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Abstract: In today’s data-driven business landscape, effective customer segmentation is 

crucial for enhancing engagement, loyalty, and profitability. Traditional clustering meth-

ods often struggle with datasets containing both numerical and categorical variables, lead-

ing to suboptimal segmentation. This study addresses this limitation by introducing a 

novel application of Factor Analysis of Mixed Data (FAMD) for dimensionality reduction, 

integrated with K-means and Agglomerative Clustering for robust customer segmenta-

tion. While FAMD is not new in data analytics, its potential in customer segmentation has 

been underexplored. This research bridges that gap by demonstrating how FAMD can 

harmonize mixed data types, preserving structural relationships that conventional meth-

ods overlook. The proposed methodology was tested on a Kaggle-sourced retail dataset 

comprising 3900 customers, with preprocessing steps including correlation ratio filtering 

(η ≥ 0.03), standardization, and encoding. FAMD reduced the feature space to three prin-

cipal components, capturing 81.46% of the variance, which facilitated clearer segmenta-

tion. Comparative clustering analysis showed that Agglomerative Clustering (Silhouette 

Score: 0.52) outperformed K-means (0.51) at k = 4, revealing distinct customer segments 

such as seasonal shoppers and high spenders. Practical implications include the develop-

ment of targeted marketing strategies, validated through heatmap visualizations and 

cluster profiling. This study not only underscores the suitability of FAMD for customer 

segmentation but also sets the stage for more nuanced marketing analytics driven by 

mixed-data methodologies. 

Keywords: customer segmentation; FAMD; K-means; agglomerative clustering;  

silhouette score; mixed data analysis 

 

1. Introduction 

In today’s digital economy, businesses face increasing pressure to deliver personal-

ized experiences across all customer touchpoints. Consumers expect seamless, relevant 

interactions tailored to their preferences, rendering generic marketing strategies increas-

ingly ineffective. Customer engagement has thus become a strategic imperative—enhanc-

ing satisfaction, building loyalty, and driving profitability [1,2]. One effective method for 
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enhancing engagement is customer segmentation, which enables brands to tailor offers, 

messages, and services to specific consumer subgroups [3]. 

Customer segmentation divides a broad customer base into subgroups based on 

shared characteristics or behaviors. Traditional segmentation techniques, often based on 

demographic factors, are now being complemented by data-driven methods such as clus-

tering, which uncover deeper behavioral patterns within consumer data [4]. Clustering 

groups of customers into segments with high intra-group similarity and low inter-group 

similarity supports targeted marketing, campaign design, and resource allocation [5,6]. 

However, with the proliferation of complex datasets that include both numerical and 

categorical variables—common in e-commerce, retail, and omnichannel systems—tradi-

tional clustering techniques often struggle to process and interpret such data types effec-

tively [7,8]. This study addresses these limitations by applying FAMD, a dimensionality 

reduction technique that integrates both variable types into a unified analytical frame-

work. FAMD combines the strengths of Principal Component Analysis (PCA) for numer-

ical variables and Multiple Correspondence Analysis (MCA) for categorical variables, en-

suring that neither dominates the clustering process [9,10]. 

The application of FAMD enables a more interpretable and structure-preserving 

transformation of the dataset, facilitating meaningful segmentation of heterogeneous cus-

tomer profiles. When coupled with unsupervised learning algorithms such as K-means 

and Agglomerative Clustering, this approach allows marketers to uncover actionable con-

sumer segments that would otherwise remain hidden in complex data structures [11,12]. 

1.1. Motivation and Research Gap 

The motivation for this study arises from the growing need for businesses to under-

stand and segment their customer base using increasingly complex datasets that include 

both numerical and categorical variables. Traditional segmentation methods, such as de-

mographic grouping or clustering on purely numerical data, often fall short when applied 

to mixed-type data, which is common in retail and e-commerce [7]. 

This study addresses this gap by leveraging FAMD, a dimensionality reduction tech-

nique uniquely capable of preserving the structure of mixed-type data by integrating the 

strengths of PCA and MCA. FAMD ensures that neither numerical nor categorical varia-

bles dominate the analysis, making it well suited for real-world datasets where both types 

are present. Compared to alternatives such as t-SNE or UMAP, which focus more on vis-

ualization or do not preserve variable relationships well, FAMD offers a robust, interpret-

able structure aligned with clustering objectives [9]. 

However, the integration of FAMD with various clustering algorithms, especially K-

means and Agglomerative Clustering, has not been thoroughly explored in the existing 

literature. Prior research tends to isolate clustering techniques or lacks proper feature pre-

processing using correlation-based selection metrics [11,12]. This study addresses this gap 

through the following means: 

1. Applying Eta correlation ratio filtering to select meaningful features; 

2. Using FAMD for dimensionality reduction; 

3. Conducting a comparative evaluation of K-means and Agglomerative Clustering us-

ing the Silhouette Score. 

1.2. Research Contribution 

This study introduces a novel approach to customer segmentation by integrating Fac-

tor Analysis of Mixed Data (FAMD) with both K-means and Agglomerative Clustering 

algorithms. The primary objective is to address the challenges posed by mixed-type da-

tasets (numerical and categorical) in customer segmentation, which are often inade-

quately handled by traditional clustering methods. Unlike conventional techniques that 
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either overlook categorical data or inadequately scale numerical features, FAMD harmo-

nizes both data types into a unified analytical framework. This enables more structured 

and interpretable clustering, enhancing segmentation precision. 

From an academic perspective, it bridges the methodological gap in mixed-data clus-

tering by proposing a structured pipeline that integrates Eta-based feature selection with 

FAMD, followed by dual clustering using K-means and Agglomerative Clustering. This 

approach marks a significant improvement over prior studies that apply clustering with-

out comprehensive feature preprocessing, which often results in noise and reduced inter-

pretability [8,12]. Through FAMD, the dimensionality of mixed datasets is effectively re-

duced while preserving key structural relationships. This method captures 81.46% of the 

cumulative variance with just three principal components, enabling efficient and inter-

pretable clustering compared to conventional PCA or MCA methods, which handle only 

numerical or categorical data independently [9,10]. Additionally, this study provides a 

comparative analysis of K-means and Agglomerative Clustering using Silhouette Scores, 

revealing that Agglomerative Clustering slightly outperforms K-means in capturing hier-

archical relationships. This empirical evidence supports the use of hierarchical methods 

for mixed-data segmentation, a topic that has been largely unexplored in the existing lit-

erature. 

From a practical standpoint, the proposed model identifies distinct consumer groups 

such as seasonal shoppers, high spenders, and tech-savvy buyers, enabling businesses to 

design more personalized marketing strategies that increase engagement and conversion 

rates. Heatmap-driven profiling facilitates targeted campaigns, including exclusive mo-

bile promotions for technology-oriented segments and seasonal discounts for occasional 

buyers. These insights are grounded in empirical evidence from the clustering analysis, 

ensuring strategic alignment with customer behaviors. Moreover, this study demonstrates 

that the segmentation framework is adaptable for large-scale datasets, making it practical 

for deployment in e-commerce, retail, and CRM systems. It also lays the groundwork for 

future research to explore its applicability across different geographic and industrial con-

texts. In summary, this study contributes both methodologically and practically to the 

field of customer segmentation by enhancing the interpretability, scalability, and preci-

sion of clustering analysis on mixed-type datasets. This advancement not only fills a crit-

ical research gap but also provides businesses with a robust tool for market strategy opti-

mization. 

The remainder of this paper is structured as follows: Section 2 discusses related work, 

Section 3 details the methodology, Section 4 presents experimental results, Section 5 ana-

lyzes findings, and Section 6 concludes with implications and future directions. 

2. Background and Significance of this Study 

Customer segmentation is a fundamental process in marketing that involves identi-

fying and grouping customers into homogeneous clusters based on shared characteristics 

[13]. Effective segmentation enables businesses to tailor their strategies to meet the specific 

needs of different customer groups, ultimately improving satisfaction, loyalty, and prof-

itability [14]. Segmentation contexts typically include demographic, geographic, and be-

havioral categories, each playing a crucial role in shaping marketing strategies. This sec-

tion explores traditional approaches, machine learning advancements, and the pivotal 

role of Factor Analysis of Mixed Data (FAMD) in addressing modern challenges. 

2.1. Traditional Customer Segmentation Approaches 

In the landscape of customer segmentation and clustering research, various algo-

rithms have been employed to address the challenges of mixed data types and complex 

datasets. Traditional clustering methods, such as K-means, Gaussian Mixture Models, and 
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DBSCAN, have been widely used but often struggle with the heterogeneity of real-world 

data. Recent studies have explored the application of these algorithms across different 

datasets, providing a benchmark for evaluating new methodologies. 

2.1.1. Demographic Segmentation 

Demographic segmentation divides customers by attributes such as age, gender, in-

come, and education. For example, Nike targets younger audiences with athletic wear 

while offering premium lines to high-income demographics [14]. While intuitive, this ap-

proach often overlooks behavioral nuances, such as purchasing motivations or brand loy-

alty. 

2.1.2. Geographic Segmentation 

Geographic segmentation tailor strategies to regional preferences, climates, and cul-

tural norms. This method aligns with localized behaviors—e.g., Starbucks introduces 

matcha lattes in Asia and pumpkin spice lattes in North America to reflect regional tastes 

[15]. In colder regions like Montana, retailers prioritize winter apparel promotions, 

whereas tropical regions focus on lightweight clothing. 

2.1.3. Behavioral Segmentation 

Behavioral segmentation leverages transactional data to identify patterns in customer 

interactions. For example, Recency, Frequency, and Monetary (RFM) Analysis is used to 

identify high-value customers based on the time since their last purchase, the rate of trans-

actions, and spending levels. Amazon Prime, for instance, targets frequent shoppers with 

loyalty rewards [16]. Another common approach is to classify customers by purchase be-

havior, such as product affinity or responsiveness to discounts. Sephora exemplifies this 

by tailoring email campaigns, offering skincare discounts to beauty enthusiasts and fra-

grance samples to new customers [17] [18]. 

2.1.4. Psychographic Segmentation 

Psychographic segmentation considers lifestyle, values, and personality traits. Pata-

gonia appeals to environmentally conscious consumers by emphasizing sustainability, 

while Tesla targets innovators seeking cutting-edge technology [19]. However, this 

method relies heavily on surveys and social data, limiting scalability. Traditional ap-

proaches often silo numerical (e.g., purchase amount) and categorical (e.g., payment 

method) variables, failing to capture their synergistic effects. 

2.2. Machine Learning in Customer Segmentation 

Machine learning (ML) transcends traditional methods by automating pattern detec-

tion in complex datasets. Clustering algorithms, a subset of unsupervised ML, group cus-

tomers into segments without predefined labels [19,20]. 

2.2.1. K-Means Clustering 

K-means clustering partitions data into a predefined number of clusters by minimiz-

ing the variance within each cluster [21,22]. It is widely used for applications such as fraud 

detection, where PayPal uses K-means to identify anomalous transactions [23]. In cus-

tomer profiling, Walmart applies K-means to segment shoppers into “budget-conscious” 

and “premium” groups for targeted promotions [24]. However, K-means struggles with 

non-spherical clusters and mixed data types, often resulting in skewed segmentation 

when categorical variables dominate [25] [26]. 
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2.2.2. Agglomerative Hierarchical Clustering 

Agglomerative Hierarchical Clustering builds a dendrogram by iteratively merging 

similar clusters based on a specified linkage criterion [27]. This method has been effec-

tively used for segmenting mall customers, identifying subgroups like “high-income, low 

frequency” shoppers, which supports personalized loyalty programs [28]. In the e-com-

merce sector, it reveals hierarchical relationships, such as parent–child clusters for prod-

uct recommendations. Its primary strength lies in not requiring a predefined number of 

clusters, allowing it to preserve hierarchical structures for multi-level analysis. 

2.2.3. Comparison with Other Algorithms 

Among other clustering algorithms, DBSCAN excels in detecting irregularly shaped 

clusters but struggles with varying densities. Gaussian Mixture Models (GMMs) apply a 

probabilistic approach that is useful for overlapping clusters but is computationally inten-

sive [29]. K-means is noted for its scalability, making it suitable for large datasets, while 

Agglomerative Clustering provides hierarchical insights without needing a predefined 

number of clusters. 

2.3. FAMD 

FAMD bridges the gap between numerical and categorical data by combining PCA, 

which reduces numerical variables into orthogonal components, and MCA, which trans-

forms categorical variables into a lower-dimensional space [30]. This integration allows 

for simultaneous dimensionality reduction across both types of data, preserving the struc-

tural relationships that are often overlooked in traditional clustering methods. 

2.4. Research Gaps and Significance 

The existing literature often approaches customer segmentation using singular clus-

tering techniques without considering the inherent complexity of mixed-type datasets. 

Traditional methods like K-means or DBSCAN perform well with purely numerical data 

but struggle when categorical attributes are introduced [7,8]. The lack of integration be-

tween numerical and categorical features can lead to misrepresented clusters, reducing 

interpretability and strategic value. Furthermore, the limited use of FAMD in segmenta-

tion tasks leaves a significant gap in fully leveraging mixed datasets. Current studies often 

isolate numerical and categorical analyses, overlooking the synergy that FAMD provides 

in harmonizing these data types for more structured segmentation [9,10]. Addressing this 

gap allows for clearer, more actionable customer profiles, particularly in industries with 

diverse data attributes, such as retail and e-commerce. 

To bridge this methodological divide, our research proposes the integration of 

FAMD with both K-means and Agglomerative Clustering. This combined approach aims 

to preserve the relationships in mixed datasets, enhancing interpretability and segmenta-

tion accuracy. By validating this framework on real-world retail data, this study not only 

advances theoretical understanding but also offers practical insights for targeted market-

ing strategies. 

3. Proposed Methodology 

This section details the methodology employed to enhance customer segmentation 

through the integration of Factor Analysis of Mixed Data (FAMD) with K-means and Ag-

glomerative Clustering. The workflow, illustrated in Figure 1, comprises six stages: data 

collection, preprocessing, feature selection, dimensionality reduction, clustering, and val-

idation. Each stage is designed to address the limitations of traditional methods and en-

sure robust, interpretable results. 
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Figure 1. Proposed methodology flowchart. 

3.1. Dataset Overview 

This study leverages the “Consumer Behavior and Shopping Habits Dataset” from 

Kaggle, a publicly available dataset containing 3900 anonymized customer records from 

a U.S.-based retail platform. The dataset includes 18 variables spanning demographics, 

transactional behavior, and product preferences. Key features of the dataset are summa-

rized in Table 1. 

Table 1. Summary of dataset features. 

Variable Data Type Unique Values Summary 

Customer ID int64 3900 Mean: 1950.50, Range: 1–3900, Std: 1125.98 

Age int64 53 Mean: 44.07, Range: 18–70, Std: 15.21 

Gender object 2 Male (68.0%), Female (32.0%) 

Item Purchased object 25 Blouse (4.4%), Jewelry (4.4%), Pants (4.4%) 

Category object 4 Clothing (44.5%), Accessories (31.8%), Footwear (15.4%) 

Purchase Amount (USD) int64 81 Mean: 59.76, Range: 20–100, Std: 23.69 

Location object 50 Montana (2.5%), California (2.4%), Idaho (2.4%) 

Size object 4 M (45.0%), L (27.0%), S (17.0%) 

Color object 25 Olive (4.5%), Yellow (4.5%), Silver (4.4%) 

Season object 4 Spring (25.6%), Fall (25.0%), Winter (24.9%) 

Review Rating float64 26 Mean: 3.75, Range: 2–5, Std: 0.72 

Subscription Status object 2 No (73.0%), Yes (27.0%) 

Shipping Type object 6 Free Shipping (17.3%), Standard (16.8%), Store Pickup (16.7%) 

Discount Applied object 2 No (57.0%), Yes (43.0%) 

Promo Code Used object 2 No (57.0%), Yes (43.0%) 

Previous Purchases int64 50 Mean: 25.35, Range: 1–50, Std: 14.45 

Payment Method object 6 PayPal (17.4%), Credit Card (17.2%), Cash (17.2%) 

Frequency of Purchases object 7 Every 3 Months (15.0%), Annually (14.7%), Quarterly (14.4%) 
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3.2. Dataset Selection Rationale 

The dataset used in this study—the “Consumer Behavior and Shopping Habits Da-

taset” from Kaggle—was selected based on several critical factors ensuring its suitability 

for robust segmentation analysis. First, it provides comprehensive mixed data represen-

tation, incorporating both numerical (e.g., Age) and categorical (e.g., Payment Method) 

variables, which aligns with real-world retail complexity and supports the application of 

FAMD. Second, the dataset holds strong credibility, having been widely cited in peer-

reviewed research on clustering and segmentation [2,12,24], thereby supporting its valid-

ity for academic investigations. Third, from a bias awareness perspective, known demo-

graphic imbalances (e.g., 68% male overrepresentation) were acknowledged and miti-

gated during the preprocessing phase, ensuring fairness and representativeness in mod-

eling. While Kaggle datasets vary in quality, the wide adoption and consistent results 

across published studies strengthen confidence in its reliability. Nonetheless, future work 

should validate this framework using datasets from diverse geographic or commercial 

contexts to enhance external generalizability. 

3.3. Dataset Preprocessing 

To ensure robustness and compatibility with the FAMD and clustering algorithms, 

the dataset underwent rigorous preprocessing. The steps included handling missing val-

ues, addressing outliers, and transforming features to normalize scales and encode cate-

gorical variables. 

3.3.1. Missing Value Handling 

The dataset was initially inspected for missing values using a comprehensive null-

check across all features. Remarkably, no missing values were detected in any variable 

(e.g., Age, Purchase Amount (USD), and Payment Method). While the dataset was already 

complete, the preprocessing pipeline included safeguards for hypothetical missing data 

to maintain robustness. 

For numerical variables, median imputation was predefined, particularly for skewed 

features like Previous Purchases. This method ensures that if missing values were to ap-

pear in future data, they would be imputed with the median value, effectively minimizing 

the impact of outliers. In the case of categorical variables, mode imputation was em-

ployed. This technique was reserved for nominal features, such as Shipping Type, to pre-

serve the original frequency distributions and avoid introducing bias into the categorical 

representation. These steps ensured the preprocessing pipeline remained resilient and 

maintained the structural integrity of the dataset during analysis. 

3.3.2. Outlier Treatment 

All preprocessing steps were logged to ensure transparency and replicability, sup-

porting the integrity of the dataset for downstream analysis. To enhance clustering stabil-

ity and reduce skewness in numerical variables, outlier detection and handling were care-

fully performed. The Interquartile Range (IQR) method was utilized to identify extreme 

values in Purchase Amount (USD) and Previous Purchases. For instance, transactions that 

exceeded the 95th percentile, such as USD 100 for Purchase Amount, were flagged as out-

liers for further review. 

Once detected, these extreme values were adjusted using a method known as cap-

ping, where the values were restricted to the 5th and 95th percentiles. This approach ef-

fectively retained the natural distribution of the data while minimizing noise. For exam-

ple, Previous Purchases, which originally ranged from 1 to 50, were capped at 5 and 45, 

respectively. This adjustment ensured more robust clustering by reducing the influence 

of extreme outliers without distorting the overall data patterns. 
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3.3.3. Data Harmonization for FAMD and Clustering 

To harmonize mixed data types for FAMD and clustering, several preprocessing 

steps were performed. First, categorical variables, such as Gender, Payment Method, and 

Frequency of Purchases, were one-hot encoded into binary vectors. This transformation 

expanded the dataset to 130 columns, creating distinct binary features like Gender_Male 

(1 for male; 0 otherwise) and Payment Method_PayPal. This encoding allowed categorical 

information to be represented numerically, facilitating compatibility with clustering algo-

rithms. 

For numerical variables, such as Age and Review Rating, standardization was ap-

plied using the StandardScaler method. This process normalized each feature to have a 

mean of zero and a standard deviation of one. For instance, a standardized Purchase 

Amount (USD) value of −0.29 represents a transaction that is 0.29 standard deviations be-

low the mean, ensuring all numerical data contributed proportionately during analysis. 

Ethical and practical considerations were also taken into account during prepro-

cessing. Notably, no records were discarded, preserving the original sample size of 3900 

and minimizing the risk of selection bias. Additionally, all preprocessing steps were thor-

oughly logged to maintain transparency and replicability, strengthening the methodolog-

ical integrity of this study. 

3.3.4. FAMD-Based Feature Transformation 

The expanded dataset (130 columns) was later decomposed via FAMD into 3 princi-

pal components, retaining 81.46% cumulative variance and resolving dimensionality chal-

lenges. The final preprocessed dataset combined standardized numerical features (e.g., 

Purchase Amount (USD) scaled to mean = 0) and one-hot encoded categorical variables 

(e.g., Gender_Male for binary gender representation). This structure ensured equitable 

weighting of variables during clustering while preserving intrinsic behavioral patterns. 

This preprocessing pipeline ensured compatibility with downstream algorithms while 

preserving the dataset’s intrinsic patterns, laying the foundation for effective customer 

segmentation. 

3.4. Comparative Datasets 

To validate the performance of our Agglomerative Clustering with FAMD approach 

across diverse data contexts, we compared our method with traditional algorithms using 

four distinct datasets from prior studies. These datasets varied in size, features, and do-

main, allowing us to assess the generalizability of our approach effectively. The first da-

taset, the UK Retailer Transactional Dataset (Study 1) [31], comprised 541,909 transactions 

with six features, including multivariate, sequential, and time-series data from a UK-

based online retailer. This dataset contained no missing values and primarily served 

wholesalers. 

The second dataset, the Mall Customer Dataset (Study 2) [32], featured 200 customer 

samples with key attributes such as “Annual Income (k$)” and “Spending Score (1–100).” 

This dataset enabled segmentation based on income and spending behaviors, providing 

clear distinctions among consumer groups. 

The third dataset, known as the Customer Segmentation Dataset (Study 3) [33], was 

specifically designed for teaching customer segmentation. It included essential customer 

information, such as Customer ID, gender, age, annual income, and spending score, re-

flecting customer behavior and purchasing data. 

Finally, the Pakistan E-Commerce Dataset (Study 4) [34] encompassed half a million 

transaction records spanning from March 2016 to August 2018. This dataset detailed e-

commerce orders, covering item information, shipping and payment methods, product 

categories, order dates, SKUs, prices, quantities, totals, and customer IDs. Collectively, 
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these datasets covered a broad range of retail and e-commerce scenarios, providing a com-

prehensive benchmark for evaluating the effectiveness and adaptability of our proposed 

methodology. 

3.5. K-Means Algorithm 

The K-means algorithm is an iterative, unsupervised clustering method used to par-

tition a dataset into K distinct clusters. The algorithm follows a simple yet powerful ap-

proach to group similar data points based on their feature values, minimizing intra-cluster 

variance while maximizing inter-cluster differences. The key steps involved are as fol-

lows: 

1. Initialization: randomly select K data points from the dataset as the initial cluster 

centroids: μ1, μ2, …, μk; 

2. Assignment step: for each data point xi, calculate its distance to each centroid using 

the Euclidean distance formula. The point is assigned to the cluster with the nearest 

centroid as defined in Equation (1): 

Ci = argmink ‖xi − μk‖2 for each xi ∈ Dataset (1) 

In Equation (1), Ci represents the cluster assignment for data point xi, and μk repre-

sents the centroid of cluster; 

3. Update step: recompute the centroids of each cluster by calculating the mean of all 

data points assigned to it, as shown in Equation (2): 

μk =
1

|Ck|
∑ xi

xi∈Ck

 (2) 

where Ck is the set of points assigned to cluster k, and |Ck| is the number of points 

in that cluster; 

4. Convergence check: the algorithm repeats the Assignment and Update steps itera-

tively until one of the following conditions is met: 

a. The centroids do not change significantly between iterations (convergence); 

b. A predefined maximum number of iterations is reached. 

When convergence is achieved, the algorithm outputs the final cluster centroids and 

the assignment of each data point to its respective cluster; 

5. Objective function (WCSS minimization): K-means optimizes the clustering by min-

imizing the Within-Cluster Sum of Squares (WCSS), represented mathematically in 

Equation (3): 

WCSS = ∑ ∑ ‖xi − μk‖2

xi∈Ck

K

k=1
 (3) 

where 

K is the total number of clusters; 

Ck is the set of points assigned to cluster k; 

μk is the centroid of cluster k; 

||xi − μk|| is the Euclidean distance between a point and its corresponding centroid 

μk. 

Equation (3) drives the optimization process by reducing the sum of squared dis-

tances within each cluster, enhancing cluster cohesion and separation. 

The complete K-means clustering process is illustrated in Figure 2, and the stepwise 

execution of the algorithm is demonstrated in Figure 3. 
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Figure 2. Process for K-means algorithm. 

 

Figure 3. K-means algorithm steps. 

3.6. Agglomerative Algorithm 

The Agglomerative Algorithm is a bottom-up hierarchical clustering method that in-

crementally merges individual data points into clusters based on their similarities. Unlike 

flat clustering methods, Agglomerative Clustering builds a tree-like structure (dendro-

gram) to represent the hierarchical relationships among data points. This algorithm does 

not require specifying the number of clusters in advance, as the process continues until all 

data points are grouped into a single cluster. 

1. Initialization: the algorithm begins with each data point as its own individual cluster: 

C = {{x1}, {x2}, …, {xn}}  

where xi represents each data point and n is the total number of data points; 

2. Distance calculation: the distance between every pair of clusters is computed using a 

specified linkage criterion. Common distance measures include: 

a. Single Linkage (Minimum Distance): Single Linkage, also known as the Mini-

mum Distance method, defines the distance between two clusters as the mini-

mum distance between any two points in the respective clusters. This method 

tends to create “chain-like” clusters and is sensitive to outliers as shown in Equa-

tion (4). 
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dsingle(Ci, Cj) = minx∈Ci,y∈Cj
d(x, y) (4) 

where 

Ci and Cj are the clusters; 

x and y are points in clusters Ci and Cj, respectively; 

d(x,y) is the distance between points x and y; 

b. Complete Linkage (Maximum Distance): We also considered the Complete 

Linkage method, which defines the distance between two clusters as the maxi-

mum distance between any two points in the respective clusters. This method 

tends to produce more compact and spherical clusters, making it robust to out-

liers as shown in Equation (5). 

dcomplete(Ci, Cj) = maxx∈Ci,y∈Cj
d(x, y) (5) 

c. Average Linkage (Mean Distance): Average Linkage, or the Mean Distance 

method, defines the distance between two clusters as the average distance be-

tween all pairs of points in the respective clusters as shown in Equation (6). This 

method provides a balance between the Single and Complete Linkage methods. 

daverage(Ci, Cj) =
1

|Ci|. |Cj|
∑ d(x, y)

x∈Ci,y∈Cj

 (6) 

d. Centroid Linkage: Centroid Linkage defines the distance between two clusters 

as the distance between their centroids as shown in Equation (7). The centroid 

of a cluster is the mean position of all the points in that cluster. This method is 

also known as the UPGMA (Unweighted Pair Group Method with Arithmetic 

Mean) when applied to hierarchical clustering. 

dcentroid(Ci, Cj) = d(centroid(Ci), centroid(Cj)) (7) 

3. Merging clusters: find the pair of clusters Ci and Cj with the smallest distance accord-

ing to the chosen linkage criterion and merge them: 

Cij = Ci ∪ Cj  

Update the set of clusters: 

C ← (C\{Ci, Cj)}) ∪ {Cij}  

4. Iterative process: repeat Steps 2 and 3 iteratively: 

a. Recalculate distances between the newly formed cluster and all remaining clus-

ters; 

b. Merge the closest clusters. 

This process continues until one of the following occurs: 

a. Only a single cluster remains, representing the entire dataset; 

b. A predefined number of clusters k is reached. 

5. Dendrogram representation: the complete Agglomerative Clustering process is rep-

resented using a dendrogram (Figure 4), which illustrates the hierarchical merging 

of clusters and can be cut at different levels to achieve the desired number of clusters. 
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Figure 4. Representation of agglomerative steps. 

3.7. Validation Metrics 

To evaluate the effectiveness and interpretability of the clustering models, two pri-

mary approaches were employed: Silhouette Score and Cluster Profiling. These metrics 

provide quantitative and qualitative insights into the clustering structure, enabling the 

assessment of cluster cohesion, separation, and interpretability. 

3.7.1. Silhouette Score 

The Silhouette Score is a widely used metric to evaluate the consistency and quality 

of clusters. It measures how similar each data point is to its assigned cluster compared to 

other clusters. The score ranges from −1 to 1, where a value close to 1 indicates that the 

data point is well-matched to its cluster and poorly matched to neighboring clusters. A 

value near 0 suggests the data point is on the boundary between two clusters. A value less 

than 0 implies that the data point may have been incorrectly assigned to its cluster. The 

Silhouette Score for a single data point i is calculated as shown in Equation (8). 

s(i) =
b(i) − a(i)

max {a(i), b(i)}
 (8) 

where 

a(i) is the average distance from point i to all other points within the same cluster (cohe-

sion); 

b(i) is the minimum average distance from point i to all points in the nearest neighboring 

cluster (separation). 

The overall Silhouette Score for the clustering solution is the mean Silhouette Score 

across all data points as shown in Equation (9): 

S =
1

n
∑ s(i)

n

i=1
 (9) 

where n is the total number of data points. This metric effectively quantifies the clarity of 

the cluster boundaries and the compactness of clusters. 

3.7.2. Cluster Profiling 

Cluster Profiling is a critical step in the interpretability of clustering outcomes. It in-

volves analyzing the defining characteristics of each cluster to understand their unique 

behaviors and patterns. This process is carried out by evaluating numerical features, such 

as mean, median, and distribution comparisons across clusters, to identify dominant 
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trends. Categorical features are examined through mode analysis and frequency distribu-

tions to highlight common attributes that distinguish one group from another. Further-

more, behavioral patterns are assessed to uncover insights into purchasing behavior, de-

mographics, or other relevant metrics that differentiate the clusters. 

Profiling enables the translation of clustering results into actionable business in-

sights. For instance, clusters characterized by high average purchase amounts and fre-

quent transactions may indicate loyal customer segments, while clusters with sporadic 

purchasing behavior might represent infrequent buyers. This structured interpretation al-

lows businesses to tailor strategies more effectively to the needs and preferences of each 

segmented group. 

3.8. Ethical Considerations 

In clustering and segmentation processes, ethical considerations play a crucial role in 

ensuring that outcomes are fair, unbiased, and transparent. This section discusses the key 

aspects of bias mitigation and transparency in the context of the clustering methodologies 

applied. 

3.8.1. Bias Mitigation 

Bias in clustering can arise from multiple sources, including data collection, feature 

selection, and model training. To address potential biases, several measures were imple-

mented. Data representation was examined to ensure the dataset reflects a balanced and 

representative sample of the population. This process included verifying demographic 

distributions and transaction behaviors across various customer segments. In terms of fea-

ture selection, attributes that could introduce bias, such as sensitive demographic charac-

teristics (e.g., race and religion), were either excluded or carefully handled to prevent dis-

criminatory clustering outcomes. Fair clustering techniques were also employed during 

preprocessing. Standardization techniques like StandardScaler were utilized to harmo-

nize feature scales, reducing the dominance of certain variables over others. 

Finally, evaluations for fairness were conducted post-modeling to detect any unin-

tentional bias or disparate impact. For example, purchasing behaviors were examined for 

balance across age groups, genders, and payment methods. These steps were integral to 

ensuring that the clustering process remained equitable, reflecting genuine behavioral 

patterns without reinforcing societal biases. 

3.8.2. Transparency 

Transparency in clustering not only promotes trust but also facilitates interpretabil-

ity. To enhance transparency in our analysis, several strategies were employed. Algorith-

mic transparency was prioritized through detailed documentation of preprocessing steps, 

clustering methodologies, including K-means and Agglomerative Clustering, and the hy-

perparameters used. This level of detail ensured replicability and provided clarity in un-

derstanding the model’s behavior. Model interpretability was another key focus. Cluster 

Profiling was performed to generate descriptive statistics and behavioral insights for each 

cluster, offering clear and interpretable outputs that stakeholders could easily compre-

hend. These insights allowed decision-makers to grasp the practical implications of seg-

mentation results. To further enhance transparency, auditability was established by com-

prehensively logging all preprocessing, modeling steps, and clustering assignments. This 

systematic logging enabled effective auditing and reproducibility of the analysis, ensuring 

that each phase could be revisited and verified for accuracy. 

Finally, communication of results was emphasized to prevent misinterpretation. 

Findings from the clustering analysis were presented clearly, with an emphasis on both 

strengths and limitations of the model. This transparent communication strategy ensured 
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that stakeholders understood the practical implications and potential boundaries of the 

analysis. Ensuring both bias mitigation and transparency not only aligns with ethical best 

practices but also strengthens the reliability and fairness of the clustering models. 

4. Experimental Findings 

This section presents the results of exploratory feature selection, dimensionality re-

duction using FAMD, and clustering performance across different algorithms and param-

eters. The findings are supported by both quantitative metrics and visualizations. 

4.1. Feature Selection via Correlation Ratio (Eta) 

Figure 5 displays the correlation ratio (Eta measurement) used to assess the associa-

tion between features and the target labels. The analysis revealed that all features ex-

ceeded the benchmark score of 0.03. 

 

Figure 5. Eta measurements. 

4.2. Dimensionality Reduction with FAMD 

After excluding underperforming features, the selected numerical features were 

scaled using StandardScaler, while categorical features were encoded using OneHotEn-

coder. The transformed data were then decomposed using FAMD. Table 2 summarizes 

the FAMD decomposition results. The first three components capture 81.46% of the total 

variance, which indicates that the dimensionality reduction retained most of the dataset’s 

structure. This justifies their selection for subsequent clustering, as they offer a compact 

yet informative representation of the original mixed-type features. 

Table 2. FAMD eigenvalues and variance. 

Component Eigenvalue % of Variance 
% of Variance  

(Cumulative) 

1 152.752125 33.350287 33.350287 

2 132.574064 28.944822 62.295109 

3 87.777265 19.164362 81.459470 

4.3. Cluster Number Determination 

K-means clustering used the elbow method (Figure 6) to determine the optimal num-

ber of clusters. The inflection point indicated k = 3 as a strong candidate, with diminishing 

gains in within-cluster variance reduction beyond that point. 
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Figure 6. Elbow method for K-means Optimal K. 

Agglomerative Clustering employed a dendrogram using Ward linkage (Figure 7), 

which suggested k = 3 or k = 4. Based on visual inspection and subsequent evaluation 

metrics, k = 4 provided more meaningful distinctions among customer segments. 

 

Figure 7. Dendrogram for Agglomerative Clustering Optimal K. 

While these visual methods offer intuitive guidance, they are also inherently subjec-

tive. Therefore, future iterations of this framework should consider automated and statis-

tical techniques such as the Gap Statistic, Silhouette Bootstrapping, or BIC to more objec-

tively determine the number of clusters. 

4.4. Clustering Performance 

Table 3 presents the comparative performance of K-means and Agglomerative Clus-

tering based on Silhouette Scores at k = 3 and k = 4. At k = 3, both algorithms produced 

identical Silhouette Scores (0.564), indicating similar clustering quality. However, at k = 4, 

Agglomerative Clustering slightly outperformed K-means (0.518 vs. 0.511), suggesting 

better-defined cluster boundaries. This implies that hierarchical methods may be more 

effective for capturing nuanced relationships in this dataset. The results help validate the 
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final choice of k = 4, as it provides better segmentation granularity without significantly 

compromising cohesion or separation. 

Table 3. Clustering algorithm performance. 

Clustering Algorithm Values of K Silhouette Score 

K-means 3 0.5641417203087317 

Agglomerative 3 0.5641417203087317 

K-means 4 0.511379685926011 

Agglomerative 4 0.5176950827846802 

4.5. Comparative Performance Across Studies 

To contextualize the performance of our Agglomerative Clustering with FAMD ap-

proach, we compared it against traditional clustering algorithms across four independent 

studies. The results are summarized in Tables 4 and 5: 

Table 4. Silhouette Scores across studies. 

Study Algorithm Silhouette Score Our Study (Agglomerative with FAMD) 

Study 1 

K-Means 0.6348 

0.7033 Gaussian Mixture Model 0.6035 

Birch 0.6828 

Study 2 
K-Means 0.2996 

0.5582 
DBSCAN 1.19 

Study 3 

K-Means 0.45 

0.419220668 Agglomerative 0.38 

Mini Batch K-Means 0.42 

Study 4 

K-Means 0.3282 

0.4888615 
Hierarchical 0.3544 

Gaussian 0.3544 

DBSCAN 0.3986 

Table 5. Statistical significance (p-values). 

Study Compared Against p-Value Significance 

1 Birch 0.03 Significant 

2 DBSCAN 0.002 Significant 

3 K-Means 0.12 Not Significant 

4 DBSCAN 0.0005 Significant 

Table 5 highlights that our approach achieved competitive or superior performance 

in three out of four studies, with statistically significant differences in three cases. Notably, 

in Study 2, the reported DBSCAN Silhouette Score of 1.19 exceeds the theoretical maxi-

mum of 1.0, suggesting a potential error in the prior study’s calculations or data prepro-

cessing. 

4.6. Clustering Visualization 

Figure 8 compares K-means clustering at k = 3 and k = 4. In this figure, both clustering 

configurations were applied to the same dataset, and the resulting clusters are displayed 

in a 3D scatter plot. The clusters at k = 3 were less distinct and more spread out compared 

to k = 4, where the method identified a finer partition of the data. The visualization clearly 

shows how increasing the number of clusters in K-means changes the distribution of data 

points. 
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Figure 8. Comparison of cluster assignments and structure. 

Figure 9 compares Agglomerative Clustering at k = 3 and k = 4. This figure presents 

the hierarchical approach used by Agglomerative Clustering, where the clusters were 

formed based on a bottom-up strategy. At k = 3, the clusters are larger and more diffuse, 

while at k = 4, the algorithm identified more compact clusters. The hierarchical nature of 

Agglomerative Clustering is visible in the 3D scatter plot, where different cluster groups 

are distinctly separated based on the algorithm’s linkage method. 

  

Figure 9. Hierarchical clustering with varying number of clusters. 

4.7. Clustering Performance and Validation 

To ensure robust evaluation of customer segmentation, this study employed three key 

clustering validation metrics: the Davies–Bouldin Index (DBI), the Calinski–Harabasz Inde 

(CHI), and the Silhouette Score [35]. These metrics collectively provide insights into the cohe-

sion and separation of the clusters formed, offering a comprehensive view of clustering per-

formance. 

4.7.1. Clustering Evaluation Metrics 

DBI measures intra-cluster similarity relative to inter-cluster differences. Lower DBI val-

ues indicate more distinct, well-separated clusters with minimal overlap. In contrast, the CHI 

evaluates the ratio of between-cluster dispersion to within-cluster dispersion, where higher 

values suggest more compact and clearly separated clusters. These two metrics together pro-

vide a complementary assessment of clustering quality—DBI penalizes overlap, while CHI 

rewards density and distinction. The Silhouette Score (used in prior steps of the analysis) fur-

ther supports these results by capturing how similar each point is to its own cluster compared 

to others. 



Information 2025, 16, 441 18 of 25 
 

 

4.7.2. Performance Comparison of Algorithms 

Table 6 reports on additional clustering quality metrics. Both algorithms achieved 

similar DBI values, indicating low overlap between clusters. The high CHI scores confirm 

strong internal cohesion. These results reinforce the earlier Silhouette Score findings, sug-

gesting that both clustering methods effectively separated customer segments, with only 

marginal differences in performance. 

Table 6. Clustering algorithm performance comparison. 

Metric K-means Agglomerative Clustering 

Davies–Bouldin Index (↓) 1 0.7333 0.7310 

Calinski–Harabasz Index (↑) 2 3364.45 3357.29 

1 ↑ Higher values indicate better performance (compact, well-separated clusters). 2 ↓ Lower values 

indicate better performance (minimal cluster overlap). 

Both K-means and Agglomerative Clustering achieved similar DBI scores—0.7333 

and 0.7310, respectively—indicating that both algorithms formed clusters with minimal 

overlap and strong separation. The small margin between their DBI values highlights their 

comparable capability to distinguish customer groups effectively. 

Similarly, the CHI values for both algorithms were high (K-means: 3364.45, Agglom-

erative: 3357.29), suggesting that the clusters formed were not only distinct but also inter-

nally cohesive. This reinforces the reliability of the segmentation results, with both algo-

rithms demonstrating a strong ability to capture the underlying structure of the data. 

The close alignment of DBI and CHI scores between the two methods demonstrates 

a high level of algorithm agreement, confirming that the clusters are both well-separated 

and internally coherent. This consistency validates the effectiveness of the clustering pro-

cess and strengthens confidence in the resulting customer segments. 

4.7.3. Impact of Dimensionality Reduction (FAMD) 

A key factor in the clustering performance was the use of FAMD, which allowed for the 

seamless integration of both numerical and categorical features. The consistency in perfor-

mance across K-means and Agglomerative Clustering confirms that FAMD effectively pre-

served the dataset’s structure during dimensionality reduction. This enabled both centroid-

based and hierarchical approaches to extract meaningful patterns from the data. 

From a business perspective, the validation results confirm that the chosen number 

of clusters—four—is optimal for distinguishing key customer segments, such as high 

spenders, occasional buyers, or seasonal shoppers. Organizations can confidently use ei-

ther algorithm, with K-means offering scalability for large datasets and Agglomerative 

Clustering providing hierarchical insights for more detailed analysis. 

The combined use of DBI and CHI illustrates how these metrics complement each 

other, offering a more complete evaluation than relying on a single measure. Furthermore, 

the effectiveness of FAMD in managing mixed-type data highlights its critical role in 

maintaining cluster integrity, making it a valuable tool in real-world segmentation tasks. 

4.8. Practical Implications 

4.8.1. Cluster Profiling and Targeted Strategies 

To improve interpretability, cluster-wise feature impact was examined. For each clus-

ter, the top contributing features were identified using relative mean differences and cat-

egorical mode prevalence. For instance, Cluster 0 was influenced heavily by variables 

such as Season, Payment Method, and Product Category, while Cluster 3 showed strong 

associations with Purchase Frequency and Digital Payment preferences. 
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Figure 10 summarizes these patterns in a heatmap, which now includes visual indi-

cators of feature importance (e.g., darker shades for stronger influence). This profiling al-

lows businesses not only to understand the behavioral makeup of each segment but also 

to prioritize marketing strategies based on the most defining attributes. 

 

Figure 10. Cluster profiling heatmap (mean for numeric; mode for categorical). 

From the heatmap, we observe that Cluster 0 consists of male customers from North 

Dakota who frequently purchase jackets in the fall using PayPal. They value free shipping 

and shop fortnightly, making them ideal targets for outerwear-focused digital ads. Cluster 

1 includes female shoppers from Montana who buy blouses during the fall using PayPal 

but shop less frequently, about once a year, making them strong candidates for seasonal 

offer campaigns. Cluster 2 comprises male customers from Indiana who purchase pants 

in the spring using credit cards with moderate purchase frequency, roughly every three 

months; this segment responds well to loyalty programs and premium subscription 

upsells. Finally, Cluster 3 represents tech-savvy male buyers from Ohio who use Venmo 

to purchase sandals in the spring. With fortnightly activity, this group aligns well with 

fintech promotions and mobile-exclusive deals. 

The recommended strategies per segment are visualized in Figure 11. 

 

Figure 11. Recommended marketing strategy distribution by cluster (%). 
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From the heatmap, we observe that Cluster 1 shows the highest responsiveness to 

seasonal offer campaigns (45.4%), especially in the fall. Cluster 2 stands out in subscription 

upsells (9.9%) while showing no interest in seasonal offers, indicating different engage-

ment motivators. Cluster 3 is moderately responsive across strategies, with slightly higher 

effectiveness from loyalty discounts (10.7%) and seasonal offers (26%). 

4.8.2. Generalizability Testing 

To evaluate the segmentation model’s scalability, a new dataset was analyzed using 

the same framework. Figure 12 presents the marketing strategy adoption distribution 

across clusters in the new data. 

 

Figure 12. Strategy distribution on new dataset (generalizability test). 

From the heatmap, we observe that seasonal campaigns maintained strong perfor-

mance, especially in Cluster 0 (38.8%) and Cluster 1 (29.9%), supporting their universal 

appeal. Loyalty discounts showed variable performance, peaking in Cluster 2 (25.9%) but 

falling as low as 3.1% in Cluster 3, which highlights the need for region- or demographic-

specific calibration. Generic email campaigns were consistently adopted across all clus-

ters, with particularly high adoption in Cluster 3 (69.2%). 

The cluster profiles and strategy distributions demonstrate the practical utility of 

FAMD-based segmentation. By tailoring campaigns to cluster-specific behaviors (e.g., sea-

sonal offers for Cluster 1; Venmo promotions for Cluster 3), businesses can enhance en-

gagement and ROI. 

The consistency in performance across the simulated dataset (which was randomly 

sampled from the original dataset) demonstrates the framework’s ability to generalize 

across different customer subsets. This supports the framework’s adoption in diverse mar-

kets, confirming that it is effective and adaptable for use in various contexts and regions. 

5. Discussion 

This study successfully demonstrated the application of a FAMD-based approach to 

enhance customer segmentation using K-means and Agglomerative Clustering algo-

rithms. By incorporating Eta correlation ratio filtering for feature selection, the methodol-

ogy ensured that all included variables contributed meaningfully to the clustering task. 

This pre-filtering step helped eliminate noise and reduce dimensionality before applying 

FAMD, which further distilled the feature space into three principal components that pre-

served 81.46% of the total variance. The combination of these preprocessing steps estab-

lished a robust foundation for effective segmentation. 
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5.1. Clustering Algorithm Performance 

A comparative evaluation of K-means and Agglomerative Clustering at various val-

ues of k revealed that both algorithms performed similarly at k = 3, but Agglomerative 

Clustering slightly outperformed K-means at k = 4, as evidenced by a marginally higher 

Silhouette Score (0.5177 vs. 0.5114). This suggests that hierarchical clustering may better 

capture underlying data structure in cases where segments are not easily separable by 

centroid-based methods. 

Further validation using the DBI and CHI supported these results. While DBI values 

were nearly identical (Agglomerative: 0.7310; K-means: 0.7333), indicating minimal clus-

ter overlap for both methods, CHI scores (Agglomerative: 3357.29; K-means: 3364.45) con-

firmed strong within-cluster cohesion and between-cluster separation. These close results 

suggest that the choice of algorithm may depend more on interpretability and scalability 

considerations than on performance alone. 

5.2. Robustness and Generalizability 

The comparative analysis across four independent studies underscores the robust-

ness and generalizability of our Agglomerative Clustering with FAMD approach. In three 

out of four cases, our method demonstrated competitive or superior performance com-

pared to traditional algorithms, as evidenced by higher Silhouette Scores and statistical 

significance in three studies. This indicates that our approach can effectively handle di-

verse datasets, particularly those with mixed-type variables and complex structures. 

The statistically significant outperformance in Studies 1, 2, and 4 (p-values ≤ 0.03, 

0.002, and 0.0005, respectively) reinforces the reliability of our method. However, the lack 

of statistical significance in Study 3 (p = 0.12) suggests that for certain datasets, traditional 

methods like K-means may perform comparably. This highlights the importance of select-

ing appropriate algorithms based on data characteristics and analytical goals. 

Moreover, the anomaly in Study 2’s DBSCAN Silhouette Score (1.19) serves as a re-

minder of the potential for errors in data preprocessing or algorithm implementation. Fu-

ture work should incorporate rigorous validation steps to ensure the integrity of compar-

ative analyses. 

By integrating these elements, you provide a comprehensive account of your 

method’s performance in relation to existing approaches, strengthening the academic ri-

gor and practical relevance of your paper. 

5.3. Impact of FAMD on Segmentation 

A critical strength of this study lies in its use of FAMD to address the challenge of 

mixed-type data—where both categorical and numerical variables coexist. Traditional di-

mensionality reduction techniques like PCA are limited to continuous variables, while 

others such as MCA are tailored to categorical data. FAMD bridges this gap by combining 

both approaches, thereby preserving the relationships among mixed features and ensur-

ing fair contribution across variable types. 

The three retained components captured over 81% of the cumulative variance, reduc-

ing computational load while maintaining the structural integrity of the data. This facili-

tated more stable clustering results and enabled effective visualizations in lower-dimen-

sional spaces. Furthermore, the successful performance of both K-means and Agglomer-

ative Clustering post-FAMD transformation validates its utility as a preparatory step for 

unsupervised learning on real-world, heterogeneous datasets. 

5.4. Interpretability and Strategic Insight 

Cluster profiling using both numeric averages and categorical mode values revealed 

distinct behavioral and demographic patterns across segments. For instance, Cluster 3 
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included tech-savvy, high-frequency buyers who preferred mobile payments like Venmo 

and often purchased seasonal items. This insight is valuable for marketing departments 

aiming to deliver tailored strategies—such as mobile-first campaigns or fintech partner-

ships. 

Visualization tools, including heatmaps and 3D scatter plots, further enhanced inter-

pretability, making the results accessible for non-technical stakeholders in marketing, 

sales, or CRM teams. The ability to translate unsupervised learning outcomes into action-

able business strategies strengthens the real-world relevance of the approach. 

5.5. Scalability Considerations 

Despite its interpretability advantages, Agglomerative Clustering suffers from quad-

ratic time complexity (O(n2)), making it computationally expensive for large datasets. In 

contrast, K-means offers linear scalability (O(n·k·I·d)) and is more appropriate for high-

throughput environments such as e-commerce analytics or recommendation engines. 

Therefore, while both algorithms yield comparable segmentation quality, K-means may 

be preferred in production-scale deployments, whereas Agglomerative Clustering is bet-

ter suited for exploratory or prototype analyses. 

Future work should consider integrating scalable clustering alternatives, such as 

MiniBatch K-means or density-based algorithms like DBSCAN, especially for datasets ex-

ceeding tens of thousands of observations. Moreover, hybrid clustering techniques or en-

semble models may further enhance performance and flexibility. 

5.6. Generalizability and Regional Adaptation 

The model’s generalizability was tested by applying the same clustering pipeline to 

a separate dataset sample, which yielded consistent segment structures and behavioral 

patterns. However, the dataset is U.S.-centric and may not represent consumer behavior 

in other markets. Cultural norms, purchasing power, digital payment adoption, and sea-

sonal preferences can significantly influence cluster formation in other regions. 

To ensure global applicability, future studies should validate the framework on da-

tasets from diverse geographic and economic contexts—such as Latin America, Southeast 

Asia, or Sub-Saharan Africa. Such evaluations could inform us how well the FAMD-based 

clustering model adapts to different consumer environments and supports its implemen-

tation in international business settings. 

6. Conclusions 

This study introduced a structured approach to customer segmentation by combin-

ing FAMD with both K-means and Agglomerative Clustering. By effectively handling 

mixed-type variables, the framework enabled dimensionality reduction while preserving 

81.46% of the cumulative variance—facilitating efficient and interpretable clustering on a 

complex retail dataset. 

The comparative analysis of clustering algorithms revealed meaningful customer 

segments, such as high-frequency digital buyers and seasonal shoppers. These insights 

support personalized marketing strategies, offering a clear path for organizations to en-

hance customer engagement, loyalty, and ROI. The segmentation model also proved gen-

eralizable across data subsets, showcasing its reliability and adaptability for broader ap-

plication. While some limitations related to subjectivity in cluster selection and potential 

information smoothing were acknowledged, the framework offers a strong foundation for 

future research and operational deployment. 

While this study offers a comprehensive segmentation framework, it has several lim-

itations. First, there is subjectivity in cluster selection; although methods such as the Elbow 

Curve and dendrogram were used to determine the number of clusters (k), these involve 
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visual judgment. Future work should incorporate automated approaches such as the Gap 

Statistic, BIC, or Silhouette Bootstrapping to enable more objective cluster selection. Sec-

ond, the interpretability tools used in the current cluster analysis, including heatmaps and 

categorical profiling, could be enhanced. Automated explainability techniques, such as 

SHAP (SHapley Additive exPlanations) or cluster-based decision trees, have the potential 

to further quantify feature contributions and improve the understanding of segment driv-

ers. Finally, the framework assumes static segmentation; adapting it to handle streaming 

data or shifting customer behavior over time—using methods like incremental clustering 

or online learning—would extend its operational utility. 

By aligning technical rigor with marketing relevance, this study contributes a repli-

cable, interpretable, and scalable approach to modern customer segmentation, while also 

identifying pathways for enhancement through more objective, interpretable, and adap-

tive techniques. 
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