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Abstract — The topological and dynamical properties of real-world networks have attracted extensive research 
from a variety of multi-disciplinary fields. They, in fact, model typically big datasets which pose interesting 
challenges, due to their intrinsic size and complex interactions, as well as the dependencies between their different 
sub-parts. Therefore, defining networks based on such properties, is unlikely to produce usable information due to 
their complexity and the data inconsistencies which they typically contain.  In this paper, we discuss the 
evaluation of a method as part of ongoing research which aims to mine data to assess whether their associated 
networks exhibit properties comparable to well-known structures, namely scale-free, small world and random 
networks. For this, we will use a large dataset containing information on the seismologic activity recorded by the 
European-Mediterranean Seismological Centre. We will show that it provides an accurate, agile, and scalable tool 
to extract useful information. This further motivates our effort to produce a big data analytics tool which will 
focus on obtaining in-depth intelligence from both structured and unstructured big datasets. This will ultimately 
lead to a better understanding and prediction of the properties of the system(s) they model. 
Keywords: Knowledge discovery; Networks; Information extraction; Data analytics; Text Mining; Seismological  
data

INTRODUCTION

    The majority of contemporary scientific advancements have been based on the ability to identify specific properties of  
data, and provide both analytical and predictive capabilities. Furthermore, with the increasing availability of big-data sets,  
new challenges, as well as opportunities have risen which are at the very core of Big Data research.
     In particular, data come in a variety of types, forms, and size, which makes the way we extract and assess information a  
crucial step in gathering intelligence. However, big data-sets need to be suitably manipulated and assessed to ensure they can  
be effectively analysed.
    In this paper we introduce a novel method to topologically reduce networks created by the elements of data-sets, and their  
mutual  relationships.  This  provides  a  tool  to  superimpose  networks  on  top  of  real-world  data  to  describe  their  main 
properties, whilst providing a computationally efficient method.
    Network theory has been developed since the birth of discrete and combinatorial mathematics (Bollobas, 1998)which, 
broadly speaking, aims to describe and represent relations, referred to as edges, between objects, or nodes. In particular, it has 
a huge set of applications within a variety of multi-disciplinary research fields, including applied mathematics, psychology,  
biomedical research, computer science, to name but a few (Dingli, et al., 2012) .
    Formally, networks are defined as a collection of nodes, called the  node set  V={vi}i=1n, which are connected as 
specified by the edge set E={eij}i≠j=1n (Albert, et al. 2002)..
 Although networks are based on relatively simple mathematical concepts, their general properties exhibit powerful features 
that can be applied to model complex scenarios (Trovati, et al., 2014)

Data often consist of elements, which could be numeric values, physical entities, or general semantic concepts, which are 
linked by relationships. Despite its intrinsic vagueness, this can be effectively described by using networks, even though  
populating the edge and node sets is typically a complex task. In fact, extracting the relevant information can be challenging  
especially when addressing unstructured data-sets. Furthermore, when size plays a crucial role, such as in Big Data, such 
extraction can be even more difficult to carry out effectively. Therefore, there are several methods to generate networks from 
data, which can be, in turn, investigated according to the overall features of such networks. 

One of the most important parts in this investigation is to determine the topological structure of a network to allow a 
complete mathematical and statistical investigation of the data set(s) associated with it. 

Network analysis techniques have been extensively investigated and the use and applications of network data has been 
proposed previously in a wide range of real-world complex settings (Akoumianakis, et al., 2012) Zelenkauskaite A, Bessis N,
Sotiriadis S and Asimakopoulou E. (2012). Interconnectedness of Complex Systems of Internet of Things through Social
Network Analysis for Disaster Management. Proceedings of INCoS 2012: 503-508 (Zelenkauskaite, et al., 2012). In general, 
it has been found that the majority of network analyses ignore the network itself that it is the actual focus of this work. 



Networks  are  relatively  simple  to  define  based  on  suitably  processed  data  sets.  In  fact,  via  data  and  text  mining  
techniques, it is possible to isolate semantic objects, such as physical, as well as conceptual entities, along with their mutual  
relationships determined by hierarchical properties of the corresponding data sets.

In this paper, the idea of reducing the topology of a network determined by pre-processed data focuses on its complexity,  
rather than on its structure in terms of edges and nodes. In other words, we are proposing a method to determine which  
degree distribution best  describes a  real-world network,  rather than pruning it  to decrease its  size.  Our main goal  is  to  
determine which rule, if any at all, can describe the structure of a real-world network. In particular, we, aim to provide a  
complete toolbox which facilitates intelligence extraction from big data-sets. In particular, this will enable the definition of 
networks lying on an intermediate layer, which is used to efficiently identify and classify big data. As part of our evaluation, 
we will analyse the network (and sub-networks) associated with a large dataset containing information on the seismologic  
activity recorded by the European-Mediterranean Seismological Centre (Zelenkauskaite, et al., 2012) . In particular, we will 
show that it exhibits a scale-free structure, which indicates the likelihood of a non-random set of events.  Furthermore, this 
also suggests the existence a co-occurrence relationships among the events corresponding to the nodes.

The rest of the paper is organised as follows: in Section  Theoretical Background we describe the main features of the 
networks considered in the paper. Section  Big Data discusses the relevance of Big Data and its properties, while Section 
Description  of  our  Approach focuses  on  the  description  and  implementation  of  the  main  algorithms.  Finally,  Section 
Evaluation discusses the evaluation we have carried out, and Section Conclusions and Future Steps concludes and prompts 
future directions of our work.

THEORETICAL BACKGROUND

In this section the main theoretical concepts of network theory are discussed, which are exploited and applied as part of our 
method. 

Random Networks

    Random networks have been extensively studied since their introduction (  Erd s, et al., 1960)ȍ , when it was realised this 
could describe the complexity of real-world systems that could not be captured by ordinary deterministic networks. The 
general definition of such networks is rather simple: we start with n nodes which are mutually connected with an independent 
probability p. Over the last few decades, more probabilistic models have been defined to extend the above definition.
    Random networks are characterised by a probability distribution p, which governs the existence of the edges between any 
two nodes. In particular, the probability p is linked to the fraction pk of nodes with degree k as follows:

pk ≈ zke-zk!  

where z=n-1p, and n is the number of nodes.
    However, it is certainly legitimate to wonder how realistic such type of model really is. If we consider a general social 
network, a purely random approach would entail that any new member would connect and interact at random. Over time all 
the new members will spread uniformly over the network. However, one of the main criticisms is that individuals are more 
likely to interact with socially active people, or in other words, nodes of social networks with a higher degree. This is one of 
the reasons of the introduction of scale-free networks as discussed in the next section. On the other hand, if a network does 
exhibit a purely random behaviour, it may suggest that the objects that correspond to the nodes, do not have any co-
occurrence rule that may indicate an influence between them.

Scale-Free Networks

Numerous physical and, more generally, real-world systems exhibit properties that can be described as scale-free networks, 
such as biological and bio-medical systems, as well as social networks (Humphries, et al., 2008).  . The introduction of this 
type of network is relatively recent, since network research mainly focused on random networks (Bollobas 1998). In particular, 
Albert et al. (Albert, et al. 1999).  whilst investigating the properties of webpages and their mutual links, discovered that their 
behaviour is not random, and they identified few web pages which were highly connected, whereas the majority appeared to be 
quite sparse.

In particular, they are characterised by a degree distribution which follows a power law. Formally speaking, this can be  
formalised, as

pk≈k-γ

where pk is the fraction of nodes in the network with degree k, and γ is a parameter which has been empirically shown to be 
usually in the range 2< <3γ  (Albert, et al. 2002).. In scale-free networks there is the relatively high likelihood to have hubs, 
which govern the behaviour of the information flow and how it propagates through the nodes (Albert, et al. 2002)..



    Another important aspect of scale-free is that they are considered as evolving. In other words, they can successfully model 
systems that exhibit dynamical properties. This includes scenarios where nodes and edges are created over time, following  
the preferential attachment property (Albert, et al. 2002)., which states that new nodes are more likely to connect to existing  
nodes with higher degrees. A rather simple, yet explanatory example, is the fact that highly connected individuals tend to  
have more connections over time. In this paper, we do not investigate the dynamics of topologically reduced networks, since  
the data-set we have investigated consists of “static” entries. However, one of the main challenges in Big Data is the ability to  
process information that changes within specific time constraints. This will be the focus of future research.

In the next section, we discuss the main components of our approach based on the topological structures described above. 

BIG DATA 

    Data is continuously generated in different formats and sizes, which introduces critical challenges as they need to be  
addressed utilising appropriate algorithms ant technology.   
    The main properties that characterise Big Data include:

• Volume. There is a huge quantity of data that is accessible, consisting of real-time and historical data.
• Velocity. Real-time data is continuously created and changed, which requires suitable techniques to process and 

assess them within specific time constraints.
• Variety. Data is created in all shapes and forms, depending on their source such as structured or unstructured.
• Veracity. Data tend to contain contradictory and missing information which needs to be addressed in  order  to  

provide relevant intelligence.
    The ability to address most (if not all) of these components, is at the very core of Big Data research. Furthermore, due to  
the ubiquity of data, applications of Big Data have increasingly drawn attention from the academic and business world. In 
fact, its potential has proved to be huge with relevant and important applications.

DESCRIPTION OF OUR APPROACH 

As  discussed  above,  the  assessment  and  management  of  Big  Data  provide  unprecedented  challenges  as  well  as 
opportunities. The aim of this paper is to introduce a method to identify the relational structure which is created by data, so  
that it can be implemented accurately and in a computationally efficient manner. More specifically, the elements of the data  
sets and their mutual relationships define real-world networks. Clearly, such networks can vary in size, from relatively small  
and highly connected structures, to huge networks with several thousands of nodes and edges, which can also incorporate 
erroneous information.
    The ability to topologically reduce real-world networks addresses the above challenges, by identifying and ranking the best 
network structure that can approximate data structure (Watts, at al., 1998).
    Broadly speaking, the main components include the following steps:

• Definition of a network based on the relations among elements of a dataset. These are identified either directly from 
structured entries, or via text mining techniques.

• Identification of two different  semi-isomorphic  networks (i.e. networks with same nodes), namely scale-free, and 
random.

• The main parameters characterising the above networks are then identified to attempt to approximate the topology of 
the original network.

• Finally, the above approximations are ranked according to their accuracy.

Figure 1 depicts the different stages of our method as described above. Note that the main motivation of this approach is  
to determine whether a real-world network exhibits a purely random network, implying a randomly distributed co-existence 
of the nodes, or a scale-free structure. In particular, this would suggest a pattern in the node co-occurrence.



Figure 1: Scale-free network algorithm

Generation of Networks

As already mentioned above, the topological reduction of real-world networks has several benefits. In fact, extracting the 
structure of potentially big data-sets allows a better understanding and manipulation of the information embedded in such  
data-sets.  However,  due  to  the  diverse  and  complex  nature  of  Big  Data,  there  is  a  need  to  balance  accuracy  with 
computational efficiency. 

In Section Theoretical Background, the general properties of random and scale-free networks were introduced. In order to 
topologically reduce a real-world network, it is crucial to determine the parameters that govern the corresponding structure.

The behaviour of the node degrees in scale-free networks is based on the parameter γ, which can be easily found for the 
nodes with the degree, namely

pk= -logpklogkγ

    where the suffix refers to the proportion  pk of nodes with degrees  k. If we consider all the different subsets of nodes 
defined by the node degree, we then have a sequence pk1, …,  pkj  γ γ , whose average is

∆=l=1j pklnγ
where n =  |V|, is the cardinality of the node set. Its standard deviation is then

=1nl=1j( pkl-∆)2σ γ
The average ∆ and the standard deviation σ are used as the main parameter of our algorithm to estimate the value of γ, as 

well in the ranking process as discussed in Section Ranking of the Generated Networks.  
    More specifically, the corresponding algorithm is as follows

Scale-free Network Algorithm (m,n) 
temp = 0
for i = 1 to m

do
                   pk   = -logp(k)logkγ



 temp = γ+ temp
Δ= temp/n

for each γ 
do

find σ

return Δ, σ

where m is the number of subsets of V with the same degree, i.e. pki for i=1,…,m, and n is the cardinality of V.

In a similar fashion, we can algebraically manipulate the equation that governs the degree distribution in random network, 
namely

pkk!(n-1)k=pk e1-np
to obtain a more computationally efficient approach.

As discussed in (Trovati, et al., 2014), we can re-write the above equation as

logpkk!(n-1)k=k logp+ 1-np 

which can be approximated as
           2p2-1-nk+4+ 

log2pk k!n-1k+0.5, 
by expanding logp at p = 0.5, as

logp≈2p- log2-2(p-0.5)2 

Similarly to the above, we have developed the following algorithm

Random Network Algorithm (m,n)
temp = 0
for i from 1 to m

do
     solve(

2p2-1-nk+4+ 
log2pk k!n-1k+0.5)
    if p >= 0 and p <= 1

do
temp = temp + p 

Δ= temp/n
for each γ 

do
find σ

return Δ, σ

    An important constraint is that p has to be within the interval [0, 1] for obvious reasons. Any value of p outside the above 
interval will be ignored.

Text and Sentiment Analysis of Data Sets

Big Data come in a multitude of types, and can be structured as well as unstructured. As a consequence, we also consider 
specific textual extraction capabilities to address a wider range of data-sets. In particular, extracting the relevant information  
from textual data enables to successfully isolate the nodes of the network that are associated with them. However, when data 
include textual information, the identification and analysis of their relations can be problematic due to the ambiguous nature  
of human language. Depending on the general context and information on the type of data and their structure, a variety of text 
mining techniques can be used. 



Text Mining (De Marneffe, et al., 2006) is typically a computationally demanding task which is clearly not suitable when 
dealing with Big Data. There are a variety of techniques to extract information from text, including grammar and statistical  
based  approaches.  Sentiment  analysis  (Liu,  2012).  ,  is  a  very  active  research  field  which  aims  to  detect  “moods”,  or  
“opinions”, expressed by blogs, websites, texts, feeds, etc. to understand the type of emotions that are captured by textual  
information.

The dataset which we have used for validation, as discussed in Section Evaluation, contains information on air accidents 
and near misses. In particular, some of the entries consisted of pilots’ comments which would be particularly suitable for the 
above method.

In this paper, we apply a method based on sentiment analysis defined by a vocabulary consisting of specific keywords.  
These were semi-automatically determined by creating a large set of keywords and cue phrases by extracting them from the 
tagged version of the Brown Corpus, containing approximately 500 samples of English-language texts (Trovati, et al., 2015) .

 
Table 1: A small selection of keywords as described above

Abandon Calamity

Abnormal Collision

Abrupt Delay

Accident Disaster

Quit Risky

Turbulence Warning

Caution Cancel

Challenge Complain

Complicate Confusion

Damage Danger

Defective Deteriorate

Subsequently, the next steps include

1. Text fragments are first shallow parsed via the Stanford Parser (De Marneffe, et al., 2006), to allow a computationally 
feasible syntactic analysis.

2. A grammar-based extraction extracts triples of the form (NP, verb, keyword), where 

o NP, or noun phrase, contains the subject of the sentence. Only the head noun is isolated, 

o verb is the linking verb, and

o keyword consists of one or more keywords as mentioned above.

All  the  identified  triples  are  used  to  populate  the  nodes  and  edges  of  a  network,  which  capture  the  corresponding 
relationships among the different data entries.

Ranking of the Generated Networks

    As mentioned above, the aim of the ranking is to suggest  which network, or networks,  are the most appropriate to 
approximate the given dataset. 
    The above algorithms provide an approximated value of the most relevant parameters, namely γ and p for a scale-free and 
a random network respectively, as well as the associated standard deviations.
    In this paper we do not provide a fully automated ranking system, as we require human intervention for this particular task. 
More specifically, the user has to assess which network is most suitable according to the features of the parameters, and their  
corresponding standard deviations. For example, if we obtain a value with a large standard deviation, we might assess it as  
not an accurate topology reduction.
    Another important aspect if this method is the analysis of long tails distributions for scale-free networks, which tend to  
exhibit such property due to their exponential nature. However, experimental evaluations indicated that long tails might lead  
to inaccurate γ evaluation (Trovati, et al., 2014).



    As a consequence, we also included the following algorithm which returns the interval in which we have values that do not  
yet follow a log-tail distribution.

Long-Tail Algorithm (value(x),d) 

n = initial_value
while abs(value(n+1) – value(n))<d

n = n+1
return n

where value(x) corresponds to the number of nodes with  n degree.

Description of the Dataset

    The dataset we have analysed consists of large data-set containing earthquake occurrences, which have been collected by  
the European-Mediterranean Seismological Centre (European-Mediterranean Seismological Centre Database, 2014). More 
specifically, it includes real time parametric provided by 65 seismological networks of the Euro-Med region, recorded from  
October 2004 to September 2009, with a magnitude up to 9.3. The collected data are subsequently stored in a large database,  
which contains structured data.

In (Trovati, et al., 2014), the authors consider a data-set about air accidents and near misses, available from (Aviation 
Safety Reporting System Database, 2014), which contains unstructured entries in the form of textual information. This was 
analysed by using the method discussed in above. Even though we did not carry out a formal evaluation of the text extraction 
results, we noticed that it produced an accuracy above 70%. In future research, we are aiming to expand the text mining 
extraction and carry out a comprehensive evaluation across a variety of data-sets. 

Figure 2: Scale-free network topologically reduced from (Akoumianakis, et al., 2012).

Table 2: Example of the nodes extracted from specific textual entries, as described in (Akoumianakis, et al., 2012).

Entry in data-
set

Sentiment analysis output

ZID  Controller 
issued  a 
'direct'  to 
destination 
clearance  when 
in  fact  the 
destination  was 
unclear 
resulting in the 
aircraft  turning 
to an unexpected 
heading.

Node 1 : destination unclear
Node 2: unexpected heading

A pilot reported 
his  aircraft's 
FMS  recalled  an 
Engine  Out 

Node: incorrect geographical 
coordinates



waypoint  with 
incorrect 
geographical 
coordinates 
because  a 
previous  crew 
had  manually 
entered  a 
correctly  named 
waypoint  with 
incorrect 
coordinates.
ONT  Controller 
described 
multiple TCAS RA 
events; 
resulting in two 
go  arounds 
during  police 
helicopter 
operations  near 
the  landing 
runway.

Node 1: multiple TCAS RA events
Node 2: two go arounds

EVALUATION

In order to carry out an evaluation of our approach, the data were suitably manipulated to produce a network, or in other  
words, nodes were associated to the different entries whose mutual relational connections defined the edges of the network.

In particular,
1. The textual entries were analysed as described in Section  Text and Sentiment Analysis of Data Sets to extract 

triples of the form (NP, verb, keyword). These identified nodes as entities captured by the NP linked to 
specific keywords associated to a state. Note that it may contain a fragment of a sentence. As a consequence, we  
only extract the head noun, including the corresponding adjectives and quantifiers. This defined nodes, which 
were also connected to the other entries in the data set according to its hierarchical structure.

2. This generated a (non-fully connected) network with 47,593 nodes and 65,536 edges, with an average degree of 
2.75. 

3.  We then considered specific parameters, namely the date of the earthquake activity, its geographical location, 
time of the day, and its intensity, and assessed their corresponding reduced-topology networks. 

4. The algorithms described in Section Generation of Networks were implemented to assess whether a scale-free or 
random topology would best approximate the network, if any at all. Note that this evaluation, as mentioned above, 
is not fully automated, and it ultimately depends on the user’s judgement, supported by the values of the different  
parameters, and corresponding standard deviation.

Table  2  shows  all  the  relevant  parameters  associated  with  the  corresponding  networks  produced  by  the  algorithms 
described earlier. It can be seen that the best values, considering their standard deviations, appear to indicate that the original 
network exhibits scale-free properties. This further supports recent research which suggests that no real-world network is likely 
to be purely random (Albert, et al. 2002).

Table 2: Evaluation of results for the three different parameters.



Parameter 1: 
Date of 
seismic 
activity

Scale-free 
Network

= 2.17γ
= 1.63σ

Random 
Network

p=0.17
=2.2σ

Parameter 2: 
Geographical 

location of 
seismic 
activity

Scale-free 
Network

= 2.74γ
= 0.73σ

Random 
Network

p=0.09
=0.81σ

Parameter 3: 
Time of 
seismic 
activity

Scale-free 
Network

= 2.93γ
= 1.98σ

Random 
Network

p=0.21
=4.9σ

Parameter 4: 
Intensity of 

seismic 
activity

Scale-free 
Network

= 2.89γ
= 1.96σ

Random 
Network

p=0.13
=5.3σ

In fact, according to the ranking system proposed in (Trovati, et al., 2014), scale-free is the network structure with reduced 
topology that provides the most accurate approximation of the original network across the parameters considered. For example 
Figure 2, clearly showsthe exponential nature of the node degrees with respect to geographical location of the seismic activity..

In particular, figure 6 depicts how the Long-Tail algorithm produces more accurate results with respect to the pre-long tail  
data, proposed in the existing literature (Clauset, et al., 2009).

Figure 2: Plots of the degrees of nodes against number of edges based on the geographical location of seismic activity. In 
particular, the latter is a log scale, which shows the exponential nature of the degree distribution.



    Figure 6: Comparison of the results when using the Long-Tail algorithm (Clauset, 2009) in the case of nodes against number of edges based on the date 
of seismic activity. The latter plot is in log scale, which again, clearly shows the exponential nature of the corresponding network.

The values of γ across the four different networks vary between 2.17 and 2.94 with cut-offs at an approximate degree n = 
20.  As discussed in (Newman, 2003), there is strong and increasing evidence that real-world networks exhibit scale-free 
topology  with  2< <3.γ  Our  evaluation  further  reinforce  this,  showing  that  seismic  activity  (European-Mediterranean 
Seismological Centre Database, 2014) appears to follow such trend.

Even though we did not  directly evaluate  the  computational  efficiency of  our  algorithms,  we noted that  the  overall 
performance showed evidence of effectiveness. A full evaluation of the performance of our approach will be carried out in 
future research.

CONCLUSIONS AND FUTURE STEPS 

In this paper, we have discussed the evaluation of the method we introduced in (Trovati, et al., 2014) on a real-world big 
dataset  as  described  in  Section  Description  of  the  Dataset.  Our  results  show  that  the  corresponding  network  can  be 
topologically reduced to a scale-free network according to the parameters discussed in Section Evaluation, with 2< <3γ . This 
further supports the fact that real-world networks exhibit this particular structure (Albert, et al. 2002).

We are planning to expand and enhance our algorithms to address more topological structures, and different dataset types.  
In  particular,  we are  planning  to  expand our  method to  address  the  challenges  posed  by huge datasets  including  data  
inconsistencies, as well as missing information to define full networks. We will also directly address computational efficiency 
of our approach to ensure its full scalability.
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