
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uqmj20

Quality Management Journal

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uqmj20

Integrating Lean Six Sigma with life cycle and value
stream level of RAMI 4.0

Yesim Deniz Ozkan-Ozen, Jose Arturo Garza-Reyes & Yigit Kazancoglu

To cite this article: Yesim Deniz Ozkan-Ozen, Jose Arturo Garza-Reyes & Yigit Kazancoglu (17
Sep 2024): Integrating Lean Six Sigma with life cycle and value stream level of RAMI 4.0, Quality
Management Journal, DOI: 10.1080/10686967.2024.2394400

To link to this article:  https://doi.org/10.1080/10686967.2024.2394400

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 17 Sep 2024.

Submit your article to this journal 

Article views: 334

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uqmj20
https://www.tandfonline.com/journals/uqmj20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10686967.2024.2394400
https://doi.org/10.1080/10686967.2024.2394400
https://www.tandfonline.com/action/authorSubmission?journalCode=uqmj20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uqmj20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10686967.2024.2394400?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/10686967.2024.2394400?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/10686967.2024.2394400&domain=pdf&date_stamp=17 Sep 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/10686967.2024.2394400&domain=pdf&date_stamp=17 Sep 2024


Case Report

Quality Management Journal

Integrating Lean Six Sigma with life cycle and value stream level of  
RAMI 4.0

Yesim Deniz Ozkan-Ozena , Jose Arturo Garza-Reyesb,c  and Yigit Kazancoglua 
aDepartment of Logistics Management, Yasar University, İzmir, Turkey; bCentre for Supply Chain Improvement, University of Derby, Derby, 
UK; cDepartment of Management Studies, Graphic Era Deemed to be University, Dehradun, India

ABSTRACT
This study integrates the Lean Six Sigma (LSS) DMAIC (design, measure, analyze, improve, 
control) methodology with the Life Cycle and Value Stream Level of RAMI 4.0 by proposing 
a systematic structure that includes LSS 4.0 tools and techniques for each level. The fuzzy 
Entropy Weighting method is used to evaluate LSS 4.0 tools and techniques for each level, 
and a sample implementation of the proposed structure is conducted in a high-technology 
electronics firm. The results indicated that the proposed structure effectively integrates the 
LSS and DMAIC methodology with the Life Cycle and Value Stream Level of RAMI 4.0. The 
results suggest that although the DMAIC methodology is applicable for each life cycle stage, 
the most important approaches vary for each life cycle level. Therefore, DMAIC implementation 
for each level should be conducted separately for each life cycle and LSS 4.0 tools and 
techniques should be chosen according to the specific needs. This article proposes a novel 
systematic structure that includes LSS 4.0 tools and techniques for each DMAIC stage and 
that can be used for LSS implementation in RAMI 4.0. The proposed structure will contribute 
to systemizing the complex structure of Industry 4.0 in the implementation phase of smart 
factories.

Introduction

In today’s dynamic business environment, organiza-
tions face significant challenges, such as the need for 
new technology integration, management of large data 
sets, new skills, potential supply chain disruptions, 
and the need to adopt a new market environment. 
Therefore, they continuously update their processes 
based on these new requirements. In this manner, 
manufacturing organizations are critical in building 
the economy by supplying goods and services. Their 
main aim is to maximize their profit while satisfying 
customer demands (Swarnakar, Tiwari, and Singh 
2020). The adoption of Industry 4.0, also known as 
the Fourth Industrial Revolution, is one of these chal-
lenges affecting the manufacturing sector as it requires 
a transition toward digital and smart factories 
(El-Breshy et  al. 2024).

A transformation to an Industry 4.0 smart factory 
includes digitalizing and integrating the entire value 
chain through the life cycle of products and processes 
(Ghobakhloo 2020). Therefore, systematic guidelines 

that cover the entire life cycle and value chain with 
multiple levels are required for a successful transition 
and implementation. With this view, reference archi-
tectures for Industry 4.0 have been proposed. In this 
line, one of the most well-known is the Reference 
Architecture Model Industry 4.0 (RAMI 4.0). RAMI 
4.0 was developed as part of the “Industrie 4.0” initia-
tive by the German Federal Ministry of Education and 
Research (BMBF). The objective of the “Industrie 4.0” 
initiative is to facilitate the digitization and network-
ing of industrial production. In this context, RAMI 
4.0 is a contextual framework that facilitates in a 
structured manner the implementation of Industry 4.0 
concepts and technologies in manufacturing and 
related industries. RAMI 4.0 aims to enable compa-
nies to design, implement, and manage Industry 4.0 
technologies more effectively through a standardized 
framework for organizing and integrating industrial 
systems, which leads to increased efficiency, flexibility, 
and innovation in manufacturing and other related 
industries. Thus, RAMI 4.0 has been proposed as a 
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solution to effectively facilitate the adoption of 
Industry 4.0.

In particular, RAMI classifies and identifies the 
areas of Industry 4.0 by integrating three dimensions, 
that is, hierarchy levels, life cycle and value stream, 
and layers (Wang, Towara, and Anderl 2017). Vertical 
integration, horizontal integration, and end-to-end 
engineering are the baselines of RAMI 4.0, where each 
element is engaged at different levels (Pisching et  al. 
2018). The main idea behind RAMI 4.0 can be 
expressed as a structure for breaking down the com-
plex interrelations of Industry 4.0 into small clusters 
by considering all elements and encouraging further 
technological developments. The success of RAMI 4.0 
is based on its suitability to cover the entire value 
chain and handle the life cycle from development and 
deployment to maintenance (Corradi et  al. 2019). 
RAMI 4.0 has a three-dimensional structure, that is, a 
layers axis, hierarchy levels axis, and life cycle and 
value stream axis (Hankel and Rexroth 2015).

However, the adoption of RAMI 4.0 is still emerg-
ing and it can pose several challenges for organiza-
tions due to its complexity, technical requirements, 
organizational implications, cost, and resource con-
straints. Nevertheless, using current operational excel-
lence practices, such as Lean Six Sigma (LSS), and 
integrating them with RAMI 4.0 would benefit its 
smoother adoption and transition to Industry 4.0.

LSS is a hybrid business improvement approach 
that integrates lean and Six Sigma and aims to maxi-
mize stakeholder value by improving speed, quality, 
customer satisfaction, and cost management (Vimal 
et  al. 2023). Lean Six Sigma (LSS) shares common 
goals with Industry 4.0, for example, increasing pro-
duction efficiency and quality, contributing to work-
ers’ health and safety, and integrating production 
systems with supply chain stakeholders (Ibrahim and 
Kumar 2024; Kaswan, Rathi, Cross, et  al. 2023). Tissir 
et  al. (2022) explained the joint features of LSS and 
Industry 4.0: “LSS and I4.0 share the same final aims 
since they are oriented towards customer satisfaction 
and focus on productivity and quality improvement.” 
Different methods are used in LSS, for example, value 
stream mapping, root cause analysis, statistical tools, 
etc., for its implementation, but the DMAIC (design, 
measure, analyze, improve, control) approach is one of 
the most commonly employed. DMAIC is used in LSS 
projects as a problem-solving methodology to evaluate 
each process with an organized procedure. The flexi-
bility and adaptability of the DMAIC methodology 
make it one of the most popular business strategies 
for achieving continuous improvement in the manu-
facturing and service sectors (Panayiotou and Stergiou 

2020). The DMAIC methodology can optimize pro-
cesses by integrating information systems in an 
Industry 4.0 environment (Arcidiacono and 
Pieroni 2018).

Due to its nature, LSS can simplify the implemen-
tation of RAMI 4.0 using the DMAIC methodology. 
By applying the DMAIC methodology within the 
RAMI 4.0 framework, organizations can systematically 
identify, analyze, and address challenges, optimize 
processes, and enhance performance, reliability, and 
efficiency. DMAIC provides a structured approach to 
problem-solving and process improvement that com-
plements the principles and objectives of RAMI 4.0, 
enabling organizations to realize the full potential of 
digital transformation and achieve sustainable compet-
itive advantage. However, different tools and tech-
niques are essential for following the DMAIC stages 
while integrating them into the RAMI 4.0 model.

From these points of view, this study aims to 
answer the below research questions:

RQ1: How can LSS be integrated with RAMI 4.0?
RQ 2: Which LSS Tools and Techniques can be used in 
DMAIC stages in RAMI 4.0, and how can organizations 
prioritize these tools and techniques according to their 
needs?

This study contributes to the theory and practice of 
LSS and Industry 4.0 by proposing a systematic struc-
ture that includes LSS 4.0 tools and techniques for 
each DMAIC stage and that can be used for LSS 
implementation in RAMI 4.0. A generic structure is 
proposed while the life cycle and value stream level of 
RAMI 4.0 are the main focus areas in this study. To 
prioritize these tools and techniques for each DMAIC 
stage with a focus on the life cycle and value stream 
level of RAMI 4.0, the Fuzzy Entropy Weighting 
(FEW) method is employed. FEW is a valuable 
method for presenting decision-maker’s preferences 
and revealing elements’ relative priority order (Zhang 
et  al. 2019). A case study is conducted to test the pro-
cedure of the proposed structure in a high-technology 
electronics company. The results of this study are 
valuable for practitioners and academics in terms of 
integrating LSS with Industry 4.0 in a struc-
tured manner.

This article is organized as follows: After the intro-
duction, a review of Industry 4.0 and LSS is presented. 
Section Proposed structure for integrating Lean Six 
Sigma DMAIC and RAMI 4.0 includes the proposed 
structure. Section Methodology—fuzzy entropy weight-
ing covers the methodology. Section Discussion and 
implications presents the study’s implementation. 
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Finally, Section Conclusions discusses the implica-
tions, and the final section is the conclusion.

Industry 4.0 and Lean Six Sigma

Industrial revolutions trigger a complete transforma-
tion in the supply chains, and the manufacturing 
industry can be seen as the most affected part. As the 
manufacturing sector evolves according to the digita-
lization under Industry 4.0, current practices for oper-
ational excellence, such as Lean and LSS, become 
more technologically enabled. Industry 4.0 technolo-
gies can facilitate LSS 4.0 (Antony et  al. 2022). As an 
accepted fact by researchers and practitioners, digital 
technologies and Industry 4.0 applications have signif-
icant potential when integrated with LSS to increase 
the performance of organizations (Kasem et  al. 2024).

In this study, the review area is limited to studies 
that solely focused on LSS and Industry 4.0, where 
the current literature related to LSS and Industry 4.0 
has a rapidly increasing trend, and researchers follow 
different approaches. Systematic reviews, framework 
proposals, and technological implementations espe-
cially come to the forefront. One of the earliest stud-
ies that integrated LSS and Industry 4.0 in global 
supply chain management was conducted by Jayaram 
(2016), focusing on the industrial Internet of Things. 
To continue with some review studies, Vinodh et  al. 
(2020) conducted a review focusing on Industry 4.0 
and continuous improvement that covers lean, Six 
Sigma, kaizen, and Industry 4.0 as strategies, and a 
conceptual framework that integrates these concepts 
was presented. A recent review on the evolution and 
future of LSS in Industry 4.0 was conducted by 
Antony et  al. (2022), and the potential benefits and 
motivations of this integration were presented.

Similarly, Tissir et  al. (2022) also conducted a liter-
ature review on integrating LSS and Industry 4.0 to 
demonstrate gaps in the literature, present future 
research direction, and propose a framework that cat-
egorizes the results. Furthermore, Pongboonchai-Empl 
et  al. (2023) made a systematic literature review on 
integrating Industry 4.0 technologies and DMAIC and 
proposed a conceptual framework for DMAIC 4.0. In 
addition, Skalli et  al. (2023) made a bibliometric anal-
ysis that covered lean, six Sigma, and Industry 4.0 and 
presented LSS 4.0 trends. Similarly, Citybabu and 
Yamini (2023) reviewed LSS and Industry 4.0 and pre-
sented a conceptual framework.

On the other hand, from a more practical imple-
mentation point of view for LSS and Industry 4.0 inte-
gration, Arcidiacono and Pieroni (2018) applied 

DMAIC in the healthcare sector with a particular 
focus on Industry 4.0 technologies. They conducted 
several case studies to show the impacts on supply 
processes and reduced waste. Chiarini and Kumar 
(2021) focused on operational excellence through LSS 
and Industry 4.0 integration, where reinvented map-
ping tools and horizontal, vertical, and end-to-end 
integration are needed. They interviewed different 
manufacturing companies in Italy, and in the end, they 
classified Industry 4.0 technologies under the DMAIC 
stages (Chiarini and Kumar 2021). Furthermore, Dogan 
and Gurcan (2018) approached the subject from a data 
perspective, intending to improve quality and different 
methods for each DMAIC stage by covering the con-
cepts of statistics, quality tools, data mining, big data, 
and process mining. In addition, Anvari, Edwards, and 
Agung (2021) presented the results of an ongoing 
study that aims to show mutual support between 
Industry 4.0 and LSS. They provided combined com-
ponents and tools for LSS and Industry 4.0 for each 
DMAIC step and suggested a new methodology called 
“Total Equipment Energy Effectiveness.” In addition, 
Samanta et  al. (2023) analyzed the critical success fac-
tors of integration of LSS and Industry 4.0 and revealed 
the causal relationship between these factors for orga-
nizational excellence.

From a more technology-based perspective, Sony 
(2020) focused on cyber-physical system (CPS) archi-
tectures under Industry 4.0 and integrated LSS princi-
ples in the design of 8 C (connection, conversion, 
cyber, cognition, coalition, customer, and content) 
architecture of CPS, and explained the DMAIC cycle 
of each C's. In another technology-based study, Bhat, 
Bhat, and Gijo (2020) worked on simulation-based 
LSS integrating Industry 4.0, where the DMAIC meth-
odology is applied to improve performance. On the 
other hand, Ibrahim and Kumar (2024) made an 
Industry 4.0 technology selection for LSS integration.

Due to the direct connection between LSS and 
quality management, some studies have integrated 
these concepts with Industry 4.0. For instance, Yadav, 
Shankar, and Singh (2020) surveyed the impacts of 
Industry 4.0 technologies on different organizational 
performance indicators under LSS and quality man-
agement systems. Furthermore, two consecutive stud-
ies related to critical success factors were conducted, 
where critical success factors for LSS in quality under 
Industry 4.0 are presented (Yadav, Shankar, and Singh 
2021a), and the hierarchy of these factors is analyzed 
(Yadav, Shankar, and Singh 2021b).

Considering sustainability, sustainable manufactur-
ing, and green issues while integrating LSS and 
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Industry 4.0 is another promising area, and different 
authors have conducted some initial studies. For 
instance, Titmarsh, Assad, and Harrison (2020) pro-
posed a framework for achieving sustainability by 
using LSS in the Industry 4.0 environment, and they 
mainly worked on the impact of ICT on the relation-
ship between sustainable manufacturing and LSS 
DMAIC. Furthermore, Khanzode, Sarma, and 
Goswami (2021) worked on identifying enablers of 
LSS for sustainability implications with a perspective 
of circular economy and Industry 4.0 integration and 
proposed managerial implications. On the other hand, 
Ganjavi and Fazlollahtabar (2021) developed a sus-
tainable Industry 4.0 production value measurement 
approach, where leanness and LSS are extracted under 
quality elements and analyzed deeply. Finally, a recent 
review was conducted by Kaswan, Rathi, Antony, et  al. 
(2023) on green LSS Industry 4.0 with a focus on 
COVID-19 to develop a framework.

As can be seen from the review related to LSS and 
Industry 4.0, authors follow different approaches, and 
both theoretical and practical studies have been con-
ducted. However, the literature lacks an integration of 
LSS and a reference model for Industry 4.0. From this 
point of view, this study aims to incorporate one of 
the well-known architectural models, that is, RAMI 
4.0, with the LSS DMAIC methodology to address 
this gap in the literature. The following section 
includes the proposed structure that is presented for 
this purpose.

Proposed structure for integrating Lean Six 
Sigma DMAIC and RAMI 4.0

In this study, the RAMI 4.0 model is integrated with 
the LSS DMAIC methodology with a special emphasis 
on the “Life Cycle and Value Stream” dimension, 
which focuses on the entire life cycle of the products 
or processes. The life cycle and value stream dimen-
sions divide a smart factory into different levels by 
including macro, medium, and micro processes, where 
lean tools can be useful in optimizing the system to 
increase efficiency, eliminate waste, and reveal 
value-added activities.

The proposed structure can be seen as the initial 
work, starting from one dimension of RAMI 4.0, and 
future research will focus on each dimension individ-
ually. It is flexible in terms of application in different 
sectors. The usefulness of tools and techniques may 
vary according to the sectoral and organizational 
needs. In addition, although the DMAIC methodology 
can be applied to each stage of the RAMI 4.0 individ-
ually, the importance level of different LSS 4.0 tools 
and techniques may change according to the presented 
life cycle and value stream processes.

According to the given information, the proposed 
structure for the study is schematized in Figure 1.

In the proposed structure, the first part includes 
the details of RAMI 4.0. The life cycle and value 
stream level of RAMI 4.0 covers all the products and 
processes, from the design and development phases to 
their production and maintenance (Corradi et  al. 

Figure 1.  Proposed structure for RAMI 4.0 and LSS integration.
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2019). This level is based on a draft standard for 
guideline life cycle management called IEC 62890 and 
characterizes the life cycle of entities, including prod-
ucts, workpieces, and facilities (Pisching et  al. 2018). 
The initial categorization under this level is the type 
phase and instance phase. The type phase is where the 
product is under development, and the instance phase 
is where it is in production (Resman et  al. 2019). The 
type phase transforms into the instance phase when 
the design and prototyping are completed and pro-
duction starts (Hankel and Rexroth 2015). These 
phases include development and maintenance usage 
under the type phase and production and mainte-
nance for service under the instance phase. These four 
levels are considered for evaluation in this study.

The explanation of these levels can be made as fol-
lows (Bastos et  al. 2021): The development level 
includes the conceptualization of the product, simula-
tion, and prototyping, and most research and develop-
ment activities are covered at this level. Maintenance 
usage consists of the activities directly related to the 
product, not the production processes and this level 
covers system updates, instruction manuals, and prod-
uct changes. Production level refers to the manufactur-
ing stage, the factory’s most critical part. Finally, 
maintenance for service, also known as instance main-
tenance and usage, includes manufacturing mainte-
nance, optimization of process updates, after-sale 
services, and end-of-life treatments.

The second part of the proposed structure includes 
DMAIC stages and LSS 4.0 tools and techniques. Due 
to its nature, the DMAIC methodology is suitable for 
analyzing the production phase’s entire life cycle and 
value stream. The circular structure of DMAIC shares 
a common understanding with the stages of the life 
cycle and value stream dimension. Therefore, applying 
the DMAIC methodology is expected to be useful for 
resource efficiency, increasing value-added activities 
through the value chain, and optimizing the system. 
Thus, the main reason behind focusing on the life 
cycle and value stream dimension while integrating 
the DMAIC methodology is to initially cover the 
product life cycle at the production level.

From a managerial implementation perspective in 
LSS, to make process improvements and solve prob-
lems via the DMAIC methodology, the most critical 
part is to find appropriate tools to use in each stage 
(Uluskan 2016). To get practical outcomes from the 
DMAIC methodology, the theoretical models should 
be validated by practical applications in businesses 
(Kumar, Singh, and Bhamu 2021). Current expecta-
tions and changes should be integrated into the 
DMAIC methodology. Therefore, tools and techniques 

used in each stage of DMAIC should be clearly 
defined. From this point of view, tools and techniques 
that include the features of Industry 4.0 and LSS are 
presented for each DMAIC stage and named “LSS 4.0 
Tools and Techniques” in the model. These proposed 
tools and techniques integrate traditional LSS tools 
and Industry 4.0 technologies and approaches. They 
are the author’s contributions, which are also sup-
ported by the previous studies.

To start with the initial stage of the DMAIC meth-
odology, define, four tools and techniques are pro-
posed. The define stage aims to make a problem 
description and objective definition. For this purpose, 
several tools and techniques are used. In this study, 
traditional tools and techniques are integrated with 
Industry 4.0-related approaches and presented as “LSS 
4.0 Tools.” The tools and techniques related to the 
define phase are coded with a letter “D” and 
explained below:

Blockchain-based decentralized SIPOC application 
(D1)

Decentralization is one of the design principles of 
Industry 4.0, which refers to moving from a central-
ized organizational structure to self-organized entities 
(Beier et  al. 2020). Blockchain technology supports 
decentralization by providing trust and transparency 
between stakeholders and optimizing the distribution 
of resources. These features can be integrated into the 
SIPOC methodology for defining and describing the 
problem during the define phase (Kumar, Singh, and 
Bhamu 2021).

Big data analytics and simulation in process 
mapping (D2)

Process mapping is a standard tool used during the 
define phase (Farrukh, Mathrani, and Sajjad 2021), 
which requires a high amount of data related to the 
current system. In an Industry 4.0 environment, these 
data can be derived from big data analytics and sim-
ulation methods can be integrated into process map-
ping to deal with dynamic systems.

Design for circularity by 3D printing (D3)

To deal with a circular life cycle of the processes and 
products, it is essential to design the entire system by 
considering the end-of-life phase (Berwald et al. 2021). 
With Industry 4.0, design for circularity is a crucial 
term. It can be supported by 3D printing to eliminate 
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waste caused during the design and minimize the 
faults, which would be considered in the define phase.

IoT supported voice of customer (D4)

VOC is important to understand customer needs and 
product or service expectations and expresses cus-
tomer desires at every level (Wartati et  al. 2021). IoT 
can be used to understand customer needs and sup-
port customer relationships in real-time (Yerpude and 
Singhal 2018). It can also be integrated with the VOC.

The second stage of the DMAIC methodology is 
the measure phase, which aims to determine the 
causes of problems, measure the system, and establish 
the initial process capability. In this study, four LSS 
4.0 tools and techniques are presented related to the 
measuring stage and coded with the letter “M” and 
explained below:

Continuous monitoring for measuring process 
capability (M1)

Measuring process capability is critical in this phase, 
where data is needed to capture the current state 
(Kumar, Singh, and Bhamu 2021). Continuous moni-
toring through digital technologies would be beneficial 
in identifying the current system’s critical aspects and 
providing up-to-date process capability measurement.

Data-enabled technology platforms for IT and OT 
collaboration (M2)

Information Technology (IT) and Operational 
Technology (OT) became two integrated areas after 
Industry 4.0 and created new industrial systems (Hahn 
2016). In this integrated structure, data-enabled tech-
nology platforms enable data exchange and real-time 
measurement between the shop floor and business 
users (Rao et  al. 2020).

Real-time data collection for defect metrics (M3)

Quality parameters are defined in the measure phase 
(Kumar, Singh, and Bhamu 2021), where defect met-
rics are crucial. Real-time data collection related to 
faults and defects would increase the efficiency and 
help to achieve the zero defect goal.

Machine learning for cause and effect analysis 
(M4)

Machine learning could be useful for making a con-
nection between entities, making intelligent decisions, 

and providing a deeper understanding of the system 
(Dogan and Gurcan 2018). In a cause-and-effect anal-
ysis, data derived from machine learning can be used 
to make dynamic decision-making and forecast poten-
tial causes of errors.

The third stage of the DMAIC methodology is the 
analyze phase. This stage analyzes the current perfor-
mance by conducting root cause analysis and reveal-
ing the faults. Analyze stage-related LSS 4.0 tools and 
techniques are codded with the letter “A” and pre-
sented below:

Dynamic VSM by multi-agent systems (A1)

VSM is a beneficial technique for analyzing the cur-
rent state, revealing the continuous improvement 
areas, and suggesting a future state. Industry 4.0 
requires dynamic mapping tools supported by 
multi-agent systems, which can be integrated into the 
VSM method (Huang et  al. 2019) and used in the 
analysis phase.

Data mining embedded root cause analysis (A2)

Appropriate exploratory techniques are essential to 
analyze hidden causes of errors and different patterns. 
For this purpose, data mining provides an associative 
analysis, clustering, classification, and prediction of 
the system (Dogan and Gurcan 2018), and it is appli-
cable for root cause analysis in terms of providing rel-
evant data.

Real-time data exchange and connection between 
entities (A3)

To analyze the system appropriately, it is essential to 
provide a link between relevant entities. Real-time 
data exchange through smart technologies is an 
important characteristic of the Industry 4.0 environ-
ment (Ali et  al. 2021), which can be helpful for mak-
ing this connection simultaneously.

Data-driven FMEA (A4)

Failure Modes and Effect Analysis (FMEA) is a stan-
dard tool in the analysis phase of DMAIC methodol-
ogy for analyzing and preventing failures. In the 
Industry 4.0 environment, data-driven FMEA can be 
applied by integrating fault simulation and robotic 
process modeling into the process, which can predict 
fault probabilities (Filz et  al. 2021).
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The improve phase is the fourth stage of the 
DMAIC methodology, which focuses on improving 
the current system and eliminating waste. LSS 4.0 
tools and techniques related to the improve stage are 
named with the letter “I” and explained below:

Cyber twin for autonomation (Jidoka) (I1)

A cyber twin for each component in the system is 
used for providing self-awareness and self-prediction 
by collecting time and machine records and integrat-
ing them for future steps (Lee, Bagheri, and Kao 
2015). In intelligent autonomation or Jidoka, sensors 
allow autonomous correction, where Industry 4.0 has 
an excellent potential for this predictive approach to 
improve quality (Deuse et  al. 2020). From this point 
of view, cyber twin integration in autonomation would 
increase prediction performance and avoid quality 
problems.

5S applications by industrial robots (I2)

In the traditional lean applications, 5S (sort, set in 
order, shine, standardize, and sustain) is an approach 
that is particularly important for manual workstations; 
however, in Industry 4.0 smart factory, industrial 
robots may collaboratively apply 5S for process 
improvement (Stadnicka and Antonelli 2019).

CPS embedded sustainable operations (I3)

Integrating Industry 4.0 technologies to achieve sus-
tainable operations is crucial to resource efficiency, 
minimizing long-term effects on nature, and providing 
continuous improvement in the system. CPS-embedded 
sustainable operations would optimize system effi-
ciency throughout the life cycle and help eliminate 
non-value-adding activities.

Human-machine interaction for continuous 
improvement (I4)

The role of the workforce has changed tremendously 
with Industry 4.0, and human-machine interaction has 
become an indispensable element of the manufactur-
ing environment (Nardo, Forino, and Murino 2020), 
which has a strong connection with LSS. To achieve 
continuous improvement in smart factories, 
human-machine interaction should be provided in a 
balanced way.

The final stage of the DMAIC methodology is the 
control phase, which aims to control the improved 
system with relevant tools. In this study, LSS 4.0 tools 

and techniques related to the control stage are shown 
with the letter “C” and presented below:

Real-time monitoring in Poka-Yoke (C1)

Poka-Yoke, or mistake proofing, is a well-known lean 
tool to avoid human errors in the system. In smart 
factories, real-time monitoring would enable avoiding 
errors before happening and could improve the tradi-
tional poka-yoke approach (Widjajanto, Purba, and 
Jaqin 2020).

Predictive maintenance through sensors (C2)

Predictive maintenance is a critical tool in LSS appli-
cations to avoid errors. Intelligent sensors in Industry 
4.0 can control the system in real-time and in predic-
tive maintenance (Pech, Vrchota, and Bednář 2021).

Auto ID integrated kanban (C3)

Kanban is a signaling mechanism for controlling pro-
cesses and resource needs. In Industry 4.0, Kanban 
systems can be digitalized by Auto-ID systems to 
track and simulate inventory levels and replenishment 
times (Rao et  al. 2020).

IoT-based data visualization and process control 
(C4)

To provide data gathering, process stability, and con-
necting computers and processes, IoT is a key tech-
nology and can be integrated with LSS (Efimova et  al. 
2021). Therefore, IoT-based approaches can be applied 
for process control, visualization, and sustaining 
improvement areas.

Furthermore, resource requirements vary depending 
on the life cycle stage and the need for data to define 
critical issues. To do that, using appropriate measuring 
techniques, well-developed analysis procedures, contin-
uous improvement in the entire life cycle, and con-
trolling the system to avoid waste and failures is crucial 
to providing resource efficiency. With this view, resource 
allocation for each stage also depends on the priorities 
of each level, where data acquisition through Industry 
4.0 technologies enables successful resource allocation 
and scheduling during the life cycle and contributes to 
adding value (Zheng et  al. 2021). Therefore, systematic 
prioritization is essential to provide unique suggestions 
for different sectors and organizations. With this aim, 
the FEW method is suggested for the proposed struc-
ture to evaluate all layers. Firstly, each of the DMAIC 
stages should be evaluated for each of the life cycle and 
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value stream levels, that is, development, maintenance 
usage, production, and maintenance for service, and 
the DMAIC stages that need greater attention for each 
life cycle and value stream level should be revealed. 
Secondly, all the life cycle and value stream levels 
should be handled individually, and under each DMAIC 
stage, proposed tools and techniques should be evalu-
ated. Although the proposed procedure requires some 
detailed analysis and may take time, results are expected 
to be valuable for the organizations in terms of detailed 
suggestions from macro to micro perspectives for 
DMAIC methodology implementation for each life 
cycle and value stream level.

The following section includes the methodological 
explanation of the FEW method.

Methodology—fuzzy entropy weighting

Entropy weighting originated from thermodynamics and 
is applied to information systems, where information 
entropy is defined as the uncertainty of signals in com-
munication procedures (Ji, Huang, and Sun 2015). It is 
a common method for obtaining weights for the objec-
tive criteria, especially in multi-criteria decision-making 
applications. In the entropy method, the size of the 
information is expressed by the entropy, where a higher 
amount of information results in a higher difference 
between attribute values and higher entropy weight (He 
et al. 2016). On the other hand, most MCDM approaches 
require experts’ opinions and linguistic variables used 
for evaluation. The fuzzy Entropy Weighting method 
(FEW) is derived from entropy weighting, which uses 
linguistic terms to assess the criterion and convert them 
into fuzzy linguistic variables. FEW is a practical and 
relatively easy method, compared to other methodolo-
gies, to evaluate the weights of criteria, and it includes 
three main stages (Ighravwe and Oke 2017). Before 
explaining these stages, trapezoidal fuzzy numbers are 
used in this study, which are defined as A a b c d= ( , , , ). 
The linguistic variables and trapezoidal fuzzy numbers 
are shown in Table 1.

The explanation related to FEW applications is pre-
sented below by using Ding (2011), Ighravwe and Oke 
(2017), and Ji, Huang, and Sun (2015):

Stage 1: Creating a decision matrix

Suppose there are m decision makers or alternatives 
for hierarchical structures and n criteria to evaluate. 
Then, the decision matrix is shown as D xij mxn= ( ) . 
Defuzzification of the trapezoidal fuzzy numbers is 
the initial stage to provide a crisp data set for  
FEW approaches. The graded mean integration rep-
resentation method converts trapezoidal fuzzy num-
bers presented in Table 2 to crisp values using 
Eq. [1].

	 x
a b c d

ij =
+ + +2 2

6
	 [1]

After that, the normalization procedure can be con-
ducted for each criterion using Eq. [2].

	 d
x

x
ij

ij

j

n

ij

=
=∑ 1

	 [2]

Stage 2: Entropy value determination

Entropy values, Ej, are calculated by using Eq. [3].

	
E m d dj ij iji

m
= − −

=∑( )ln ln
1

1

	 [3]

Stage 3: Obtaining criterion weights

Criterion weights wj obtained by using Eq. [4], where 
0  ≤ wj  ≤  1, and wjj

n

=∑ =
1

1

	 w
E

n E
j

j

j

n

j

=
−( )

−
=∑

1

1

	 [4]

Table 1. L inguistic expressions and trapezoidal fuzzy 
numbers.
Linguistic expression Trapezoidal fuzzy number

Very highly important (0.7, 0.8, 0.9, 1.0)
Highly important (0.6, 0.7, 0.8, 0.9)
Slightly important (0.5, 0.6, 0.7, 0.8)
Important (0.4, 0.5, 0.6, 0.7)
Neither important nor unimportant (0.3, 0.4, 0.5, 0.6)
Unimportant (0.2, 0.3, 0.4, 0.5)
Slightly unimportant (0.1, 0.2, 0.3, 0.4)
Highly unimportant (0.0, 0.1, 0.2, 0.3)

Table 2. I nformation related to decision makers (DM).
Year of experience Department Position

DM1 4 Production Senior Production 
Engineer

DM2 7 Research and 
Development

Senior Engineer

DM3 9 Research and 
Development

Team Leader 
(Engineer)

DM4 11 Research and 
Development

Team Leader 
(Engineer)

DM5 18 Production Production Manager
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The implementation of the proposed structure 
in high-technology electronics company

This study was conducted in an international 
high-technology electronics company with a broad 
market share and extensive product range. The reason 
for choosing this company was that it has applied LSS 
for more than three decades in the organization and 
has worked on the transition to Industry 4.0. Their 
LSS implementation included total productive mainte-
nance, operational excellence, lean production, and 
total quality management. In their smart factory tran-
sition process, investments in research and develop-
ment come to the forefront. Furthermore, advanced 
robotics in the production processes and strong inter-
connectivity between machines are applied in the 
company through the Industry 4.0 transition. In addi-
tion, building the digital twin of the production pro-
cesses to increase traceability is one of their plans. 
The company also tends to integrate LSS principles 
with its new smart factory structure to eliminate 
waste, improve quality, and have leaner production 
processes.

The company’s features make it suitable for the 
sample implementation of the proposed structure 
related to LSS and the RAMI 4.0 model. The imple-
mentation aimed to give an example of using the pro-
posed structure in an organization or sector. Therefore, 
it was not aimed to reflect the macro environment but 
to guide future applications to show how to prioritize 
DMAIC stages and LSS 4.0 tools and techniques for 
the company’s life cycle and value stream levels. These 
results would vary depending on the organization’s 
expectations, limitations, infrastructure, transition 
capacity, and current processes. Therefore, although 
the proposed structure is easy to generalize and flexi-
ble in terms of applying to different sectors and orga-
nizations, the results of this implementation are unique 
for the selected case company in this study.

They were carried out with the participation of five 
company decision-makers (DM). These decision-makers 
work in different departments and have different 
expertise, but all of them are familiar with the pro-
duction processes, LSS tools and techniques, and 

Industry 4.0 concepts. Information related to decision- 
makers is given in Table 2.

Due to the nature of this study, the evaluation pro-
cedure in this study was significantly long. DMs were 
asked to use linguistic variables that were presented in 
Table 2. To avoid misunderstandings of the concepts 
and to save time, short interviews based on questions 
and answers were conducted with DMs individually, 
and evaluation tables were filled based on the collected 
data. Each DM was firstly asked to prioritize the 
DMAIC stages (i.e., define, measure, analyze, improve, 
control) for each life cycle and value stream level (i.e., 
development, maintenance for usage, production, and 
maintenance for service). The data table for this initial 
phase is presented in Table 3. This part aimed to reveal 
the most important DMAIC stage for each life cycle 
and value stream stage to define the priorities.

After that, these linguistic evaluations were trans-
formed into the related trapezoidal fuzzy numbers 
using Table 1. Equations [1] and [4] were applied, 
respectively, to determine the weights for each DMAIC 
stage for each life cycle and value stream level. Table 4  
summarizes the results of the initial evaluation stage, 
where Dj refers to the normalized values, Ej to the 
entropy values, and wj to the weights.

The results of the first evaluation stage revealed that 
the most critical DMAIC stage for the development level 
is “define,” which is understandable due to the main 
activities in the new process or product development 
level. In the maintenance for usage level, the “define” 
stage appeared to be the most important, followed closely 
by the “measure” stage. “Analyze” is the most important 
DMAIC stage for the production level. Finally, “improve” 
was the most critical stage for the maintenance of the 
service level. As can be understood from the results, 
although the DMAIC methodology applies to all levels 
of the life cycle and value stream, the importance of 
stages varies. This leads to different approaches and may 
guide future investments based on prioritization.

The same evaluation procedure and fuzzy entropy 
weighting implementation were used to prioritize LSS 
4.0 tools and techniques for each life cycle and value 
stream level. Table 5 presents the data table that 
includes linguistic DM evaluations.

Table 3. E valuation of DMAIC for each life cycle and value stream level.
Development Maintenance for usage Production Maintenance for service

D M A I C D M A I C D M A I C D M A I C

DM1 EI HI I U I U EI SI HI HI I HI I SI HI U I I HI HI
DM2 HI HI I NC SI I HI HI SI SI HI HI I U EI SU I HI EI HI
DM3 HI HI I I I I EI I I HI I EI HI I HI I SI SI I SI
DM4 EI HI SI I I U EI HI HI EI SI HI I I HI NC I I SI EI
DM5 EI I SI SI I I HI I I HI I I HI SI I U I I HI I
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After applying Eqs. [1] and [4], Table 6 presents 
the results after evaluating LSS 4.0 tools and tech-
niques for each life cycle and value stream level.

This implementation prioritized LSS 4.0 tools and 
techniques under each DMAIC stage for each life 
cycle and value stream level. To start with the results 
related to the development level, Big Data Analytics 
and simulation in process mapping (D2) were revealed 
as the most important LSS 4.0 approach under the 
define stage. For the measure stage, continuous mon-
itoring for measuring process capability (M1), for ana-
lyzing stage Dynamic VSM by multi-agent systems 
(A1), for improving stage Cyber Twin for autonoma-
tion (Jidoka) (I1), and for control stage IoT-based 
data visualization and process control (C4) was found 
as the most critical LSS 4.0 tools and techniques.

When the results related to maintenance for usage 
level were analyzed, it was revealed that similar to the 
initial level, Big Data Analytics and simulation in 

process mapping (D2) was the most critical LSS 4.0 
approach for the define phase. On the other hand, 
real-time data collection for defect metrics (M3) was 
the most critical part of the measure phase. Data 
Mining embedded root cause analysis (A2) had the 
highest weight for the analysis phase. In the improve 
stage, Cyber Twin for autonomation (Jidoka) (I1) and 
CPS embedded sustainable operations (I3) shared the 
first rank with equal weights. Finally, IoT-based data 
visualization and process control (C4) was revealed as 
the most important approach for the control stage, 
similar to the previous level.

As in the first two levels, Big Data Analytics and 
simulation in process mapping (D2) had the highest 
weight under the defined stage for the production 
level. Real-time data collection for defect metrics (M3) 
for the measure phase, real-time data exchange and 
connection between entities (A3) for the analyze 
phase, and CPS embedded sustainable operations (I3) 

Table 4.  Summary of the results of evaluation of DMAIC stages for each life cycle and value stream level.
Development Maintenance for usage Production Maintenance for service

Dj Ej wj Dj Ej wj Dj Ej wj Dj Ej wj

Define (D) 4.840 −2.724 0.310 4.459 −2.223 0.272 3.400 −0.717 0.142 2.337 0.395 0.060
Measure (M) 3.448 −0.731 0.144 4.388 −2.023 0.255 3.526 −0.821 0.151 3.657 −1.053 0.202
Analyze (A) 3.730 −1.192 0.183 3.214 −0.479 0.125 5.057 −3.110 0.340 3.870 −1.310 0.228
Improve (I) 3.759 −1.295 0.191 3.214 −0.479 0.125 4.014 −1.605 0.216 4.885 −2.799 0.375
Control (C) 3.657 −1.053 0.171 4.109 −1.662 0.224 3.526 −0.821 0.151 3.142 −0.373 0.135

Table 5. E valuation of LSS 4.0 tools and techniques for each life cycle and value stream level.
Development Maintenance for usage Production Maintenance for service

Define D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

DM1 EI HI NC EI I HI U I I HI U U I U I HI
DM2 HI HI I SI I SI NC U U EI SU U I U I EI
DM3 EI HI I HI U I SU I SI HI NC SU NC NC SI EI
DM4 EI SI U HI SI I I SI I I NC U U I HI HI
DM5 SI SI SU SI NC I U U I SI U U U U SI EI

Measure M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

DM1 HI HI U I HI I HI I HI HI EI I HI U I I
DM2 I EI U U I I EI I I HI HI HI HI I I U
DM3 I HI I NC I I I HI I SI HI HI I NC U SU
DM4 I I I I HI HI HI HI HI I SI I I U U U
DM5 HI HI U U HI I HI HI I I SI I SI SU NC NC

Analyze A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

DM1 I I I I I HI I HI HI U HI I NC I I I
DM2 EI I I HI SI HI I SI HI SU EI SI I SI U HI
DM3 EI HI SI HI I SI I SI SI I HI SI U SI U HI
DM4 HI HI I I I SI SI I I I SI I U I I SI
DM5 HI I U I SI EI I I SI U HI SI I HI I I

Improve I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

DM1 HI I HI I SI U I U HI I EI EI I I U I
DM2 HI I HI SI I NC I I EI HI HI EI I SI SU U
DM3 SI SI I SI I I SI SU EI HI HI HI U SI NC I
DM4 SI I I I U SU U I HI I I HI U U U I
DM5 EI SI SI HI I U I U I I HI HI I I U U

Control C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

DM1 U I U I I I U I HI EI HI HI I U U I
DM2 SU U SU I HI I SU I EI EI SI EI I SU SU I
DM3 U U U SI HI SI U HI EI HI SI HI U U SU SI
DM4 U NC U I I SI I HI HI HI I EI I I U I
DM5 I I U SI SI I U SI HI HI SI HI SI U U I
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for the improve phase were found to be the most crit-
ical approaches. When the results related to the con-
trol stage are investigated, Real-time monitoring in 
Poka-Yoke (C1) and Predictive maintenance through 
sensors (C2) share the highest weight.

Finally, the results showed that IoT-supported Voice 
of Customer (D4) is the most important define phase 
approach for the maintenance of service level. 
Prioritization was followed by Continuous monitoring 
for measuring process capability (M1) for the measure 
stage, Data Mining embedded root cause analysis (A2) 
for the analyze stage, 5S applications by industrial 
robots (I2) for the improve stage, and Real-time mon-
itoring in Poka-Yoke (C1) for control stage.

In the following section, the discussion and impli-
cations are presented.

Discussion and implications

Industries operating in the globalized manufacturing 
landscape encounter numerous challenges, such as 
improving quality, reducing costs, and minimizing 
lead times. Consequently, they must prioritize contin-
uous improvement and performance enhancement 
methodologies. The integration of LSS with Industry 
4.0 emerges as a critical technique to address these 
issues effectively (Samanta et  al. 2023).

From the theoretical implications point of view, this 
study contributes to the literature by providing LSS 4.0 
tools and techniques for each DMAIC stage, which inte-
grate the features of Industry 4.0 and LSS in general. 
Although some studies integrate Industry 4.0 and LSS 
(Arcidiacono and Pieroni 2018; Ibrahim and Kumar 
2024; Jayaram 2016; Sony 2020; Antony et  al. 2022; 
Yadav, Shankar, and Singh 2021a) only a few of them 
provide Industry 4.0 technologies for DMAIC each stage 
(Anvari, Edwards, and Agung 2021; Chiarini and Kumar 
2021). On the other hand, to the best of our knowledge, 
only one study integrated lean automation with RAMI 
4.0, which solely focused on the business layer of the 
model to provide information related to human-robotic 
material handling teams to other levels (Pantano et  al. 
2020). Therefore, this study fills the knowledge gap by 
presenting a systematic structure that can be used for 
organizations to apply the DMAIC methodology in 
RAMI 4.0. This contribution also points to the gap pre-
sented by Skalli et  al. (2023) “lack of specific frame-
works describing guidelines and roadmaps for LSS and 
Industry 4.0” by providing the proposed structure.

This study may also be used to extend the opera-
tional excellence of the organizations, which is defined 
as the integration of Industry 4.0, reverse logistics, 

and lean approaches (Dev, Shankar, and Qaiser 2020), 
by providing specified LSS 4.0 tools and techniques, 
especially integrated with life cycle and value stream 
of the products. This is also directly related to reverse 
operations and circularity. Therefore, besides the 
applicability, this study contributes to the theoretical 
knowledge associated with Industry 4.0 and LSS inte-
grations. Furthermore, the proposed methodology to 
implement the structure is easy to use and can be 
integrated with other methods (Wang, Li, and Li 
2021) to investigate further.

Furthermore, the proposed structure in this study 
may have many implications for practitioners and 
managers when integrating the LSS DMAIC method-
ology with the RAMI 4.0 model. The proposed struc-
ture’s general nature reveals the need to prioritize 
according to the company’s needs. As a well-known 
and accepted fact, the Industry 4.0 transition requires 
high investments and tremendous transformations in 
the current system (Raj et  al. 2020), as well as posi-
tioning the workforce on the smart factory floor. 
Therefore, technology selection and investment deci-
sions are critical for organizations to sustain in the 
competitive environment. It is essential to avoid any 
kind of waste in the dynamic and complex structure 
of the smart factory. Hence, organizations should find 
ways to make them leaner while making them tech-
nologically developed.

As it can be understood from the previous studies 
and the proposed LSS 4.0 tools and techniques in this 
study, data dependency is one of the most crucial 
during the life cycle of the processes for both LSS and 
Industry 4.0 applications (Anvari, Edwards, and Agung 
2021). Organizations must build a solid infrastructure 
for continuous data collection and analysis during the 
entire life cycle. This enables big data analytics through 
the system and may provide data to make decisions, 
prevent errors and failure, optimize the system, and 
reveal the areas for continuous improvement. With 
this view, Product Life Cycle Management (PLM) soft-
ware can be supported by Industry 4.0 technologies to 
manage the entire life cycle of the products and 
processes.

Due to the interconnected nature of the Industry 
4.0 environment, stakeholder participation during the 
life cycle is another important aspect. The decentral-
ized structure of Industry 4.0 reveals the importance 
of data sharing, transparency, connectivity, and 
real-time interaction between participants of the value 
chain, which can be provided by Blockchain technol-
ogy. In this sense, stakeholder theory is one of the 
most relevant theories, focusing on stakeholder rela-
tionships (Pinheiro et  al. 2022). It can be integrated 
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with Industry 4.0 technologies to derive data and pro-
vide a baseline for lean methods, such as 
SIPOC or VSM.

From a customer relations and integration point of 
view, the first and last level of the life cycle and value 
stream is directly related to customer desires and 
after-sale expectations. Therefore, while dynamic data 
is integrated into the voice of the customer, an infor-
mation technology integration should also be made, 
and Customer Relationship Management (CRM) 
should be enriched by the data collected through 
Industry 4.0 technologies.

Employee collaboration and acceptance are other 
factors related to LSS and Industry 4.0. In the tradi-
tional applications of LSS, labor-intensive decision- 
making and tasks were the priority. However, with the 
Industry 4.0 transition, most of the labor-intensive 
jobs can be performed through robotic systems. 
Human-machine interaction has become an important 
topic for organizations. Training and education-related 
new systems that include technical knowledge and an 
attitude toward data security should be part of mana-
gerial implications.

At the smart factory level, using sensors and RFID 
is crucial to take preventative actions. Continuous 
monitoring of each process would contribute to defect 
prevention and improve quality. Furthermore, elimi-
nating eight wastes, namely over-production, 
over-processing, waiting, defects, unnecessary trans-
portation, unnecessary inventory, unnecessary motion, 
and talent, can easily be supported by Industry 4.0 
technologies and increase factory-level efficiency.

The proposed structure provides a holistic view of 
applying the LSS DMAIC methodology at each lifecy-
cle level individually and suggests LSS 4.0 tools and 
techniques based on organizations’ priorities. A strong 
commitment from internal and external partners is 
essential to this integration. While embarking on the 
RAMI 4.0 for a systematic transition, LSS principles 
should be followed to sustain continuous improve-
ment. In essence, embracing RAMI 4.0 and LSS rep-
resents a strategic imperative for organizations seeking 
to thrive in the digital era, fostering agility, resilience, 
and excellence in manufacturing practices.

Conclusions

LSS and Industry 4.0 mutually support each other, 
and their integration contributes to the performance 
of organizations in terms of increasing quality, elim-
inating waste, and reaching operational excellence. 
Combining LSS tools and techniques and Industry 

4.0 principles is important for successful 
implementation.

Integrating reference architectures for Industry 4.0 
and well-known methodologies for LSS is a beneficial 
starting point for this combination. Some studies have 
focused on LSS and Industry 4.0 in the current liter-
ature. However, there is a gap in the knowledge in 
terms of the systematic integration of these concepts. 
This study aims to integrate the LSS DMAIC method-
ology with the RAMI 4.0 model by proposing LSS 4.0 
tools and techniques for each DMAIC stage. This 
research focuses on the life cycle and the value stream 
level of RAMI 4.0, where DMAIC can be applied to 
each life cycle and different LSS 4.0 tools and tech-
niques can be used. To prioritize according to the 
needs of companies, the FEW method is suggested for 
evaluating LSS 4.0 tools and techniques for each life 
cycle level. The proposed structure in this study is 
flexible and can be generalized. However, the prioriti-
zation of the LSS tools and techniques may vary 
depending on the organizational needs. A study was 
conducted in a high-technology electronics firm to 
show the implementations. At the end of the study, 
general theoretical and managerial implications are 
presented.

Due to the nature of this research, this study has 
some limitations. First, decision makers’ familiarity 
with LSS 4.0 tools and techniques might be limited 
since the proposed approaches are entirely new and 
require knowledge of both Industry 4.0 and LSS. 
Second, high investment requirements and employees’ 
unwillingness might be limitations for the implemen-
tation. However, practitioners may use the proposed 
structure for investment decisions and work on inte-
grating it with the current practices and systems.

Future research can test the proposed structure by 
comparing different sectors’ prioritization of LSS 4.0 
tools and techniques in the life cycle and value stream 
level. Another future research idea is to focus on 
other RAMI 4.0 levels, that is, hierarchy levels and 
layers, to apply the DMAIC methodology. That would 
be a more macro study by including external stake-
holders and processes.
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