.2) 599 964 994 1052 1141

(0.9, 0.1) 632 968 1000 1048 1111

(1, 0) 632 971 1007 1049 1090

alpha beta FND QND HND SFND LND

alpha 1

beta -1 1

FND 0.860312 -0.86031 1

QND 0.949265 -0.94927 0.933077 1

HND 0.933457 -0.93346 0.922107 0.983536 1

SFND -0.87618 0.87618 -0.9411 -0.97929 -0.97686 1

LND -0.96874 0.968736 -0.88797 -0.97534 -0.95822 0.923369 1

Figure 10: Correlation Matrix of lifetime parameters for a network of 300 nodes depending

on the (α, β) variation
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Table 6: Lifetime parameters obtained based on the variation of (α, β) weights with 500

nodes

Lifetime Parameters

NbrNdInit (α, β) VALUES FND QND HND SFND LND

500

(0, 1) 159 646 998 1317 1863

(0.1, 0.9) 150 746 978 1213 1853

(0.2, 0.8) 152 806 972 1156 1700

(0.3, 0.7) 158 874 985 1104 1485

(0.4, 0.6) 181 914 994 1074 1346

(0.5, 0.5) 169 947 990 1066 1248

(0.6, 0.4) 218 963 995 1064 1200

(0.7, 0.3) 229 963 1007 1063 1155

(0.8, 0.2) 208 968 1004 1063 1129

(0.9, 0.1) 229 973 1013 1061 1102

(1, 0) 227 974 1016 1063 1093

alpha beta FND QND HND SFND LND

alpha 1

beta -1 1

FND 0.860312 -0.86031 1

QND 0.949265 -0.94927 0.933077 1

HND 0.933457 -0.93346 0.922107 0.983536 1

SFND -0.87618 0.87618 -0.9411 -0.97929 -0.97686 1

LND -0.96874 0.968736 -0.88797 -0.97534 -0.95822 0.923369 1

Figure 11: Correlation Matrix of lifetime parameters for a network of 500 nodes depending

on the (α, β) variation
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of (α, β). This reveals a very interesting property of DCOPA, which is the

maintenance of performance in the case of scaling up. Secondly, for the three

networks, the (α) weight of energy has a strong positive linear association with

the parameters FND and HND and a strong negative linear association with the

parameters SFND and LND. This means that when the (α) weight of energy750

increases, the values of FND and HND also increase while the values of SFND

and LND decrease. This relationship is observed through the linear correlation

coefficients and correlation matrices obtained. For the weight (β) associated

with the criterion of the DistBS, it is exactly the opposite when comparing it

with the correlation of (α) with all lifetime parameters. Secondly, for the three755

networks, the (α) weight of energy has a strong positive linear association with

the parameters FND and HND and a strong negative linear association with the

parameters SFND and LND. This means that when the (α) weight of energy

increases, the values of FND and HND also increase while the values of SFND

and LND decrease. This relationship is observed through the linear correlation760

coefficients and correlation matrices obtained. For the weight (β) associated

with the criterion of the DistBS, it is exactly the opposite when comparing it

with the correlation of (α) with all lifetime parameters. this can be explained

by the fact that when more interest is assigned to energy it positively affects

the lifetime parameters, namely FND, QND and HND. This is due to the fact765

that the nodes have enough energy at the launch of the network. The high

probability of electing nodes far away from the BS as CHs does not lead to

their failures, i.e., they have enough energy to withstand data communications

over large distances. The fact that the network undergoes a considerable loss of

energy and nodes after a significant number of rounds causes a situation where770

the subsequently selected nodes may be at a considerable distance from the BS,

which accelerates their failure. For the variation of (β), which is associated with

the criterion of the DistBS, the correlation results are exactly the opposite of

those of (α). This is due to the fact that favouring the criterion of DistBS over

the energy criterion generates hotspots which are the nodes closest to the BS775

that will frequently be elected as CHs which engenders the gradual failure of the
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network starting from the nodes of the closest regions of the BS to the nodes of

the most distant regions. Excluding the more energetic nodes that are further

away from the BS from the role of the CH, generates a progressive propagation

of node failure in the opposite direction of the BS. This allows us to obtain a780

strong positive linear correlation with the SFND and LND parameters.

4.6.2. Setting the weights (α, β) and varying the initial number of nodes

The linear correlation coefficients were calculated (the Correlation Matrix)

between the initial number of nodes parameter with the lifetime parameters to

measure the strength and direction of their linear relationship with all (α, β)785

variations considered. Each network, ranging from 100 to 500 nodes with an

increment of 50 nodes at each iteration, is simulated with a set of (α, β) combi-

nations. The results of the correlation coefficients are presented in Figure 12.

alpha beta alpha beta alpha beta alpha beta alpha beta alpha beta

0 1 0.1 0.9 0.2 0.8 0.3 0.7 0.4 0.6 0.5 0.5

NbrNdInit NbrNdInit NbrNdInit NbrNdInit NbrNdInit NbrNdInit

NbrNdInit 1 NbrNdInit 1 NbrNdInit 1 NbrNdInit 1 NbrNdInit 1 NbrNdInit 1

FND -0.7284 FND -0.5221 FND -0.37527 FND -0.31961 FND -0.1903 FND -0.10956

QND -0.54114 QND 0.27053 QND 0.321312 QND 0.60795 QND 0.891275 QND 0.950689

HND 0.837462 HND 0.854815 HND 0.964249 HND 0.93368 HND 0.941336 HND 0.896137

SFND 0.884706 SFND 0.761829 SFND 0.632338 SFND 0.685194 SFND 0.756168 SFND 0.666174

LND 0.95278 LND 0.9389 LND 0.838279 LND 0.591557 LND 0.345075 LND -0.31682

alpha beta alpha beta alpha beta alpha beta alpha beta

0.6 0.4 0.7 0.3 0.8 0.2 0.9 0.1 1 0

NbrNdInit NbrNdInit NbrNdInit NbrNdInit NbrNdInit

NbrNdInit 1 NbrNdInit 1 NbrNdInit 1 NbrNdInit 1 NbrNdInit 1

FND 0.017463 FND -0.01712 FND -0.09654 FND 0.016915 FND -0.00818

QND 0.933301 QND 0.880091 QND 0.860645 QND 0.852339 QND 0.843565

HND 0.880826 HND 0.937474 HND 0.917377 HND 0.906534 HND 0.898991

SFND 0.619003 SFND 0.672747 SFND 0.685209 SFND 0.78179 SFND 0.836529

LND -0.4512 LND -0.65502 LND -0.72407 LND -0.70966 LND -0.72804

Figure 12: Correlation matrix for the NbrNdInit with lifetime parameters as a function of

the weights (α, β)

Discussion 5: The correlation matrix presented in Figure 12 illustrates the

relationships between the initial number of nodes (NbrNdInit) and the lifetime790

parameters (FND, QND, HND, SFND and LND) for different combinations of

(α, β). The discussion has been divided into two subsections presented below,

namely conclusions and arguments.
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1. Conclusions795

• The NbrNdInit and the (α, β) combinations: the correlation between

the NbrNdInit and the:

– FND is negative for the combinations (α, β) going from (0, 1) to

(0.5, 0.5). This means that when NbrNdInit increases for these800

(α, β) combinations, the FND decreases. It ends up becoming

slightly positive for the combinations (α, β) going from (0.6, 0.4)

to (1, 0).

– QND is positive for all combinations (α, β) except (0, 1). This

means that when the NbrNdInit increases for these (α, β) com-805

binations, the QND also increases.

– HND is positive for all combinations (α, β). This means that

when NbrNdInit increases for these (α, β) combinations, the HND

also increases.

– SFND is also positive for all combinations (α, β).810

– LND is positive with the combinations (α, β) going from (0, 1) to

(0.4, 0.6) and a negative correlation for the combinations (α, β)

going from (0.5, 0.5) to (1, 0).

• The NbrNdInit with (α) and (β) independently: The correlation be-815

tween the NbrNdInit and the

– FND becomes less negative when (α) increases and (β) decreases.

– QND becomes more positive when (α) increases and (β) de-

creases.

– HND remains positive but decreases slightly when (α) increases820

and (β) decreases.

– SFND becomes more positive when (α) increases and (β) de-

creases.
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– LND becomes less positive then negative when (α) increases and

(β) decreases.825

2. Arguments

• At the start of the network, the nodes have enough energy to sup-

port long distance data communications if the energy criterion (α)830

is privileged. But after several rounds of execution, the nodes that

will be selected as CHs may be far from the BS. The antra and inter

cluster activity accelerates their depletion.

• The correlation results for the variation of (β) are the opposite of

those for (α). Privileging the DistBS criterion over the energy crite-835

rion creates hotspots and a progressive failure of the network starting

from the nodes nearest to the nodes furthest from the BS. This gives

rise to a strong positive correlation between the SFND and LND

parameters.

• The correlation results for the variation of (α, β) which are close to840

(0.5, 0.5) and which mean that the energy criterion and the DistBS

criterion share more or less equally the weights, privilege at the same

time the nodes which make a compromise between the two criteria in

consideration for their election as CHs. These combinations optimise

energy consumption and increase the lifetime of the network.845

5. Vector of Performances Indicators

In this section, a new formal notation called Vector of Performance Indicators

(VPI) is presented, which is used to evaluate and measure the performance of

a sensitive and energy limited IoT network. The VPI is represented as a set of

indicators synthesised from the graph of node mortality as a function of rounds.850

This set of parameters constitutes a vector of 07 positions defined below. The
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initial definition of two main properties of the VPI forms the basis of the other

parameters.

• The JuMping Point (JMP) which indicates the round where the node

loss has reached a certain percentage D1% (e.g. TwPND:Twinty Per-855

cent Nodes Dead or TePND: Ten Percent Nodes Dead) which is chosen

according to the sensitivity of the application to node loss as well as its

functioning. The JMP is considered as a jump point in the mortality

graph.

• The DRop Point (DRP), which is the indicator of the round in which the860

mortality graph dropped after the JMP, i.e. the round in which the net-

work lost a significant amount (percentage) of D2% nodes (e.g. 80% or

90% of lost nodes). The DRP is also designated according to the appli-

cation and its objectives, as well as the stability of the network once the

network has lost a significant number of nodes.865

It is very important to note that the comparison of two protocols is done under

the same conditions and assumptions. The VPI of a Network i (Nti) is sym-

bolized V PI(Nti)=(FND, FPND, DRP, LND, FLR, SLR, TLR). If the value

of the element (j) of the vector VPI needs to be specified, it is mentioned as

V PI(Nti, j). All the parameters of the VPI are well explained hereafter as well870

as schematised in Figure 13.

• V PI(Nti, 1) : FND (First Node Dead), the round of the first node dead.

• V PI(Nti, 2) : FPND (forty percent Nodes Dead(40%)), the round where

the network has lost forty percent of the nodes.

• V PI(Nti, 3) : DRP (NPND (Ninety percent Nodes Dead(90%)), the875

round where the network lost ninety percent of the nodes.

• V PI(Nti, 4) : LND (Last node Dead), specifies the round of the last node

dead.
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Figure 13: Illustration of the VPI parameters: DCOPA

(α = 0.5, β = 0.5), D1 = 20% and D2 = 80%

• V PI(Nti, 5) : FLR (First Level Resistance), this indicator measures the

performance of the network resisted until the JMP round where the net-880

work loses 10% (TePND) of its nodes.

• V PI(Nti, 6) : SLR (Second Level Resistence), it is the extent of the

interval between the JMP and the DRP.

• V PI(Nti, 7) : TLR (Third Level Resistence), it is the extent of the interval

between the DRP and LND.885

This performance formalisation, represented as a vector of integer values, is

composed of three resistance levels and four round numbers that focus on very

interesting metrics of an energy sensitive IoT network, namely the first and

last node dead, the JMP and DRP. This representation allows us, firstly, to

compare any two protocols applied to the same network conditions, in terms of890

lifetime and death rate, and secondly, to indicate the weak and strong points

of a protocol by making reference to the different parameters of the VPI. In a

global way, when developing a clustering and communication protocol in IoT

with energy and lifetime optimisation, it is necessary to control and maximise
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all these parameters of the VPI.895

6. ADCOPA : Adaptive-DCOPA

6.1. The VPI of DCOPA by varying (α, β)

The DCOPA protocol was simulated using MATLAB with various static

(α, β) combinations. The network configuration presented in the Table 3, the

assumptions that were made and the power model that was presented, section900

3.1, are similar to the simulation conditions of DCOPA. An in-depth analysis

was carried out on the influence of the weighting of the two criteria used. The

performances are illustrated in Figure (14a), and the V PIs of each combination

were obtained, which are listed in Table 9. The value of (D1 = 10%) and

(D2 = 90%) was chosen to specify JMP and DRP, respectively. Our objective905

is to make findings on the mortality or degree of loss of nodes using a comparison

based on the seven parameters VPI for the set of simulated static combinations.

The assumptions are listed below.

• The BS has an unlimited energy supply.

• The nodes remain stationary.910

• The nodes do not possess the equipment to determine their own positions.

• The batteries within the nodes are not replaceable.

• A node will only fail if its energy is entirely depleted.

• All nodes have the ability to adjust their ranges based on their distance

from the receiver(s).915

After these simulations with static (α, β) combinations and an in-depth analysis

of the graphs of Figure (14a) and specifically Figure (14b) which shows the two

monocriteria cases and the one of equal weights for more clarity. Interesting

observations and conclusions were drawn concerning the influence of the weights920
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Figure 14: Percentage Nodes Dead as a function of rounds

assigned to energy and DistBS on lifetime, mortality rate and the three levels

of resistance defined in the VPI parameters. Two monocriteria cases, (α = 1,

β = 0) and (α = 0, β = 1), were considered, along with several multicriteria

cases that will be evaluated in the following.

• (α = 1, β = 0): the network shows a performance in the FLR metric.925

After the JMP, the mortality is very significant, i.e., in a few rounds the

network has lost a large number of nodes so that the combination has not

obtained a satisfactory score in the SLR metric. From the DRP onwards,

the mortality stabilises until the last node dead (LND). The LND metric

is the lowest of all considered combinations. Contrary to the FLR value,930

the network in this case shows a more low TLR compared to others.

The VPI of the network, by applying this combination, is presented in

vector below and also illustrated in Table 7.

VPI (N) = (454, 890, 980, 1299, 837, 143, 319).

935

Discussion 6: This is due to the fact that this combination is firstly
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Table 7: VPI obtained with static weights (1, 0)

Lifetime Parameters Resistance Levels

(α, β) FND FPND DRP LND FLR SLR TLR

(1, 0) 454 890 1038 1299 810 228 261

monocriteria where there is just the consideration of energy as the only

decisive factor for a node to proclaim itself as CH. The consequences

described above are due to the fact that nodes with more energy take

on the role of CHs, which increases the resistance at the first level (FLR)940

because all nodes have enough energy when the network is launched. At

a certain (lower) energy threshold and not checking the DistBS of some

nodes in the CHs choice condition, some nodes far away from the BS can

be chosen for the role of the CH. When aggregating and sending data to

the BS over a very long distance as well as sending and receiving cluster945

join messages, this causes their failures which gives rise to a fast drop in

the network and thus a less satisfactory result in terms of the two levels of

resistance, namely SLR and TLR. As a result, a very early LND relative

to the other cases studied will be observed.

• (α = 0, β = 1) : in this case, the network starts losing nodes very early950

and resists more for the last nodes that will dissipate all their energy. A

better case of LND of all combinations was noticed. Very early, the JMP

parameter will be obtained, while the DRP parameter will be identified

later, enabling a better SLR to be obtained. After the DRP, the network

soon goes to extinction, which results in a lower TLR metric.955

The VPI of the network, by applying this combination, is presented in

vector below and also illustrated in the Table 8.

VPI (N)=(426, 799, 1192, 1410, 705, 487, 218).

Discussion 7: The mortality results observed in this combination, which

is also monocriteria by considering just the DistBS as the only criterion960

for self-selection of CHs, are due to the fact that the nodes closest to the
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Table 8: VPI obtained with static weights (0, 1)

Lifetime Parameters Resistance Levels

(α, β) FND FPND DRP LND FLR SLR TLR

(0, 1) 426 799 1167 1410 651 516 243

DistBS act as CHs several times over very short periods. This makes

these nodes hot spots with high communication activity in the network.

As a result, their failure is accelerated. That is, very soon, the first nodes

dissipating all their energy appear as well as the appearance of the net-965

work’s drop point, namely the JMP, thus a first level of resistance (FLR)

that is less efficient. In this way, the mortality of more and more nodes

close to the BS gradually increases. This implies a more advanced DRP,

a second level of resistance and a more consistent LND.

• (α ̸= 0 and β ̸= 0): the combinations studied are listed in the column (α,970

β) of the Table 9. The performances VPI are between those of the two

monocriteria cases previously mentioned. If the value of (α) is increased,

the VPI performances tend to approximate those of the case where (α =

1, β = 0). On the other hand, if the value of (β) is increased, the VPI

performances tend to approximate those of the case where (α = 0, β = 1).975

In terms of the metrics of the vector VPI, the combination (α = 0.5,

β = 0.5), obtained very satisfactory results on the three levels of resistance

FLR, SLR and TLR as well as the metrics FND and LND which qualified

as average. This strongly justifies the authors’ choice in DCOPA (Mir &

Meziane, 2023).980

Discussion 8: the performance of the VPI retained during the execution

of the combinations (α ̸= 0 and β ̸= 0) highlighting the multi-criteria

aspect of energy and DistBS for the designation of the CHs, is due to the

fact of avoiding the considerations resulting from the monocriteria cases,

i.e. the hotspots in the case (α = 0, β = 1) and the more distant nodes985

of the BS which win the competition because of their consequent energies
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Table 9: VPI obtained with different static weights (100 nodes)

Lifetime Parameters Resistance Levels

(α, β) FND FPND DRP LND FLR SLR TLR

(1, 0) 454 890 1038 1299 810 228 261

(0.9, 0.1) 412 882 1031 1338 830 201 307

(0.8, 0.2) 454 882 1058 1304 815 243 246

(0.7, 0.3) 443 875 1063 1301 808 255 238

(0.6, 0.4) 438 874 1081 1323 802 279 242

(0.5, 0.5) 435 872 1088 1328 801 287 240

(0.4, 0.6) 423 872 1110 1332 755 355 222

(0.3, 0.7) 420 874 1131 1346 726 405 215

(0.2, 0.8) 428 862 1142 1362 690 452 220

(0.1, 0.9) 430 837 1143 1390 676 467 247

(0, 1) 426 799 1167 1410 651 516 243

in the case (α = 1, β = 0) and which lead to their failure because of

the long distances of communication with the BS. By avoiding these two

disadvantages, the nodes that are likely to win the competition for the role

of CHs will be those that are closer to the BS and have at the same time990

enough energy. This means that these combinations avoid the extremities

in terms of VPI of the two monocriteria cases by obtaining results with

levels of resistance and lifetime that are close to the average of the two

monocriteria cases.

6.2. Study of the linear correlation of VPI parameters995

In what follows, the linear correlation will be studied between the parameters

VPI in order to understand the influence of one parameter on another through

the definition of the linear correlation coefficients. Figure 15 represents the

calculated linear correlation coefficients of the parameters VPI of the cases and

the simulations values given in Table 9. The main points are:1000

• (α) influences positively (strong linear correlation (r value close to +1))

and (β) influences negatively (strong linear correlation (r value close to

−1)) the parameters VPI :
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alpha beta FND FPND DRP LND FLR SLR TLR

alpha 1

beta -1 1

FND 0.465711 -0.46571 1

FPND 0.813583 -0.81358 0.299374 1

DRP -0.82298 0.822979 -0.18348 -0.8274 1

LND -0.86921 0.869208 -0.58171 -0.90054 0.769052 1

FLR 0.857936 -0.85794 0.260338 0.875936 -0.94429 -0.87343 1

SLR -0.85474 0.854739 -0.23068 -0.86711 0.981553 0.840388 -0.98979 1

TLR 0.270703 -0.2707 -0.39313 0.240989 -0.66458 -0.03348 0.455453 -0.55234 1

Figure 15: Correlation Matrix of the VPI parameters

– FPND

– FLR1005

• (α) influences negatively (strong linear association (r value close to −1))

and (β) influences positively (strong linear association (r value close to

+1)) the parameters VPI :

– DRP

– LND1010

– SLR

For the other two parameters FND and TLR, the observed r value was close

to 0, this indicates a weak association. As long as the value of (α) is decre-

mented for less interest for the energy criterion and increment (β) for more

interest for the criterion DistBS, as shown in the Table 9, Observations re-1015

veal a continuous improvement in the results for the two lifetime parameters

(V PI(Nti, 3)=DRP) and (V PI(Nti, 4)=LND). A relative stability in the pa-

rameter (V PI(Nti, 1) = FND) was observed. For the parameter (V PI(Nti, 2)

= FPND) the influence is negative. For the resistance level parameters, the

influence is negative for the parameter (V PI(Nti, 5)=FLR) and positive for the1020

parameters V PI(Nti, 6)=SLR) and (V PI(Nti, 7)=TLR).

6.3. ADCOPA : Description and performance evaluation

It would be unthinkable to conclude our article without mentioning some

of the drawbacks of DCOPA, after having carried out numerous simulations,

analyses, comments, performance evaluations, scalability tests, load balancing,1025
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distribution of CHs and clusters, as well as the various correlations established

between the different performance metrics. These drawbacks are being ad-

dressed in order to improve the performance of the protocol in terms of lifetime

and energy optimisation. It is therefore crucial to take them into consideration

to achieve this goal. In what follows, the discussion and description of certain1030

behaviours of DCOPA that are considered weak points for some combinations

of (α, β) will be presented. Then, modifications to DCOPA are proposed, par-

ticularly in the Formula T(i) described in Formula 13, precisely at the level of

the choice of the weights of the participating criteria in the selection function

of CHs. This is done in order to obtain better performance in terms of energy1035

management of the entire network and of the nodes, which is reflected in better

lifetimes. To this end, dynamic combinations of weights that are sensitive to

both the global energy state of the network and the desired performances are

implemented (see Formulas 26 and 27).

T (i) =


(αjEi + βjDi)(τ − δ) if i ∈ G

τ − δ otherwise

αj + βj = 1

(26)

Ei and Di are defined and detailed in the equations 13, 15 and 16.1040

(αj , βj) =



(α1, 1 − α1) if r < RNW1

(α2, 1 − α2) if r ≥ RNW1 & r < RNW2

...

(αj , 1 − αj) if r ≥ RNWj−1 & r < RNWj

...

(αn, 1 − αn) if r ≥ RNWn

(27)

The combination (α = 0.5, β = 0.5) of the DCOPA protocol is selected as the

optimal choice in terms of VPI for static combinations. This indicates our pref-

erence for this combination as a starting point for our improvement attempts.

The previous discussions in section 6.1 and the in-depth analysis carried out

have identified several results. Firstly, the parameters of VPI were analyzed1045

and the results were presented in Table 9, showcasing the variation of the stud-
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ied parameters. Additionally, a study on the linear correlation between these

different VPI parameters was conducted, as illustrated in Figure 15. Secondly,

regarding the global energy consumption results, an analysis was conducted to

understand the behavior of node mortality in the network as the combinations1050

of criteria weights changed. The objective is to determine the optimal weight

allocation for energy and DistBS to enhance the network’s lifetime. The basic

idea of our contribution is to adapt dynamic combinations of (α, β) in such a way

that our solution is context-sensitive and takes advantage of the influence of the

criteria weights during specific phases in the life of the network. In our protocol,1055

named ADCOPA, the focus will be on a single aspect which is the increase of

the lifetime of the network by maintaining a balanced mortality without rushing

the network, or simply maximizing the VPI parameters defined in the section

5. The question is to identify the values of these combinations as well as the

factors to be taken into account for the change of these combination values,1060

which will lead us to our contribution named ADCOPA for the improvement of

mortality. The main idea is to consider the global energy consumption. Three

reference points have been retained during the combination (α = 0.5, β = 0.5)

in the static case, corresponding to the rounds where the network has dissi-

pated (1/3), (1/2), and (2/3) of its initial global energy. The associated round1065

numbers are respectively 304, 455, and 610, which are named Rounds of New

Weights (RNW ). In the simulations, a single variation is retained for the three

RNWs to demonstrate the contribution (see Formula 28). It is logical to think

of a change of combination from these points of energy dissipation to try to

slow down the mortality of the nodes which strongly depends on the energy1070

management of the network and the nodes. The only way to do this is to run

several simulations of different combinations based on the successful results of

each combination or by comparing to the correlations obtained. The basic idea

is that, unlike in DCOPA where the combinations are static, ADCOPA considers
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dynamic combinations based on the parameters VPI that are to be optimized.1075

(αj , βj) =

 (α1, 1 − α1) if r < RNW1

(α2, 1 − α2) if r ≥ RNW1

(28)

There are an unlimited number of combinations of (α, β) to be tested, which

can be modified as necessary during the execution of the protocol based on a

signal received from the BS. A couple of these combinations will be chosen to

illustrate our contribution with two cases for each RNW. Figure 14 shows the

simulated and retained cases that improve the VPI parameters presented in1080

Table 10 compared to the static combination of (α = 0.5, β = 0.5).

Table 10: VPIs obtained based on the variation of (α, β) weights

Lifetime Parameters Resistance Levels

(α, β) STATUS RNW (α, β) VALUES FND FPND DRP LND FLR SLR TLR

STATIC weights / (0.5, 0.5) 435 872 1088 1328 801 287 240

DYNAMIC weights

304 (0.65, 0.35),(0.05, 0.95) 446 842 1137 1375 722 415 328

304 (0.7, 0.3),(0.1, 0.9) 443 852 1140 1366 723 417 226

455 (0.4, 0.6),(0.2, 0.8) 423 865 1145 1369 707 438 224

455 (0.7, 0.3),(0.07, 0.93) 443 844 1125 1358 751 374 233

610 (0.3, 0.7),(0.1, 0.9) 420 852 1142 1359 714 428 217

610 (0.4, 0.6),(0.05, 0.95) 423 859 1127 1357 738 389 230

Discussion 9: In this context, the weights of the energy and DistBS criteria

in the competition of election of the CHs will be changed at a given time or in

other words at specific rounds which correspond to quite precise levels of energy1085

of the network, named previously RNW, to better manage the global energy

and the mortality of the nodes. The values obtained from the execution of

the dynamic combinations (α, β) are due to the following factors, firstly, drawn

very important conclusions in the variations of weights of the (static) criteria

(9), very useful syntheses retained from the discussions made previously as well1090

as the factors influencing positively or negatively on the performance of the

VPI, mainly the levels of resistances. Secondly, by applying the changes in the
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Figure 16: Number of alive nodes as a function of rounds : static weights compared dynamic

weights
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weights of the two criteria when a certain amount (percentage) of energy is

dissipated from the network, the dynamicity has been applied in its simplest

form, i.e. a single change as indicated in the Formula 28. At the beginning, the1095

energy criterion was heavily weighted (α > β) because the nodes have their full

energies, which influenced the FLR by avoiding hot spots and their premature

failure. The defined combination does not hold until the whole network fails.

But, at the RNW point (the round which corresponds to the dissipation of (1/3)

or (1/2) or (2/3) of the global energy of the network), the BS sends a control1100

message to change the weights of the criteria to give more interest to the DistBS

(α, β), because the nodes have lost a quantity of energy. This means that the

nodes which are closer to the BS and which have a little more energy can take

on the role of the CH to try to improve the other two levels of resistances which

are SLR and TLR.1105

7. Conclusion

In conclusion, the research questions raised at the outset have been success-

fully addressed. Based on an in-depth examination of the DCOPA protocol

and its multi-criteria aggregation function, the impact of variations in static

weights on CHs selection, load balancing, scalability, and cluster distribution1110

has been thoroughly investigated. An improved DCOPA protocol, called AD-

COPA, was introduced, using dynamic weighting techniques to optimise energy

and mortality rates. ADCOPA is a distributed clustering algorithm for data

communications in IoT networks. The timer T(i), designed on the basis of a

weighted sum which is a multi-criteria optimisation technique, allows a node to1115

access the role of CH after a competition between the nodes of the network at

the start of each round. The energy of the node and its DistBS are the two main

criteria of this function. They are associated with predefined weights according

to the interest that attributed to them. They depend on the objective and the

type of the IoT application. The nodes with a minimal T(i) will have more1120

chance to be CHs of the current round. ADCOPA introduced a new concept of
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dynamic weighting of the criteria in the multicriteria function (T(i)) by using a

weighted sum. This dynamicity is managed by the BS in order to improve the

performance of the network, if ever an anomaly is caused by the combination

of the previous weights, when a new round is launched, the BS changes the1125

combinations of weights which will be communicated to all the nodes. This can

be regarded as a sensitivity of the criteria weights to the network context, in

particular to energy management and mortality. A formalism called VPI has

been developed, which takes the form of a seven-position vector. This formalism

allows to characterize the performances of a clustering and data communication1130

protocol dedicated to IoT applications. One of the key aspects of this formal-

ism is its ability to measure the rate of node loss, or mortality, over the lifetime

of a given protocol. The VPI consists of three levels of resistance and four

metrics of lifetime. The results of the simulation show that ADCOPA performs

well in VPI compared to DCOPA. These performances, due to the dynamicity1135

observed when changing the weights of the criteria influencing the choosing of

the CHs, are explained by the fact of initially privileging the nodes which are

close to the BS for the role of the CH. Once arrived at the RNW, nodes with a

considerable amount of energy are given priority for the role of the CH contrary

to DCOPA which operates on the basis of fixed weightings of criteria. In the1140

future, the plan is to explore the impact of the position of the BS and consider

dynamic variations of the (α, β) combinations on multiple levels or as needed

during the lifetime of the network.
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