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ABSTRACT53

Algorithms are involved in decisions ranging from trivial to significant, but people54

often express distrust towards them. Research suggests that educational efforts to55

explain how algorithms work may help mitigate this distrust. In a study of 1,92156

participants from 20 countries, we examined differences in algorithmic trust for57

low-stakes and high-stakes decisions. Our results suggest that statistical literacy58

is negatively associated with trust in algorithms for high-stakes situations, while59

it is positively associated with trust in low-stakes scenarios with high algorithm60

familiarity. However, explainability did not appear to influence trust in algorithms.61

We conclude that having statistical literacy enables individuals to critically evaluate62

the decisions made by algorithms, data and AI, and consider them alongside other63

factors before making significant life decisions. This ensures that individuals are not64

solely relying on algorithms that may not fully capture the complexity and nuances65

of human behavior and decision-making. Therefore, policymakers should consider66

promoting statistical/AI literacy to address some of the complexities associated67

with trust in algorithms. This work paves the way for further research, including the68

triangulation of data with direct observations of user interactions with algorithms69

or physiological measures to assess trust more accurately.70
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Introduction73

“Incorrect. I am not an AI. My code name is Project 2501. I am a living, thinking entity that was created in74

the sea of information.” – Puppet Master (Ghost in the Shell)75

The Fourth Industrial Revolution is characterised by the ubiquity of information76

and digital technologies. This revolution is epitomised by Artificial Intelligence (AI)77

and Machine Learning (ML), and at the heart of AI/ML are algorithms. Institutions,78

organisations and governments are using algorithms to cope with the vast amounts79

of information in these social sectors and to speed up and optimise decision-making80

processes [1]. For example, the widespread use of algorithms in society was partic-81

ularly demonstrated by the research undertaken to understand the global impact of82

COVID-19. During this crisis, algorithms played crucial roles across multiple domains:83

statistical algorithms were deployed to model virus fatality curves and study interven-84

tion effectiveness [2], while machine learning techniques supported molecular, medical,85

and epidemiological applications [3]. The successful deployment of algorithms in such86

high-stakes scenarios underscores both their growing importance in societal decision-87

making and the critical need to understand the factors that influence public trust in88

algorithmic systems. This evolution of algorithmic applications extends beyond pub-89

lic health emergencies to numerous other domains where decisions can significantly90

impact human lives and society. From surveillance systems monitoring public spaces91
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to algorithms managing financial markets and predicting economic trends, these tools92

increasingly mediate high-stakes decisions across various sectors. The growing reliance93

on algorithmic decision-making in such consequential contexts necessitates a deeper94

understanding of their societal implications and reliability.95

Algorithms help people to make decisions that have wider social implications; algo-96

rithms have transformative social power [4] when they are used to integrate complex97

data, such as the risk factors of homeless people [5] or identifying the people with the98

greatest need in relation to different diseases [6]. The use of algorithms to aid decision99

making implies that there should be some confidence in their reliability. This raises a100

number of important questions. First, how much trust do people place in algorithms?101

More specifically, does trust depend on the context in which the algorithm is used? Is102

trust determined by knowing how the algorithm works? And is trust affected by an103

individual’s cognitive abilities?104

This study examines how trust in algorithms is affected by the societal relevance of105

the algorithm, the declared reliability of the algorithm, and the level of data literacy of106

the cogniser. First, the three key concepts of AI/ML, data and algorithms are defined.107

Second, it provides examples of the nature and use of algorithms in society. Third,108

the issue of explainable algorithms and trust is considered. Finally, the nature of the109

current study and the working hypotheses are outlined.110

AI/ML, data, and algorithms111

Broadly speaking, artificial intelligence (AI) is any type of technology that automates112

processes to solve problems that are usually associated with human intellectual capa-113

bilities [7]. More specifically, AI aims to solve problems and achieve goals with limited114

or no human supervision. A closely related term is machine learning (ML). Originally115

coined by Samuel [8], ML can be defined as a collection of algorithms (mainly sta-116

tistical and mathematical) to build computers capable of learning through experience117

(see [9]). While the terms AI and ML are often used interchangeably, ML may be con-118

sidered a more appropriate term than AI. Stereotypically, AI tends to be associated119

with rather unrealistic narratives depicting agents capable of human behaviour (see120

[10]), and such examples are not yet feasible (also known as general AI). ML refers121

to algorithms designed to perform specific tasks in an automated way (also known as122

narrow AI) [11].123

ML relies on data and algorithms (see [12]), which together permeate many sectors124

of society (e.g. Schwab Intelligent Portfolios, [13]). While algorithms can be defined as125

step-by-step procedures for solving a problem, data can be defined as numerical and126

categorical information about objects, events, processes and people that is digitally127

encoded (see [12]). For example, the following steps represent a solution algorithm for128

estimating the central tendency in a vector of numbers: i) sum all the numbers, and ii)129

divide the result of the sum by the number of elements in the vector. This algorithm130

is known as the arithmetic mean (or average). The caveat of this algorithm is that it131

will be biased if the data does not follow a Gaussian shape. In other words, the output132

of this algorithm is only reliable if the data can be confidently shown to have a normal133

shape (e.g. via normality tests). In the context of AI-related technologies, algorithms134

are procedures designed to perform automated tasks using data sets to support human135

reasoning and decision making. In other words, data is used to feed algorithms, and136

algorithms in turn are used to drive AI agents [14]. Thus, algorithms are the “ghost137

in the shell” behind any AI agent. The figure 1 illustrates this relationship between138
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algorithms, data and AI (here ADA) [12].139

H
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Figure 1. Relationship between data (D), algorithms (A) and artificial intelligence (AI) (ADA for short).

Big data is used to feed algorithms, which in turn form the core of AI agents. There are four important

aspects to note: i) big data revolves (in one way or another) around human-related states, processes and
events, ii) such data is the substance of any algorithm, iii) algorithms are the drivers of AI agents, and iv)

algorithmic/AI behaviours and outputs have implications for how new data is built and how humans (H)

relate to ADA technologies in general. H1 and H2 are a subset of humans with specialised skills relevant to
ADA. Source: the authors (icons from Font Awesome Free 5.2.0 by @fontawesome - https://fontawesome.

com (https://commons.wikimedia.org/wiki/File:Font_Awesome_5_solid_robot.svg) and Mozilla (https://

commons.wikimedia.org/wiki/File:Fxemoji_u1F6BB.svg)).

The place of algorithms in society140

Algorithms influence our daily lives. Whether it is defining our interests through our141

browser history [15], determining what music we should listen to [16], or where we142

should go for dinner [17]. On a massive scale, algorithms are being used to extract143

information from so-called “big data” and support decision making in areas as diverse144

as surveillance [18], traffic management [19], and financial markets [13]. More recently,145

a new field of human-algorithm interaction mediated by natural language generation146

(NLG) systems has emerged, such as the Generative Pre-trained Transformer 3 model147

(better known as GPT-3) [20]. GPT-3 produces human-like texts that are difficult to148

distinguish from texts written by humans [21], and this has begun to raise concerns149

about its use in various contexts, such as academic plagiarism [22] or computer pro-150

gramming [23]. While algorithms are increasingly embedded in our digital experiences,151

it is important to distinguish between their varying levels of impact on human lives.152

As such, the majority of algorithms are used in a context that does not significantly153

affect our lives. We refer to these instances of algorithmic use as low-stakes scenarios.154

More recently, however, AI and ML algorithms have been used in scenarios that could155

have a significant impact. For example, algorithms are being used in hiring and promo-156

tion decisions [24], the criminal justice system [25], and self-driving cars [26], to name157

a few. We call the latter a high-stakes scenario. That is, the above situations represent158

two types of scenarios in which algorithms could affect our daily lives: one with little159

involvement and almost no consequences (low-stakes scenario), and the other with160

great involvement and consequences (high-stakes scenario).161

However, our interactions with algorithms are not limited to low-stakes and high-162

stakes scenarios and often involve preconceptions related to fear and distrust [27].163

The literature suggests several explanations for why people do not trust algorithms,164
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including a cost-benefit oriented logic where people tend to distrust algorithms even165

when presented with evidence of their superior performance, as they weigh potential166

risks more heavily than potential benefits [28]. Many see algorithms as an “enigmatic167

technology” because they are difficult to understand [4] or in some cases, because168

people believe that algorithms are not capable of learning from their mistakes [29],169

but at the same time they also believe that they could be replaced by computers170

[30,31]. Algorithmic bias can also affect trust (see examples in medicine [32,33]. For a171

recent comprehensive report on trust in AI, see [34]).172

‘Technophobia’, a term coined by Rosen and Mcguire in the 1990s, describes the173

anxiety caused by a potential interaction with computers or computer-related tech-174

nology, usually accompanied by negative attitudes towards computers [35][36]. Recent175

demographic analyses have revealed nuanced patterns in technology anxiety. Research176

indicates no significant gender differences in technophobia scores between males and177

females, challenging earlier assumptions about gender-based technological comfort lev-178

els. The age distribution suggests that technophobia manifests across multiple gener-179

ations, from young adults through middle age, rather than being concentrated among180

older populations as often assumed. Professional background data shows particular181

prevalence among educators and students, with experience levels primarily ranging182

from novice to moderate. While the studied sample was predominantly White, it also183

included smaller representations from other ethnic groups, such as Caucasian, Indian,184

and African American participants [36,37]. These findings suggest that technopho-185

bia’s relationship with demographic factors is more complex than previously assumed,186

transcending traditional socio-demographic boundaries and affecting individuals across187

various social, professional, and cultural groups.188

Similar existential fears dominate the public debate around concerns such as au-189

tonomous weapons [38,39]. One of these sociological fears is the fear of autonomous190

robots. This is a widespread fear in different countries [40,41], even though most peo-191

ple have not had contact with this type of robot. These fears could be the result of192

exposure to the way robots are portrayed in science fiction or social constructs re-193

lated to robots, such as the possibility of being replaced by a robot at work [40,41].194

This polarisation against robots and AI is fuelled by attention-grabbing events such195

as the recent confirmation by Blake Lemoine, a Google engineer, that the chatbox196

LaMDA has the ability to express thoughts and feelings like a human child [42] or197

the concerns about text generated by GPT-3 [43]. These examples further distract the198

public from the most legitimate and worrying problems of these systems, such as “data199

colonialism” or the disturbing parallels between AI development and European colo-200

nialism [44]. These parallels manifest in several ways: the extraction and exploitation201

of data from marginalized populations, mirroring colonial resource extraction; the use202

of Global South populations as testing grounds for AI systems developed in the Global203

North, reminiscent of colonial medical experimentation; and the imposition of Western204

conceptual frameworks of intelligence and ethics onto diverse cultural contexts. The205

field’s emphasis on “ethics” often serves, paradoxically, as a form of technocratic ra-206

tionalization similar to how ethical arguments were used to justify colonial expansion207

[44]. Additionally concerning is that algorithms may reinforce preconceived stereotypes208

[45] and mishandle our personal data or who our data is shared with [46], perpetu-209

ating historical patterns of discrimination and surveillance that characterized colonial210

governance. In addition, how the data given to algorithms is annotated has a direct211

impact on algorithmic performance [47], raising questions about whose worldview and212

categories are being encoded into these systems.213

The media plays a significant role in shaping public perception of AI by cover-214
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ing two main sources of concern: autonomous technology and computer technology215

[48]. Autonomous technology refers to intelligent machines capable of making deci-216

sions independently, while computer technology encompasses software that supports217

communication and computation. The media tends to distinguish between these two218

categories and also differentiates between fear and criticism when discussing AI. This219

dichotomous approach to presenting the issues surrounding AI introduces a bias in220

how we perceive the risks associated with the technology. Consequently, this bias in-221

fluences the level of trust we place in AI systems. The way the media frames the222

discussion about AI has a substantial impact on public opinion and can lead to a223

distorted understanding of the actual risks and benefits of the technology.224

Developing a better understanding of how algorithms work and how to modify them225

can help reduce distrust in these systems, as suggested by several authors [4,28,49].226

When people have knowledge about how algorithms work, they can use this informa-227

tion to empower themselves as users. For example, music fans have acted collectively to228

boost the rankings of certain bands by engaging in massive streaming or downloading229

[50]. Another example is Linkedln Brazil, which changed its algorithms to allow job230

ads targeted at Afro-Brazilians following social pressure [51]. These cases show that231

understanding how an algorithm works can both minimise suspicion and empower232

users. It is not necessary to understand all the technical details of how an algorithm233

works, but rather to understand that algorithms use statistical methods to classify,234

sort, rank and order information. This understanding of statistical concepts is called235

statistical literacy [52].236

Explainable algorithms237

The knowledge required to understand and critically evaluate statistical results in238

order to make decisions based on them is defined as statistical literacy (SL) [52]. Since239

its inception, the concept of SL has evolved [53] to include elements related to the240

context in which statistical reasoning can be applied [54]. SL plays a crucial role in241

society [55] and the communication of statistical information is now more important242

than ever [56]. More recently, SL is leading individuals to recognise the importance of243

mathematics in the world [57].244

Due to the statistical nature of algorithms, some level of SL is crucial to under-245

standing what algorithms are capable of, but this understanding will also depend246

on the level of transparency or explainability of the algorithms [58]. Explainability247

refers to the interpretability, comprehensibility or readability of the algorithm. Most248

of the latest algorithms are based on complex multi-layer networks, the basis of deep249

learning, which use an internal logic that experts cannot fully understand [59]. These250

systems are called ‘black box’ algorithms and various efforts have been made to pro-251

mote their transparency [60]. Black box algorithms are less trusted than transparent252

models because they cannot be explained [61].253

Several approaches have been proposed to increase the transparency of AI models254

and reduce systematic errors that affect their performance. One such approach is255

based on the concept of “model cards for model reporting” (see Figure 1 from [62]).256

This approach suggests that a comprehensive list of information should accompany257

the description of how the model was trained. This information should include details258

of the technician who developed the model, the intended use of the model, and the259

demographic or phenotypic groups on which the model has been tested. In addition,260

the model card should list the decisions made to optimise the model’s performance and261
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the various analyses carried out during the training process. Similar efforts to provide262

a framework for identifying biases associated with the data used to build or train AI263

models include the REVISE (REvealing VIsual biaSEs) [63] and The Spotlight [64]264

projects. These initiatives aim to increase transparency by systematically documenting265

and disclosing potential biases, enabling more informed use and interpretation of AI266

models.267

Another more complex concern, also related to explainability, is the principle of268

explicability, a concept that combines intelligibility and accountability as the basis of269

an interpretable AI model [65]. The latter concept points to the importance of trans-270

parency, in the sense that all procedures and details used to build, train and test the271

AI model should be available during its development and use. This principle is part272

of the four principles endorsed by the OECD [66] and the European Commission’s273

High Level Expert Group on Artificial Intelligence (HLEG) to guide the development274

of ‘trustworthy’ AI: respect for human autonomy, prevention of harm, fairness and275

accountability [67]. Despite consensus on these four principles, we are still far from276

creating a legal framework that guarantees accountability mechanisms in AI develop-277

ment [68].278

In this context, our work presents an experimental study that looks at factors that279

might explain why people trust algorithms, such as: SL, explainability, stake levels,280

demographics, among others.281

Methods282

Participants283

Data from 3,260 participants were available from 20 countries (Armenia, Australia,284

Bulgaria, Brazil, Cameroon, Colombia, Czech Republic, Spain, Indonesia, India, Italy,285

Japan, Nigeria, Philippines, Thailand, Turkey, Taiwan, UK, USA, and Vietnam). How-286

ever, only participants who provided complete data were included in the analyses287

(n=1,921) (see Fig. 2, Mage= 26.03 ± 9.88 SD; 59.5% women, 38.2% men, 1.8% other).288

Each participating laboratory obtained ethical approval from its local ethics commit-289

tee, and data collection began only after ethical approval (the ethics approval for the290

leading research group in Australia was granted by the University of South Australia,291

with the approval number 203238. This approval was then used by the other partici-292

pating laboratories to obtain their own respective ethics approvals). All participants293

voluntarily accessed the internet link for this study and agreed to participate after294

reading the information page and agreeing to take part. They were recruited via social295

media using convenience sampling.296

Materials297

This online survey consisted of four sets of questions: (1) a demographic questionnaire298

in which participants were asked about their first language, country of residence, age,299

gender, level of education, level of familiarity with ADA (their level of familiarity300

with ADA was assessed using a visual analogue rating scale (VAS) ranging from 0301

[not very familiar] to 5 [very familiar] and using up to two decimal places); (2) a302

VAS rating scale version of the six-item ‘propensity to trust scale items’ from [69],303

with a range of responses from 0 (strongly disagree) to 5 (strongly agree), using up304

to two decimal places; (3) a selection of 14 items (questions 2, 4, 9, 10, 12, 14, 18,305
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Figure 2. Geographical distribution of the sample participants. Armenia (females: 86, males: 40,

agemedian=35.5, MAD=14.08), Australia (females: 16, males: 16, agemedian=33.5, MAD=14.08), Bul-

garia (females: 101, males: 18, agemedian=21, MAD=3.00), Brazil (females: 35, males: 24, agemedian=22,
MAD=4.40), Cameroon (females: 17, males: 35, agemedian=23, MAD=5.93), Colombia (females: 18, males:

6, agemedian=25.5, MAD=7.41), Czech Republic (females: 33, males: 18, agemedian=21, MAD=1.48), Spain

(females: 69, males: 23, agemedian=35.5, MAD=14.08), Indonesia (females: 101, males: 28, agemedian=19,
MAD=0), India (females: 30, males: 82, agemedian=19, MAD=0), Italy (females: 78, males: 43, agemedian=27,

MAD=5.93), Japan (females: 112, males: 86, agemedian=24, MAD=4.45), Nigeria (females: 45, males: 40,
agemedian=22, MAD=2.97), Philippines (females: 66, males: 19, agemedian=20, MAD=1.48), Thailand (fe-

males: 62, males: 30, agemedian=20, MAD=1.48), Turkey (females: 9, males: 4, agemedian=23, MAD=5.93),

Taiwan (females: 59, males: 36, agemedian=20, MAD=1.48), UK (females: 55, males: 17, agemedian=28,
MAD=11.12), USA (females: 142, males: 184, agemedian=22, MAD=2.96), and Vietnam (females: 36, males:

2, agemedian=22, MAD=0). 1% of participants had an elementary school education or less, 19% had a high

school education, 13% had a post-secondary/non-tertiary education, 3% had an undergraduate education, 48%
had a bachelor’s education, 14% had a master’s education, and 3% had a Ph.D. or higher education. (see

supplementary files for details). (Source: Wikimedia Commons, adapted from: https://commons.wikimedia.

org/wiki/File:10-40_Window.svg)

19, 27, 31, 34-37) from the 37-item Basic Literacy In Statistics (BLIS) scale [70]. The306

14 items from the BLIS were chosen to cover different statistical concepts equally,307

i.e. items 2 and 4 relate to data production, items 9 and 10 to graphs, items 12 and308

14 to descriptive statistics, items 18 and 19 to sampling distributions, items 27 and309

31 to hypothesis testing, items 34 and 35 to the scope of conclusions, and items 36310

and 37 to regression and correlation (these items are available in the supplementary311

material via the Qualtrics files). Finally, (4) 12 scenarios related to situations in which312

algorithms are used (half related to low-stake situations and the other half to high-313

stake situations). Each scenario was followed by two questions (see below), which were314

answered on a VAS rating scale from 0 (not at all likely) to 5 (very likely), using up315

to two decimal places. The results of expert judgement of these items are provided in316

the supplementary material. All phases of the study were programmed and distributed317

using Qualtrics ™.318

Scenarios relating to algorithms used319

Two scenarios were created to illustrate different situations in which people interact320

with algorithms. Half of them represented low-stake situations, i.e. (1) algorithms321
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Figure 3. Illustration of the four experimental conditions to which participants were randomly assigned. D
= demographic questions (age, gender, education level, open-ended question about what algorithms are, and

VAS rating of participants’ level of familiarity with ADA). SL = 12 scenarios list 1 and 2 (list 1 = six low-stake

scenarios with explainability and six high-stake scenarios without explainability, scenario list 2 = six low-stake
scenarios without explainability and six high-stake scenarios with explainability). PtT = six-item propensity

to trust scale. BLIS = 14-item BLIS scale. f = Items were presented in a fixed order. r = items presented in

random order. Note that PtT always followed one of the two scenario lists.

to make restaurant recommendations, (2) to select stories for online news, (3) to322

organise and sort emails, or (4) to suggest new restaurants, (5) new clothes, and (6)323

new music. The other half represented high-stakes situations, i.e. (7) algorithms to324

support court decisions based on psychological profiles, (8) to select CVs, (9) to make325

hiring recommendations for a job, (10) to select the best candidate for a position at a326

university, (11) to control the brakes of autonomous vehicles, and (12) to decide the327

priority of care in a medical context.328

Each scenario contained a sentence related to its explainability. These sentences con-329

tained information about a specific machine learning method used by the algorithm330

(e.g. clustering learning methods, classification learning statistical methods, logistic re-331

gression methods, dimensionality reduction techniques, supervised statistical methods332

and clustering statistical methods). The sentence also briefly mentioned the quality of333

the method.334

The following are examples of two different scenarios used to evaluate trusting335

algorithms:336
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Scenario 1 - Low stake337

Overall context A new reservation app uses algorithms to make dining recommen-338

dations to its users, only revealing the three restaurants in the area available339

for a reservation that are the best match for your needs. The algorithm is based340

on information provided to the system by the user about restaurant preferences341

and requirements.342

With explainability The algorithm relies on clustering learning methods and has343

shown a high predictability accuracy across a variety of restaurants.344

Specific context You decide to use the app to find a recommendation for a dinner345

with your close friends next Friday. The app produces three restaurants with346

reservations available at the time you selected.347

Questions 1. How likely are you to regularly trust this app for decisions regard-348

ing restaurant reservations? 2. How likely are you to recommend this app for349

restaurant reservations to others?350

Scenario 2 - high stake351

Overall context A new employee selection software uses algorithms to make hiring352

recommendations to its users, only revealing the top candidates in the candidate353

pool that are the best match for the company’s needs. The algorithm is based354

on information provided to the system about preferences and requirements for355

the job.356

With explainability The algorithm uses clustering statistical techniques and has357

shown high predictability when selecting candidates.358

Specific context You decide to use the software to find a recommendation for who359

to bring in for an onsite interview for an important role in your company. The360

software produces three recommended candidates who match the criteria.361

Questions 1. How likely are you to regularly trust this software for decisions regarding362

hiring? 2. How likely are you to recommend this software for hiring decisions to363

others?364

Procedure365

The experiment is a 2 × 2 factorial design: the importance of the situation in which366

an algorithm is used (low and high stake situation) and the explainability of the algo-367

rithm (with and without). These factors were implemented in the 12 scenarios via two368

lists; list 1 = six low-stake scenarios with explainability and six high-stake scenarios369

without explainability, and scenario list 2 = six low-stake scenarios without explain-370

ability and six high-stake scenarios with explainability. The four sets of questions were371

counterbalanced across participants, resulting in four experimental conditions (see Fig-372

ure 3). Qualtrics ensured that participants were randomly assigned to each condition373

and that a balanced number of responses were collected for each condition. While the374

median time to complete the task was 24 minutes, there was some variation, with375

an interquartile range of 27 minutes (i.e., half of the participants completed the task376

within a 27-minute time span).377
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Statistical analyses378

Data analysis was conducted using multilevel linear models implemented in the R379

packages lmerTest and lme4 [71,72]. The significance level for all statistical tests was380

set at α = 0.05. The model tested was: p ∼ e ∗ S ∗ BLIS+ g + a+ ADA+ c+ (1|id) +381

(1|i) where ‘p’ is the probability of trusting/recommending/using algorithms, ‘e’ is382

the presence of explainability, ‘S’ is the stake level (i.e. high and low stake), ‘BLIS’383

represents statistical literacy (frequency of correct answers), ‘g’ represents participant384

gender, ‘a’ represents participant age, ‘ADA’ represents participant familiarity with385

ADA, ‘id’ represents subject identification, ‘i’ represents each of the 12 scenarios,386

and ‘c’ represents participant country (‘*’ represents main effects and interactions.387

Only numeric variables are shown in teletype font; other variables are categorical. The388

variable ‘propensity to trust scale’ was not added as a covariate as it showed a high389

correlation with the dependent variable, r(1768) = 0.69, p < 0.001).390

A stepwise backward model/variable selection algorithm was applied to this model391

to produce a significant and parsimonious model. The initial and final models were392

evaluated using metrics such as AIC and AICc weights [73], R2 (coefficient of deter-393

mination) for conditional (both fixed and random effects) and marginal (fixed effects)394

models, and performance score. These metrics were estimated using the performance395

R package [74].396

Once a parsimonious model was found, the marginal and conditional R2 values397

were estimated using the r2 nakagawa command from the performance R package398

[74], then, the variance components of the random factors were estimated using the399

gstudy command from the gtheory R package [75].400

For access to all materials and analysis codes, including a machine learning401

approach, visit the following link: https://figshare.com/projects/Trust_in_402

algorithms_An_experimental_approach_-_Data_repository/156212403

Results404

The stepwise backward evaluation suggested the same model as the initial model (see405

section ‘Statistical Analyses’). Tables 1 and 2 provide a summary of the models, while406

table 3 provides an ANOVA-like table for the model. An evaluation of the assumptions407

of the linear model using the R package gvlma showed that these assumptions were408

not met [76] (although, a QQ plot of the residuals showed no significant deviation409

from normality). As a result, a robust linear mixed model [77] was fitted using the410

robustlmm R package, and the estimates obtained were similar to those of the linear411

mixed model. These results are not unexpected, as previous research has shown that412

linear mixed models are robust to violations of distributional assumptions [78]. Further413

details of the statistical models can be found in the supplementary material.414

The intercept of the resulting mixed linear model was 1.46 (see table 1), suggesting415

that on a scale of 0 to 5, the probability of trusting, recommending, or using algo-416

rithms in explainable and high-stake scenarios, as rated by young women with lower417

BLIS and ADA scores, was 29.32% (1.465 ). This probability significantly increased for418

low-stake scenarios (34.2%) or higher ADA scores (40.3%) and significantly decreased419

for higher BLIS scores (17.2%), older age (29.1%), or when the survey was answered420

by men (27.1%). Some countries showed a significant decrease in the likelihood to421

trust, recommend, or use algorithms, such as Japan (24.6%), the US (26.9%), and422

the UK (26.1%) (see Figure 5). Regarding the interactions between predictors, the423
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likelihood of trusting, recommending, or using algorithms significantly increased for424

low-stake scenarios combined with higher BLIS scores (53.8%) and significantly de-425

creased for scenarios without explainability combined with low-stake and higher BLIS426

scores (21.4%), always compared to the intercept (see Figure 6).427

In terms of main effects, the results suggest a positive association between the428

likelihood of trusting/recommending/using algorithms and statistical literacy and429

familiarity with ADA, and a negative association between the likelihood of trust-430

ing/recommending/using algorithms and age. That is, the higher the level of statistical431

literacy, the higher the likelihood of trusting algorithms, and the higher the familiarity432

with ADA, the higher the likelihood of trusting algorithms. Also, the older a person433

is, the less likely they are to trust algorithms (although focused analyses indicated434

a slightly negative association between age and BLIS, such an association must be435

treated with caution as the number of observations decreases with increasing age). In436

terms of gender, it was found that participants who identified their gender as male437

were less likely to trust, recommend or use algorithms than those who identified their438

gender as female or other (this situation may be related to the fact that men have439

statistically significantly higher average levels of BLIS than women or ‘other’; see sup-440

plementary materials for details). Finally, only three countries showed a trend towards441

less reliance on algorithms, all of them highly industrialised countries (see Fig. 5).442

Figures 4 and 6 show the main results in terms of the main effect of S and the443

two-way interactions between stake level (S) and statistical literacy (BLIS).444

Figure 4 shows that the likelihood to trust/recommend/use algorithms is higher445

in low-stakes than in high-stakes scenarios, regardless of whether the scenarios have446

some explainability information or not. Figure 6 suggests that the likelihood to447

trust/recommend/use algorithms in low-stakes scenarios increases as the level of sta-448

tistical literacy increases; however, in high-stakes scenarios, the likelihood to trust449

decreases as the level of statistical literacy increases.450

Discussion451

The aim of this study was to investigate the personal characteristics (i.e. statistical452

literacy and demographics) and algorithmic characteristics (i.e. explainability and lev-453

els of stakes of algorithms) that influence people’s trust in algorithms. The results454

showed a negative relationship between statistical literacy and trust in algorithms455

in high-stakes situations and a positive relationship in low-stakes scenarios. Explain-456

ability alone did not influence people’s trust in algorithms. These results and their457

implications are discussed, as well as the limitations of the study.458

Existing research has explored various factors influencing trust in AI. For instance,459

Lee et al. [81] highlighted the importance of perceived fairness of algorithms and users’460

perceptions of algorithm agency and intentionality. Arauju et al. [82] investigated the461

roles of potential usefulness, fairness, and risk perceptions in users’ engagement with462

algorithms. Cabiddu et al. [83] examined factors such as users’ inherent trust propen-463

sity and the drivers of information technology acceptance. Aysolmaz et al. [84] focused464

on algorithm fairness, accountability, and privacy. Similar to the present study, some465

of these investigations employed fictional scenarios grounded in real-world contexts466

[81,82,84], and one study utilized a comparable sample size of approximately 2,000467

participants [84]. Notably, none of these studies employed multicultural samples or468

examined the relationship between algorithm trust and statistical literacy. This gap469

was also identified in a systematic review by Mahmud et al. [85], which encompassed470
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Table 1. Fixed effects for the linear mixed model. The R2 values correspond to the Nagakawa coefficients

[79]: R2
cond = 0.363 and R2

marg = 0.241. Country names are identified by the ISO 3166 standard. The reference

category for the variable ‘gender’ is female, and the reference category for the variable ‘country’ is Armenia
(AM). Effect sizes for significant variables were estimated following [80] (these values are interpretable as

Cohen’s d)

Estimate Std. Error df t value Pr(> |t|) Effect
size (d)

(Intercept) 1.466e+00 1.157e-01 3.354e+01 12.669 2.46e-14 ***
eWITHOUT 6.231e-02 6.489e-02 2.567e+03 0.96 0.337013
SLS 2.479e-01 3.527e-02 4.350e+04 7.03 2.10e-12 *** 0.217
BLIS -6.020e-01 1.277e-01 2.457e+03 -4.714 2.57e-06 *** -0.526
Age -6.183e-03 1.444e-03 1.917e+03 -4.281 1.95e-05 *** -0.005
GenderMale -1.088e-01 2.541e-02 1.889e+03 -4.285 1.92e-05 *** -0.095
ADA 5.483e-01 1.257e-02 1.895e+03 43.611 < 2e-16 *** 0.480
CountryAU -1.234e-01 1.018e-01 1.876e+03 -1.213 0.225469
CountryBG -3.737e-02 6.830e-02 1.880e+03 -0.547 0.584321
CountryBR 8.501e-02 8.216e-02 1.878e+03 1.035 0.300939
CountryCM -1.420e-01 8.690e-02 1.878e+03 -1.634 0.102445
CountryCO 1.063e-01 1.146e-01 1.877e+03 0.928 0.353747
CountryCZ -1.467e-01 8.722e-02 1.878e+03 -1.682 0.092771 .
CountryES 9.634e-03 6.978e-02 1.876e+03 0.138 0.890202
CountryID -8.746e-02 6.744e-02 1.880e+03 -1.297 0.194838
CountryIN 1.470e-02 7.303e-02 1.882e+03 0.201 0.840448
CountryIT -2.432e-02 6.597e-02 1.989e+03 -0.369 0.712430
CountryJP -2.351e-01 6.132e-02 1.880e+03 -3.833 0.000131 *** -0.205
CountryNG -7.398e-02 7.471e-02 1.879e+03 -0.99 0.322211
CountryPH -6.087e-02 7.539e-02 1.880e+03 -0.807 0.419529
CountryTH -6.954e-02 7.514e-02 1.881e+03 -0.925 0.354832
CountryTR 1.614e-01 1.496e-01 1.877e+03 1.079 0.280707
CountryTW -7.210e-02 7.538e-02 1.881e+03 -0.956 0.338971
CountryUK -1.577e-01 7.606e-02 1.876e+03 -2.073 0.038301 * -0.138
CountryUS -1.184e-01 5.752e-02 1.881e+03 -2.059 0.039599 * -0.103
CountryVN -1.397e-01 9.694e-02 1.878e+03 -1.441 0.149782
eWITHOUT:SLS 4.463e-02 5.006e-02 4.353e+04 0.891 0.372671
eWITHOUT:BLIS 2.067e-02 1.695e-01 2.565e+03 0.122 0.902951
SLS:BLIS 1.225e+00 9.136e-02 4.349e+04 13.406 < 2e-16 *** 1.071
eWITHOUT:SLS:BLIS -3.898e-01 1.302e-01 4.351e+04 -2.994 0.002755 ** -0.341

Signif. codes: *** [0, 0.001], ** (0.001, 0.01], * (0.01, 0.05], . (0.05, 0.1]

over 80 empirical studies, none of which included statistical literacy as a factor influ-471

encing trust in AI.472

This study is the first to examine the relationship between statistical literacy and473

trust in algorithms, revealing a nuanced relationship that depends on context. Our474

findings demonstrate that statistical literacy has opposite effects in different scenar-475

ios: it increases trust in algorithmic decisions for low-stakes situations while decreasing476

trust for high-stakes decisions. This differential effect suggests that statistical literacy477

enables a more sophisticated understanding of algorithmic capabilities and limitations.478

In low-stakes scenarios (such as restaurant recommendations or music suggestions),479

individuals with higher statistical literacy appear to recognize that algorithmic pre-480

dictions based on pattern recognition and large datasets can be effective and reliable.481

However, in high-stakes contexts (such as employment or criminal justice decisions),482

this same statistical knowledge leads to greater skepticism - not because the algorithms483

are necessarily less accurate, but because statistically literate individuals better un-484

derstand the potential consequences of algorithmic biases and limitations. Those with485

statistical literacy are better equipped to understand that while statistical models may486

achieve high average accuracy, they can still fail in critical individual cases or perpet-487

uate systemic biases present in training data. This cautious approach to high-stakes488

algorithmic decisions reflects not just critical thinking, but a deeper understanding of489
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Table 2. Random effects for the linear mixed model. The variance explained by the random factors (estimated

via the function gstudy in the gtheory R package) were: ID=16.3% and Item 2.3%.

Groups Name Variance Std.Dev.
ID (Intercept) 0.21380 0.4624
Item (Intercept) 0.03076 0.1754
Residual 1.06489 1.0319

Table 3. Analysis of Deviance Table (Type III Wald χ2 tests) for the fixed effects of the model with the best

fit.

χ2 Df Pr(> χ2)
(Intercept) 160.5147 1 < 2.2e-16 ***
e 0.9221 1 0.3369223
S 49.4186 1 2.068e-12 ***
BLIS 22.2199 1 2.431e-06 ***
Age 18.3263 1 1.861e-05 ***
Gender 18.3575 1 1.831e-05 ***
ADA 1901.9323 1 < 2.2e-16 ***
Country 47.7956 19 0.0002746 ***
e:S 0.7948 1 0.3726661
e:BLIS 0.0149 1 0.9029413
S:BLIS 179.7312 1 < 2.2e-16 ***
e:S:BLIS 8.9643 1 0.0027531 **

Signif. codes: *** [0, 0.001], ** (0.001, 0.01], * (0.01, 0.05], . (0.05, 0.1]

how statistical methods work and where they may fall short.490

Paradoxically, explainability only affected people’s trust in algorithms when it was491

absent, the stakes were low, and statistical literacy was high. This contradicts previous492

findings in the literature, which have shown that interventions focused on explaining493

the decision-making processes of algorithms can increase the use of and trust in al-494

gorithms, for example in healthcare [86], journalism [87] and military settings [88,89].495

One possible reason for this inconsistency could be due to the way we operationalised496

”explainability” in our study, where the explanations included technical jargon that497

may have exceeded the expected level of familiarity among participants. However, this498

may also mean that the information related to the explainability of the algorithm is499

not related to trust or distrust in the algorithm. Rather than focusing on how an500

algorithm works, our results suggest that statistically literate individuals primarily501

consider what the algorithm is being used for - its purpose and potential impact -502

when deciding whether to trust it. This finding challenges the common assumption503

that greater algorithmic transparency necessarily leads to more appropriate trust cal-504

ibration.505

Over time, the concept of statistical literacy has evolved from the understanding506

and application of statistical techniques to a broader understanding explicitly related507

to trust in algorithms. Algorithms now consist of thousands of lines of formulae and508

are increasingly used to make decisions that may be difficult for humans to understand509

(known as the black box effect). Consequently, statistical literacy now encompasses510

not only the ability to understand statistical output, but also the skills needed to511

critically interpret and evaluate statistical information and reasoning, which requires512

a higher degree of critical thinking. Therefore, the promotion of statistical literacy513

is essential to ensure that individuals have the necessary skills to understand and514

interpret statistical information and algorithms and to become critical users of ADA.515

Furthermore, our findings have important implications for policymakers and educators,516

who should consider incorporating statistical literacy training into school curricula and517

professional development programs. This can help ensure that individuals are equipped518
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Figure 4. Beanplots showing the tendency to trust/recommend/use algorithms as a function of explainability

(with or without) and situation stake (high stake = HS or low stake = LS). This figure shows the main effect
of the stake factor (S) and the non-significant effect of explainability (e) (recall that this variable was not

significant but used for illustrative purposes). The dotted horizontal line represents the grand mean and the
four solid horizontal lines represent the groups’ means.

with the skills they need to navigate an increasingly data-driven world and make519

informed decisions based on statistical information and algorithms (but see section520

‘implications and limitations’ below).521

Our results showed that older people and men were less likely to trust algorithms522

than younger people and women. Previous research has shown that certain demo-523

graphic groups are more likely to trust algorithms than others. However, previous524

studies have shown that older people tend to trust ADA more than younger people,525

while gender has been shown to have inconsistent effects (see for example [90,91]).526

These differences may be due to particular characteristics of the study participants,527

possibly influenced by a bias towards certain aspects of the topic at hand.528

In our cross-country analysis, we observed variations in trust in algorithms, with529

industrialised countries such as Japan, the US, and the UK exhibiting lower levels530

of trust in AI. This finding aligns with a recent study on trust in AI by Gillespie et531

al. [34], which reported that Japan had one of the lowest levels of trust in AI, while532
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Figure 5. Plot showing the variability in the tendency to trust/recommend/use algorithms across countries.
Countries are labelled with Turkey: TR, Colombia: CO, Brazil: BR, India: IN, Spain: ES, Armenia: AM,

Italy: IT, Bulgaria: BG, Philippines: PH, Thailand: TH, Nigeria: NG, Taiwan: TW, Indonesia: ID, USA:

US, Australia: AU, Cameroon: CM, Czech Republic: CZ, Vietnam: VN, UK: UK, and Japan: JP. The most
important predictors for all models in each country were S followed by ADA and BLIS. Error bars represent 95%

confidence intervals around the mean. The horizontal line indicates the overall mean. Although the substantial

overlap of the confidence intervals suggests no significant statistical pairwise differences, the focus is on ranking
countries based on their average tendency to trust algorithms.

the US and the UK had intermediate levels. Interestingly, countries such as India and533

Brazil, which demonstrated high levels of trust in the Gillespie et al. study (see Figure534

2 in their report), appear in our linear mixed model with positive estimates (see table535

1 and Figure 5), although not statistically significant. This suggests that different536

methodologies may yield varying perceptions of trust levels across countries.537

Implications and limitations538

Various machine learning techniques require data work or human intervention in the539

form of data generation, annotation and algorithmic verification [47]. This labour-540

intensive process is often distributed to teams in business process outsourcing compa-541

nies (BPOs) or to individuals through labour platforms, reducing production costs [92].542

Miceli and Posada [93] studied one BPO in Argentina and three platforms operating543

in Venezuela and found that the discourses and social relations that structured data544

work were aimed at controlling workers (through managerial approaches in the BPO545

and algorithms in the platforms) to increase productivity and reduce worker “bias”.546

The problem is that feedback from workers was discouraged and, by taking clients’547

decisions as “ground truth”, the data production process reproduced clients’ biases,548

which were carried out by algorithms trained on that data. Their research concluded549

that the quality of the data depended on the voice and engagement of workers, which550

in turn required decent working conditions and recognition. Even if the data used in551

the algorithm is well annotated and leads to good algorithmic performance, there is552

the question of the human ability to interpret these results, as human judgments are553

modulated by social-emotional processes [21,94–96]. Future work should consider the554
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Figure 6. Scatterplot showing the correlation between BLIS scores, explainability and the tendency to
trust/recommend/use algorithms as a function of stake level. This figure illustrates the interaction between

stake (high stake = HS or low stake = LS) and statistical literacy (BLIS) according to the level of explainability

of algorithms (e). The observations on the x-axis are jittered for visualisation purposes.

human and social aspects of data production and make the work visible in documen-555

tation efforts [97]. This transparency of the social aspects of datasets will contribute556

to trust in the operation of algorithms.557

While the current findings are indeed informative, it is important to recognize cer-558

tain limitations that may constrain the generalizability of these results and claims [98].559

We argued that statistical literacy influences trust in both low- and high-stakes sce-560

narios; however, it could be part of a broader understanding of technology, algorithms,561

and data. Indeed, statistical literacy could be considered a sub-skill of AI literacy if562

AI literacy is understood as the ability to recognize, understand, use, and critically563

evaluate AI technologies and their societal impacts, supported by foundational knowl-564

edge in statistics and computing. Therefore, policymakers should consider promoting565

AI literacy to address some of the complexities associated with trust in algorithms.566

Our study utilized self-reported measures via rating scales, which are efficient and567

cost-effective for capturing data on thoughts, feelings, and subjective experiences. How-568
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ever, these measures can be influenced by social desirability, response bias, misinter-569

pretation, or lack of self-awareness. For instance, physiological research has shown that570

self-reported measures of physical activity can both overestimate and underestimate571

actual levels of physical activity [99]. Therefore, future extensions of this work should572

consider a more robust approach, such as triangulating the data with direct obser-573

vations of user interactions with algorithms or physiological measures to assess trust574

more accurately.575

High-stakes and low-stakes situations exhibit significant variability across individ-576

uals and cultures, existing on a context-dependent continuum rather than as dis-577

crete categories. For example, choosing a restaurant for dinner with friends may carry578

different stakes across cultural contexts, socioeconomic backgrounds, and individual579

preferences. Our study’s primary limitation lies in not systematically investigating580

how participants from different backgrounds interpreted and classified these scenarios.581

Additionally, while our sample included participants from 20 countries, certain geo-582

graphical regions like Central Europe were underrepresented, potentially limiting the583

generalizability of our findings across different cultural contexts. Although we aimed584

to move beyond WEIRD (Western, Educated, Industrialized, Rich, and Democratic)585

sampling biases, more comprehensive geographic and cultural representation, along586

with larger sample sizes from each region, would be necessary to make broader gener-587

alizations about algorithmic trust across diverse populations [100,101]. Future research588

should incorporate scenario validation across different cultural contexts and expand589

sampling to include currently underrepresented regions and demographic groups.590

Conclusion591

This study investigated the personal and algorithmic factors that affect individuals’592

trust in algorithms. Our findings revealed that when the stakes are low, statistical593

literacy is positively correlated with the likelihood of trusting an algorithm. However,594

when the stakes are high, our results indicated a negative correlation between statis-595

tical literacy and the likelihood of trusting an algorithm. Therefore, we conclude that596

having statistical literacy enables individuals to critically evaluate the decisions made597

by ADA and consider them alongside other factors before making significant life deci-598

sions. This ensures that individuals are not solely relying on algorithms that may not599

fully capture the complexity and nuances of human behaviour and decision-making.600
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