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Abstract

This article, we explore the asymptotic stability and asymptotic synchronization analysis of
fractional order delayed Cohen-Grossberg neural networks with discontinuous neuron activation
functions (FCGNNDDs). First, under the framework of Filippov theory and differential inclusion
theoretical analysis, the global existence of Filippov solution for FCGNNDDs is studied by means
of the given growth condition. Second, by virtue of suitable Lyapunov functional, Young inequal-
ity and comparison theorem for fractional order delayed linear system, some global asymptotic
stability conditions for such system is derived by limiting discontinuous neuron activations. Third,
the global asymptotic synchronization condition for FCGNNDDs is obtained based on the pinning
control. At last, two numerical simulations are given to verify the theoretical findings.

Keywords. Asymptotic stability; Asymptotic Synchronization; Fractional order systems; Time-
delay; Filippov’s solutions; Pinning control.

1 Introduction

Around three hundred years back, the origin of fractional order calculus was first off mentioned by
Leibniz and L’Hospital and its realistic applications have been developed very slow for a long time
[39]. Until recently, it has been a great research topic due to the fact many fractional order models
play a crucial role in many real world objects. Comparing to an integer order dynamical system,
fractional order dynamical system is more accuracy, non-local and has weakly singular kernels. As a
result, fractional order calculus has been bought into various disciplines, especially modeling such as
epidemic models [2], financial model [9], market dynamics [24], artificial neural networks [27], dielec-
tric polarization [32] and so on. We realize that the next state of a system not only depends upon
its current state but also upon its historical information. Since a model derived from the fractional-
order equations possesses memory, it is precise to describe the states of the neurons. In the truth,
the fractional calculus consolidated into the artificial neural network system can all the more likely
present the dynamical attributes. In this manner, the investigation on the fractional order neural
network (FNNs) dynamical behaviors in both theory and applications has turned out to be urgent
and mandatory.

On the other hand, the neural networks which have promising potential for applications in pattern
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recognition, automated control, and associative memory have obtained important interest among re-
searchers over the most recent three decades. In nature, there are numerous kinds of neural networks:
recurrent networks, competitive networks, bidirectional associative memory (BAM) networks, cellular
networks, Cohen-Grossberg networks and Hopfield networks which might be all computational mod-
els motivated by biological neural networks. In a digital implementation of biological neural network
dynamical behaviors, the time delays unavoidably appear in the process of transmission signals and
information storage for the motive that the finite switching speed of the amplifiers, see Refs [10, 34].
Consequently, the stability and synchronization of fractional-order delayed neural network dynamical
behaviours have been taken into consideration by means of many research scholars and a large number
of great outcomes has been gained in the existing literature [5, 21, 26, 30, 50, 51] for instance.

Cohen-Grossberg type neural network, as special case of Hopfield neural networks, was firstly coined
by Cohen and Grossberg in 1983 [11]. Recently, fractional order Cohen-Grossberg neural network
(FCGNNs) has attracted considerable attention owing to its widespread applications in various disci-
plines in pattern recognition, parallel computing, and many different areas and extensively investigated
by many researchers, see [35, 36, 48, 49] for instance. Basically, the neuron activations are not contin-
uous due to the fact signal transmission among neurons and signal outcomes are all discontinuous. In
[20], it’s miles discovered that neural network system with discontinuous activation functions is a more
perfect model. Lamentably, the most of the previous literature focused on FNNs with continuous neu-
ron activation functions, see [5, 31, 44, 45] for instance. However, up to now, there is little attention
for synchronization analysis of FNNs with discontinuous activations have been investigated see Refs
[13, 14, 15] via state feedback control, adaptive feedback control and impulsive control. Different from
those control techniques, pinning control technique is more ideal because it has been applied to one
neuron or the huge number of neurons instead of all neurons. To the authors knowledge, however,
so far the stability and pinning synchronization problem for FCGNNs with discontinuous activations
has not been tackled.

With the inspirations outlined as over, our main aim in this work is to investigate the global asymp-
totic stability and pinning synchronization analysis of general class of fractional order discontinuous
Cohen-Grossberg neural networks with time delays via comparison theorem for the fractional order
linear delayed system. The designed pinning control strategy of this paper is totally different from
those in the existing synchronization results of fractional order and integer order Cohen-Grossberg
neural networks. The main contributions of this paper can be highlighted in the following aspects.

1. By means of non-smooth analysis and the framework of differential inclusion theory, the global
existence of a solution in the Filippov sense is established for addressed FCGNNs with time
delays and discontinuous neuron activations.

2. Based on the comparison theorem for the fractional order linear delayed system, suitable frac-
tional order Lyapunov function and 2-norm method, some sufficient condition for global asymp-
totic stability of FCGNNs with discontinuous neuron activations are introduced.

3. A novel pinning controller is designed to guarantee the asymptotic synchronization criteria for
FCGNNs with discontinuous neuron activations.

4. In most of the FNNs in the available literature the existence of pinning control strategy and
discontinuous neuron activations have not taken into consideration simultaneously. This shows
the novelty of our proposed result.

Notations. In this work, N represents the space of natural numbers from 1 to n, Rm represents
the space of m-D Euclidean space, respectively, and Rm×m stands for a set of all m×m real matrices.
For p = (p1, ..., pm)T ∈ Rm, ∥p∥2 is the 2-norm, which is denoted by ∥p∥2 =

√
p21 + ...+ p2m.
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2 Preliminaries

In this section, we will recall the basic definition’s and some properties concerning fractional order
derivative are presented, while we introduce model formulation, assumptions and some important
lemmas. Moreover, we also present the existence of solution in Filippov sense.

Definition 2.1 [22, 29] The Riemann-Liouville fractional integral order 0 < µ < 1 for a function
q(t) is defined as

Iµq(t) =
1

Γ(µ)

∫ t

0

(t− κ)µ−1q(κ) dκ,

where the Euler’s Gamma function is denoted by Γ(µ) =
∫ +∞
0

exp{−t}tµ−1dt.

Definition 2.2 [22, 29] The Caputo fractional-order derivative with order µ for a differential function
q(t) is defined as follows:

Dµq(t) =
1

Γ(m− µ)

∫ t

0

q(m)(κ)

(t− κ)µ−m+1
dκ,

where t ≥ 0 and m− 1 < µ < m ∈ Z+. Especially, when 0 < µ < 1,

Dµq(t) =
1

Γ(1− µ)

∫ t

0

q′(κ)

(t− κ)µ
dκ.

Furthermore, the following necessary properties about Caputo fractional-order derivative are provided.
Property 1 : For m− 1 < µ < m, we have

Iµ
[
Dµq(t)

]
= q(t)−

m−1∑
k=0

tk

k!
q(k)(0), µ ≥ 0.

Especially, 0 < µ < 1, one has

Iµ
[
Dµq(t)

]
= q(t)− q(0).

Property 2 : For any arbitrary constants v1 and v2, then

Dµ
[
v1q1(t) + v2q2(t)

]
= v1D

µq1(t) + v2D
µq2(t).

Definition 2.3 [22, 29] The two parameters Mittag-Leffler function with µ > 0, µ̄ > 0 has expressed
in the following form:

Eµ,µ̄(τ) =

+∞∑
l=0

τ l

Γ(µl + µ̄)
.

For µ̄ = 1, its Mittag-Leffler with one parameter function is shown as

Eµ(τ) =

+∞∑
l=0

τ l

Γ(µl + 1)
= Eµ,1(τ).

Lemma 2.4 [1] Let p(t) ∈ Rm be a continuous and differentiable function. Then the following rela-
tionship holds

Dµp2(t) ≤ 2p(t)Dµp(t), ∀ 0 < µ < 1, t ≥ 0.

Moreover, when p(t) ∈ Rm, it holds that DµpT (t)p(t) ≤ 2pT (t)Dµp(t), ∀ 0 < µ < 1, t ≥ 0, or the
equivalent inequality Dµ

∑m
l=1 p

2
l (t) ≤ 2

∑m
l=1 |pl(t)|Dµ|pl(t)| holds for all 0 < µ < 1, t ≥ 0.
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Lemma 2.5 [7] For any vectors p, q ∈ Rm and a positive definite matrix L ∈ Rm×m, then

2pT q ≤ pTLp+ qTL−1q.

Lemma 2.6 [23] Let q1 > 0, q2 > 0, q3 > 1, q4 > 1 and q−1
3 +q−1

4 = 1, then the following relationship
holds:

q1q2 ≤ (εq1)
q3

q3
+

(ε−1q2)
q4

q4

where ε is any positive real number.

Lemma 2.7 [37] (Fractional Halanay inequality) If the continuous function v(t) > 0, t ∈ R, and{
Dµv(t) ≤ δ0 + δ3v(t) + δ4 supt−λ(t)≤κ≤t v(κ), t ≥ 0,

v(t) = |ϱ(t)|, t ≤ 0, 0 < µ < 1,

where ϱ(t) is a bounded and continuous function, the coefficients δ0, δ3, δ4 satisfy that δ0, δ4 ≥
0, δ3 < 0, and −τ ≤ t − λ(t) ≤ t. Let E0 = sup−τ≤κ≤0{|ϱ(κ)|} and v0 = |ϱ(0)|. If δ3 + δ4 < 0, we
have

v(t) ≤ E0 +
δ3

δ3 + δ4
v0 −

δ0
δ3 + δ4

.

In addition to that, limt→+∞(t−λ(t)) = +∞, then for any given θ > 0, there exists t⋆ = t⋆(E0, θ) > 0
such that

v(t) ≤ − δ0
δ3 + δ4

+ θ, t ≥ t⋆.

Lemma 2.8 [38] Consider the following delayed fractional order differential inequality{
Dµp(t) ≤ −βp(t) + γp(t− λ), t > 0, 0 < µ ≤ 1,

p(κ) = ϱ(κ), κ ∈ [−λ, 0],

and delayed fractional order linear system{
Dµρ(t) = −βρ(t) + γρ(t− λ), t > 0, 0 < µ ≤ 1,

ρ(κ) = ϱ(κ), κ ∈ [−λ, 0],

where p(t) and ρ(t) are continuous and non negative in [0,+∞), and ϱ(t) > 0, t ∈ [−λ, 0]. If β, γ > 0,
then p(t) ≤ ρ(t) for all t ∈ [0,+∞].

Lemma 2.9 [38] If 0 < µ < 1, all the eigenvalues λ∗s of S = −β + γ satisfy arg
(
λ∗
)
> π

2 and the

characteristic equation det
(
∆(t)

)
= sµ + β − γe−sλ = 0 has no pure imaginary roots for any λ > 0,

then the equilibrium point of system

Dµp(t) = −βp(t) + γp(t− λ)

is Lyapunov globally asymptotically stable.
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Lemma 2.10 [43] Suppose the locally integrable and non negative function E(κ) on κ ∈ [0, T ), T ≤
+∞ and the nondecreasing continuous function F (κ) ≤ K defined on κ ∈ [0, T ), where K > 0 is
positive scalar. If non-negative locally integrable function, J(κ) satisfies

J(κ) ≤ E(κ) + F (κ)

∫ t

0

(κ− t)β−1J(t)dt

on κ ∈ [0, T ), we have

J(κ) ≤ E(κ)Eµ

[
F (κ)Γ(β)κβ

]
where β > 0 is a positive constant, Eµ is a Mittag-Leffler one parameter function and Γ(·) is a Gamma
function.

Lemma 2.11 [47] Let v(t) ∈ C1
(
[0,+∞),R

)
be a continuous and differentiable function, the follow-

ing inequality satisfies almost everywhere.

Dµ|v(t)| ≤ sgn(v(t))Dµv(t), 0 < µ < 1.

3 System formulation and existence of solutions in Filippov
sense

In this manuscript, we consider a general class of fractional order Cohen-Grossberg neural networks
with delays and discontinuous neuron activation function (FCGNNDDs) described by the following
expression:D

µpl(t) = −al
(
pl(t)

)[
bl
(
pl(t)

)
−
∑m

j=1 cljhj(pj(t))−
∑m

j=1 dljhj(pj(t− λ))− kl

]
,

pl(κ) = ϱl(κ), κ ∈ [−λ, 0].
(1)

for l = 1, 2, ..,m, where m denotes the number of neurons in a network; pl(t) denote the state variable
of lth neuron at time t; al(·) is an amplification function and bl(·) means well behaved function; clj
and dlj represents the synaptic connection strengths at time t and t−λ, respectively; λ is the constant
time delay; hj(qj) is the neuron activations; kl is the constant external input.

Denote p(t) =
(
p1(t), ..., pm(t)

)T ∈ Rm, A(p(t)) = diag
(
a1(p1(t)), ..., am(pm(t))

)
, B(p(t)) =

(
b1(p1(t)),

..., bm(pm(t))
)T

, C = (clj)m×m, D = (dlj)m×m, h(p(t)) =
(
h1(p1(t)), ..., hm(pm(t))

)T
, and K =

(k1, ..., km)T , the vector form of Eq.(1) can be expressed with the following form:{
Dµp(t) = −A(p(t))

[
B(p(t))− Ch(p(t))−Dh(p(t− λ))−K

]
,

p(κ) = ϱ(κ), κ ∈ [−λ, 0].
(2)

where ϱ(κ) =
(
ϱ1(κ), ..., ϱm(κ)

)T ∈ C
(
[−λ, 0], Rm

)
is the initial condition and the norm is defined

by:

∥ϱ∥ = sup
t∈[−λ,0]

∥ϱ(t)∥.

In this manuscript, the neuron activations is assumed to the sense of discontinuity form. As a result,
the traditional solution for fractional order differential equations does not suitable to FCGNNDDs
system (1). In this case, we need to study the concept of Filippov solutions [1, 2] of considering the
fractional order discontinuous right-hand side system.

Now, we define the Fillipov set-valued map analysis [19] of f(l) at l ∈ Rm as follows:
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Definition 3.1 (Filippov Regularization). We consider the fractional order differential system as
follows: {

Dµϕ(t) = f(t, ϕ), t > 0,

ϕ(0) = ϕ0, ϕ ∈ Rm,
(3)

where f(t, ϕ) is discontinuous in ϕ. The Fillipov set-valued map H : Rm → 2R
m

is defined as:

H(t, ϕ) =
∩
ε>0

∩
σ(J )=0

co
[
f(t,B

(
ϕ, ε)\J

)]
where B

(
ϕ, ε) = {ϕ̆; ∥ϕ̆ − ϕ∥ ≤ ε}, J ⊆ Rm and σ(J ) represents the Lebesgue measure of set J . A

vector function ϕ(t) defined on I ⊆ R is said to be a Filippov solution of system (2), if it is absolutely
continuous on any subinterval a non degenerate interval [t1, t2] of I, for a.a. t ∈ I, ϕ(t) satisfies the
differential inclusion: Dµϕ(t) ∈ H(t, ϕ)

Via the above differential inclusion analysis, the FCGNNDDs system (1) can be written by the fol-
lowing form:D

µpl(t) ∈ −al
(
pl(t)

)[
bl
(
pl(t)

)
−
∑m

j=1 cljH
[
hj(pj(t))

]
−
∑m

j=1 dljH
[
hj(pj(t− λ))

]
− kl

]
,

p(κ) = ϱ(κ), κ ∈ [−λ, 0].
(4)

for a.a t ≥ 0, l = 1, 2, ...,m, whereH
[
h(q)

]
=
(
H
[
h1(q1)

]
, ...,H

[
hm(qm)

])T
,H
[
hj(qj)

]
=
[
min{hj(q−j ),

hj(q
+
j )}, max{hj(q−j ), hj(q

+
j )}

]
.

From the aforementioned discussion, we define the solution of initial value problem of FCGNNDDs
system (1) as below:

Definition 3.2 (Initial Value Problem) (IVP). For any continuous function ϱj : [−λ, 0] → Rm

and measureable selection ϖj : [−λ, 0] → Rm, such that ϖj(κ) ∈ H
[
hj(ϱj(κ))

]
for a.a κ ∈ [−λ, 0]

by an IVP corresponding to FCGNNDDs system (1) with initial values
(
ϱj , ϖj

)
. Suppose, there is a

functions [pj(t), δj(t)] : [−λ, T ) → Rm ×Rm, such that p is an output solution of FCGNNDDs system
(1)on [−λ, T ) for some T > 0, and

Dµpl(t) = −al
(
pl(t)

)[
bl
(
pl(t)

)
−
∑m

j=1 cljδj(t)−
∑m

j=1 dljδj(t− λ)− kl

]
,

δj(t) ∈ H
[
hj(pj(t))

]
, for a.a t ∈ [0, T )

pl(κ) = ϱl(κ), ∀ κ ∈ [−λ, 0],
δl(κ) = ϖl(κ), for a.a κ ∈ [−λ, 0].

(5)

Definition 3.3 A constant vector p∗ = (p∗1, ..., p
∗
m)T is said to be an equilibrium point FCGNNDDs

(1) in the Filippov’s sense, such that

0 ∈ −al
(
p∗l
)[
bl
(
p∗l
)
−

m∑
j=1

cljH
[
hj(p

∗
j )
]
−

m∑
j=1

dljH
[
hj(p

∗
j )
]
− kl

]
.

Or equivalently, there exist δ∗l ∈ H
[
hj(p

∗
j )
]
, such that

0 = −al
(
p∗l
)[
bl
(
p∗l
)
−

m∑
j=1

cljδ
∗
l −

m∑
j=1

dljδ
∗
l − kl

]
.
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In order to establish our stability and synchronization results, we introduce the following assumptions.

Assumption 1. For every l = 1, 2, ...,m, there exist a non-negative constants al, al, bl, bl and
zl, the amplification function al(·) and the behaviour function bl(·) are continuous functions, which
satisfying the following relationship:

al ≤ al(pl) ≤ al,
al(ql)− al(pl)

ql − pl
≥ zl, bl ≤

bl(ql)− bl(pl)

ql − pl
≤ bl, ∀ pl, ql ∈ R, pl ̸= ql.

Assumption 2. For every l = 1, 2, ...,m, there exist a non-negative constant ϕl, such that

al(ql)bl(ql)− al(pl)bl(pl)

ql − pl
≥ ϕl, ∀ pl, ql ∈ R.

Next, we provide the assumptions for the discontinuous neuron activations in system (1).

Assumption 3. For j = 1, 2, ..,m, the neuron activation function hj is bounded
(
|hj(·)| ≤ ςj

)
and continuous function except for a finite number of jump discontinuities χj

k in every bounded inter-

val. In addition, there exist right limit h+j (χ
j
k) and left limit h−j (χ

j
k), respectively.

Assumption 4. For each j = 1, 2, ..,m, suppose H satisfies a growth condition, then there exist
positive constant ũj and w̃j such that∣∣H[hj(pj(t))]

∣∣ == sup
ϑ∈H[hj(pj(t))]

|ϑ| ≤ ũj
∣∣pj(t)∣∣+ w̃j .

Assumption 5. For every j = 1, 2, ...,m, there exist a non-negative constants uj and wj such that∣∣θj(t)− δj(t)
∣∣ ≤ uj

∣∣qj(t)− pj(t)
∣∣+ wj , ∀ pj , qj ∈ R,

where δj(t) ∈ H
[
hj(pj(t))

]
and θj(t) ∈ H

[
hj(qj(t))

]
.

Theorem 3.4 Under the assumptions (1), assumption (3) and assumption (4), then there exist at
least one solution p(t) of FCGNNDDs (1) on [0,+∞) in the sense of Eq.(5).

Proof . If p(t) ↪→ −A(p(t))
[
B(p(t))− CH(p(t)) −DH(p(t− λ)) −K

]
is upper semi-continuous with

bounded nonempty closed convex value, the local existence of solution (p(t)) with initial values (ϱ,ϖ)
of Eq.(5) can be guaranteed. From Assumption (1) and Assumption (4), one has

∥p(t)∥ ≤ ∥p(0)∥+

∥∥∥∥∥ 1

Γ(µ)

∫ t

0

(t− κ)µ−1
[
−A(p(κ))

[
B(p(κ))− CH(p(κ))−DH(p(κ− λ)−K)

]]
dκ

∥∥∥∥∥
≤ ∥p(0)∥+ 1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥B∥p(κ)∥dκ+
1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥C∥
[
F∥p(κ)∥+R

]
dκ

+
1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥D∥
[
F∥p(κ− λ)∥+R

]
dκ+

1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥K∥dκ

≤ ∥p(0)∥+ 1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥B∥∥p(κ)∥dκ+
1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥C∥
[
F∥p(κ)∥+R

]
dκ

+
1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥D∥
[
F
(
∥p(κ)∥+ ∥p(0)∥

)
+R

]
dκ+

1

Γ(µ)

∫ t

0

(t− κ)µ−1∥A∥∥K∥dκ

=
[
1 +

∥A∥∥D∥F
Γ(µ+ 1)

tµ
]
∥p(0)∥+ 1

Γ(µ)

∫ t

0

(t− κ)µ−1
[
∥A∥

[
∥C∥+ ∥D∥

]
R+ ∥A∥∥K∥

]
dκ

+
1

Γ(µ)

∫ t

0

(t− κ)µ−1
[
∥A∥∥B∥+ ∥A∥

[
∥C∥+ ∥D∥

]
F
]
∥p(κ)∥dκ

= M(t) +
N (t)

Γ(µ)

∫ t

0

(t− κ)µ−1∥p(κ)∥dκ (6)
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where

M(t) =
[
1 +

tµ

Γ(µ+ 1)
∥A∥∥D∥F

]
∥p(0)∥+ tµ

Γ(µ+ 1)

[
∥A∥

[
∥C∥+ ∥D∥

]
R+ ∥A∥∥K∥

]
N (t) =

[
∥A∥∥B∥+ ∥A∥

[
∥C∥+ ∥D∥

]
F
]
,

F = max{ũ1, ..., ũm}, R = max{ṽ1, ..., ṽm}, A = diag{a1, ..., am} and B = diag{b1, ..., bm}. Moreover,
M(t) is non decreasing function, then

∥p(t)∥ ≤ M(t)Eµ

{
N (t)Γ(µ)tµ

}
,

where Lemma 2.10 has been used. So p(t) remains bounded for any positive time, which guarantees
the existence of global solution in the Filippov sense and it is defined on [0,+∞). Hence the proof is
completed.

4 Stability results

This section is devoted to the global asymptotic stability of FCGNNDDs system (1).

Theorem 4.1 Under Assumptions (1)-(3) and Assumption (5), the equilibrium point of system (1)
is global asymptotically stable if the following algebraic inequality are satisfied:

β = min
1≤l≤m

{
2albl − ε3 −

m∑
j=1

[
al

[
|clj |ε1 + |dlj |ε2

]
uj +

1

ε1
aj |cjl|ul

]}
> max

1≤l≤m

{ m∑
j=1

1

ε2
aj |djl|ul

}
= γ > 0, (7)

π̂ =

m∑
l=1

1

2ε3
R2

l > 0, α = −β sin(µπ
2
) + γ < 0, where Rl =

m∑
j=1

al

[
|clj |+ |dlj |

]
wj . (8)

Proof . Let us take vl(t) = pl(t)− p∗l , according to Definition 3.3 and system (1), we have{
Dµvl(t) = −ãl(vl(t))

[
b̃l(vl(t))−

∑m
j=1 clj δ̃j(t)−

∑m
j=1 dlj δ̃j(t− λ)

]
,

vl(κ) = ϱl(κ)− p∗l = ιl(κ), κ ∈ [−λ, 0].
(9)

where ãl(vl(t)) = al
(
vl(t) + p∗l

)
, b̃l(vl(t)) = bl

(
vl(t) + p∗l

)
− bl

(
p∗l
)
and δ̃j(t) = δj(t)− δ∗j .

Consider the following Lyapunov function:

G(t) =
1

2
vT (t)v(t) =

1

2

m∑
l=1

v2l (t). (10)

From Lemma 2.4, Assumption (1) and Assumption (5), we gain

DµG(t) ≤
m∑
l=1

vl(t)D
µvl(t)

=
m∑
l=1

(vl(t))ãl(vl(t))
[
− b̃l(vl(t)) +

m∑
j=1

clj δ̃j(t) +
m∑
j=1

dlj δ̃j(t− λ)
]

≤
m∑
l=1

ãl(vl(t))

[
− v2l (t)

b̃l(vl(t))

vl(t)
+

m∑
j=1

|clj ||vl(t)|
[
uj |vj(t)|+ wj

]
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+

m∑
j=1

|vl(t)||dlj |
[
uj |vj(t− λ)|+ wj

]]

≤ −
m∑
l=1

alblv
2
l (t) +

m∑
l=1

m∑
j=1

al|clj |uj |vl(t)||vj(t)|

+
m∑
l=1

m∑
j=1

al|dlj |uj |vl(t)||vj(t− λ)|
]
+

m∑
l=1

m∑
j=1

al

[
|clj |+ |dlj |

]
wj |vl(t)| (11)

By using Lemma 2.6, one has

m∑
l=1

m∑
j=1

al|clj |uj |vl(t)||vj(t)| ≤
m∑
l=1

m∑
j=1

al|clj |uj
[ε1
2
v2l (t) +

1

2ε1
v2j (t)

]
=

m∑
l=1

m∑
j=1

[
al|clj |ujε1 +

1

ε1
aj |cjl|ul

]v2l (t)
2

(12)

m∑
l=1

m∑
j=1

al|dlj |uj |vl(t)||vj(t− λ)| ≤
m∑
l=1

m∑
j=1

al|dlj |uj
[ε2
2
v2l (t) +

1

2ε2
v2j (t− λ)

]
=

m∑
l=1

m∑
j=1

ε2al|dlj |uj
v2l (t)

2
+

m∑
l=1

m∑
j=1

1

ε2
aj |djl|ul

v2l (t− λ)

2
(13)

and

m∑
l=1

|vl(t)|Rl ≤
m∑
l=1

[ε3
2
v2l (t) +

1

2ε3
R2

l

]
(14)

Substituting (12)-(14) into (11), one has

DµG(t) ≤ −
m∑
l=1

[
2albl + ε3 −

m∑
j=1

[
al|clj |ujε1 +

1

ε1
aj |cjl|ul + ε2al|dlj |uj

]]v2l (t)
2

+
m∑
l=1

[ m∑
j=1

1

ε2
aj |djl|ul

]v2l (t− λ)

2
+

m∑
l=1

1

2ε3
R2

l

≤ −βG(t) + γG(t− λ) + π̂. (15)

Consider the following linear system

DµH(t) = −βH(t) + γH(t− λ) + π̂ (16)

where H(t) ≥ 0, (H(t) ∈ R), and have the similar initial values with G(t). Taking Laplace transform
of (16), we have

sµH(s)− sµ−1H(0) = −βH(s) + γ

∫ +∞

0

exp{−st}H(t− λ) d t+ π̂

∫ ∞

0

exp{−st} d t

= −βH(s) + γ

∫ +∞

−λ

exp{−s(ψ + λ)}H(ψ) dψ +
π̂

s

= −βH(s) + γ exp{−sλ}
∫ +∞

−λ

exp{−sψ}H(ψ) dψ +
π̂

s

9



= −βH(s) + γ exp{−sλ}
[ ∫ 0

−λ

+

∫ +∞

0

]
exp{−sψ}H(ψ) dψ +

π̂

s

= −βH(s) + γ exp{−sλ}
∫ 0

−λ

exp{−sψ}H(ψ) dψ

+γ exp{−sλ}H(s) +
π̂

s[
sµ + β − γ exp{−sλ}

]
H(s) = sµ−1H(0) + γ exp{−sλ}

∫ 0

−λ

exp{−sψ}H(ψ) dψ +
π̂

s
(17)

By virtue of Lemma 2.9 and in Eq.(17), we obtain ∆(s) = sµ+β−γ exp{−sλ} and ∆(s) = det(∆(s)) =
0. Now we have to prove det(∆(s)) has pure imaginary roots for any λ > 0.

Suppose ∆(s) = sµ + β − γ exp{−sλ} has pure imaginary roots for any λ > 0. If σ < 0, s =
σi = |σ|

[
cos(π2 ) − sin(π2 )

]
, σ is a real constant. That is, s = σi = |σ|

[
cos(π2 ) + sin(±π

2 )
]
into

characteristic equation sµ + β − γ exp{−sλ} = 0, we have

|σ|µ
[
cos(

µπ

2
) + i sin(

±µπ
2

)
]
+ β − γ

[
cos(σλ)− i sin(σλ)

]
= 0

which imply that

|σ|µ
[
cos(

µπ

2
) + i sin(

±µπ
2

)
]
+ β = γ

[
cos(σλ)− i sin(σλ)

]
(18)

Splitting real and imaginary parts of Eq.(18), we gain

|σ|µ cos(µπ
2
) + β = γ cos(σλ) (19)

|σ|µ sin(±µπ
2

) = −γ sin(σλ) (20)

From (19) and (20), we obtain[
|σ|µ cos(µπ

2
) + β

]2
+
[
|σ|µ sin(±µπ

2
)
]
− γ2 = 0

It follows that

|σ|2µ + β2 + 2β|σ|µ cos(µπ
2
)− γ2 = 0. (21)

Now, we estimate the discriminant of Eq.(21), one has

∆ =
[
2β cos(

µπ

2
)
]2

− 4(1)(β2 − γ2)

=
[
γ2 − β2 sin2(

±µπ
2

)
]
.

From hypothesis of our theorem, we have γ < β sin(±µπ
2 ), which follows that ∆ < 0. That is det(∆(s))

has no pure imaginary roots for any λ > 0. Further, we need to prove eigenvalues of matrix J = γ−β
satisfy |arg(λ∗(J)| > π

2 . As γ < β sin(±µπ
2 ) < β, 0 < µ < 1. Therefore λ∗(J) are negative. That

is |arg(λ∗(J)| > π
2 . Again by using Lemma 2.9, the equilibrium point of (16) is globally asymptotic

stable. Hence H(t) → 0 as t→ +∞. Based on Lemma 2.8, we have 0 ≤ G(t) ≤ H(t) → 0 as t→ +∞.
Therefore the equilibrium point of system (1) is global asymptotically stable. This proof is ended.

Remark 4.2 Only a few works focused on the global stability of FCGNNs. Different from the stability
results in [35, 49], our standards given sufficient conditions for global asymptotic stability of FCGNNs
with discontinuous neuron activations through comparison theorem for linear fractional order delayed
system, at the same time as the preceding literature either concerned in continuous neuron activations
or without using Lyapunov principle for the addressed network model. Furthermore, the obtained
stability criteria, in terms of algebraic inequalities, is quite simple to check in practice.
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5 Pinning synchronization results

This segment, we design a class of novel pinning controller to ensure global asymptotical synchroniza-
tion criteria for the FCGNNDDs.

Model (1) is consider as master system, the corresponding controlled slave system is as follows{
Dµql(t) = −al

(
ql(t)

)[
bl
(
ql(t)

)
−
∑m

j=1 cljhj(qj(t))−
∑m

j=1 dljhj(qj(t− λ))− kl − El(t)
]
,

ql(κ) = ϱ̆l(κ), κ ∈ [−λ, 0],
(22)

where El(t) is pinning control inputs, ql(t) is the state variable and other parameters are similar as
those in master system (1). The initial values ql(κ) ∈ C

(
[−λ, 0],Rn

)
is associated with slave system

(22) and the norm is defined by

∥ϱ̆∥ = sup
t∈[−λ,0]

∥ϱ̆(t)∥.

Based on differential inclusion analysis and from (22), we have{
Dµql(t) ∈ −al

(
ql(t)

)[
bl
(
ql(t)

)
−
∑m

j=1 cljH
[
hj(qj(t))

]
−
∑m

j=1 dljH
[
hj(qj(t− λ))

]
− kl − El(t)

]
,

ql(κ) = ϱ̆l(κ), κ ∈ [−λ, 0].

for a.e. t ≥ 0. Or equivalently there exist θj(t) ∈ H
[
hj(qj(t))

]
, the initial value problem of slave

system in the following expression:{
Dµql(t) = −al

(
ql(t)

)[
bl
(
ql(t)

)
−
∑m

j=1 cljθj(t)−
∑m

j=1 dljθj(t− λ)− kl − El(t)
]
,

ql(κ) = ϱ̆l(κ), κ ∈ [−λ, 0].
(23)

Define synchronization error vl(t) = ql(t) − pl(t). From master system (1) (or (5)) and slave system
(22) (or (23)), the error system can be obtained as

Dµvl(t) = −al
(
ql(t)

)[
bl
(
ql(t)

)
−
∑m

j=1 cljθj(t)−
∑m

j=1 dljθj(t− λ)− El(t)
]

+al
(
pl(t)

)[
bl
(
pl(t)

)
−
∑m

j=1 cljδj(t)−
∑m

j=1 dljδj(t− λ)
]

vl(κ) = ϱ̆l(κ)− ϱl(κ) = ϖl(κ), κ ∈ [−λ, 0].

(24)

for l = 1, 2, ..,m, a.e.t ≥ 0, vl(κ) = ϱ̆l(κ)−ϱl(κ) is the initial values associated with error system (24).

Novel pinning control is a strategy which simply requires a small fraction of neurons with small
pinning control strength to achieve asymptotical synchronization for the entire system. Without loss
of generality, we will choose ζ neurons from all neurons are controlled directly and the model of pinning
controller El(t), l = 1, 2, ...,m in slave system is designed as

El(t) =

Ĕl(t) = −η sgn{vl(t)} ×

[∑m
l=1 |vl(t)|∑ζ
l=1 |vl(t)|

](∑m
j=1 |vj(t)|

)
, if l = 1, 2, ..., ζ

0, if l = ζ + 1, ζ + 2, ...,m.

(25)

where η > 0 is an adjustable constant, Ĕ1(t) denote general control input which can be applied in
each node, and El(t) is corresponding pinning control strategy to realize synchronization. It implies
that, there are m− ζ neurons are pinning controlled indirectly.

In some situation, the master system (1) cannot be completely synchronized to the slave system
(22) with designed pinning control law (25). In this case, quasi-synchronization will be considered in
this paper. The concept of quasi-synchronization is defined as follows
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Definition 5.1 Master-slave systems (1) and (25) are said to achieve quasi-synchronization with
error bound θ > 0 if there exists a compact set M such that, for any initial condition ϖ(κ) ∈
C
(
[λ, 0],Rm

)
, the error v(t) = q(t)− p(t) converges to

Υ = {∥v(t)∥ ≤ θ}, t→ +∞,

where v(t) = [v1(t), ...., vm(t)]T , q(t) = [q1(t), ...., qm(t)]T , p(t) = [p1(t), ...., pm(t)]T and ϖ(κ) =
[ϖ1(κ), ...., ϖm(κ)(t)]T .

Theorem 5.2 Suppose Assumptions (1)-(3) and (5) holds. The master (1) and slave system (22)

with designed pinning control law (25) can achieve quasi synchronization with error bound
√

2π̂
ξ−γ if

the following algebraic inequalities are satisfied:

ξ = min
1≤l≤m

{
2η + 2ϕl − 2zlkl − ε3 − 2

m∑
j=1

[
|clj |+ |dlj |

]
ςjzl −

m∑
j=1

[
al|clj |ujε1 +

1

ε1
aj |cjl|ul

]

−
m∑
j=1

ε2al|dlj |uj

}
− max

1≤l≤m

{ m∑
j=1

1

ε2
aj |djl|ul

}
= γ > 0,

π̂ =
m∑
l=1

1

2ε3
R2

l > 0, where Rl =
m∑
j=1

al

[
|clj |+ |dlj |

]
wj .

Proof . Consider the following Lyapunov function:

G(t) =
1

2
vT (t)v(t) =

1

2

m∑
l=1

v2l (t) (26)

From Lemma 2.5, Lemma 2.11, Assumptions (1)− (3) and (5), we gain

DµG(t) = Dµ
m∑
l=1

1

2
|vl(t)|2

≤
m∑
l=1

|vl(t)|Dµ|vl(t)|

≤
m∑
l=1

|vl(t)| sgn(vl(t))Dµvl(t)

=
m∑
l=1

|vl(t)| sgn(vl(t))

[
−
[
al
(
ql(t)

)
bl
(
ql(t)

)
− al

(
pl(t)

)
bl
(
pl(t)

)]
+
[
al
(
ql(t)

)
− al

(
pl(t)

)]
kl +

m∑
j=1

al
(
ql(t)

)
clj [θj(t)− δj(t)]

+

m∑
j=1

al
(
ql(t)

)
cljδj(t)−

m∑
j=1

al
(
pl(t)

)
cljδj(t) +

m∑
j=1

al
(
ql(t)

)
dlj [θj(t− λ)− δj(t− λ)]

+
m∑
j=1

al
(
ql(t)

)
dljδj(t− λ)−

m∑
j=1

al
(
pl(t)

)
dljδj(t− λ) + El(t)

]
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≤
m∑
l=1

[
− ϕl + zlkl

]
v2l (t) +

m∑
l=1

|vl(t)|
{ m∑

j=1

āl|clj |
[
uj |vj(t)|+ wj

]}
+

m∑
l=1

|vl(t)|
{ m∑

j=1

|al
(
ql(t)− al

(
pl(t)

)
||clj ||δj(t)|

}
+

m∑
l=1

|vl(t)|
{ m∑

j=1

āl|dlj |

×
[
uj |vj(t− λ)|+ wj

]}
+

m∑
l=1

|vl(t)|
{ m∑

j=1

|al
(
ql(t)− al

(
pl(t)

)
|

×|dlj ||δj(t− λ)|
}
−

ζ∑
l=1

|vl(t)|η sgn{vl(t)} ×

[∑m
l=1 |vl(t)|∑ζ
l=1 |vl(t)|

](
m∑
j=1

|vj(t)|

)

≤ −
m∑
l=1

[
ϕl − zlkl

]
v2l (t)− η

m∑
l=1

v2l (t) +
m∑
l=1

m∑
j=1

[
|clj |+ |dlj |

]
ςjzlv

2
l (t)

+

m∑
l=1

m∑
j=1

āl|clj |uj |vl(t)||vj(t)|+
m∑
l=1

m∑
j=1

āl|dlj |uj |vl(t)||vj(t− λ)|

+
m∑
l=1

|vl(t)|

[
m∑
j=1

[
|clj |+ |dlj |

]
ālwj

]
(27)

Then, substituting (12)-(14) into (27), we obtain

DµG(t) ≤ −
m∑
l=1

[
η + ϕl − zlkl

]
v2l (t) +

m∑
l=1

m∑
j=1

[
|clj |+ |dlj |

]
ςjzlv

2
l (t) +

m∑
l=1

[ε3
2
v2l (t) +

1

2ε3
R2

l

]
+

m∑
l=1

m∑
j=1

al|clj |uj
[ε1
2
v2l (t) +

1

2ε1
v2j (t)

]
+

m∑
l=1

m∑
j=1

al|dlj |uj
[ε2
2
v2l (t) +

1

2ε2
v2j (t− λ)

]

= −1

2

m∑
l=1

[
2η + 2ϕl − 2zlkl − ε3 − 2

m∑
j=1

[
|clj |+ |dlj |

]
ςjzl −

m∑
j=1

[
al|clj |ujε1 +

1

ε1
aj |cjl|ul

]

−
m∑
j=1

ε2al|dlj |uj

]
v2l (t) +

1

2

m∑
l=1

m∑
j=1

1

ε2
aj |djl|ulv2l (t− λ) +

m∑
l=1

1

2ε3
R2

l

= −ξG(t) + γG(t− λ) + π̂

≤ −ξG(t) + γ sup
t−λ≤κ≤t

G(κ) + π̂ (28)

From the condition of Theorem 5.2, we obtain ξ− γ > 0. Based on the Fractional Halanay inequality
Lemma 2.7, we have

∥v(t)∥2 ≤

√
2π̂

ξ − γ
, t→ +∞. (29)

Thus, we can conclude that the error system (24) converges to the region Υ containing the origin,
where

Υ =
{
v(t) : ∥v(t)∥2 ≤

√
2π̂

ξ − γ

}
, t→ +∞, (30)

which indicates that the master system (1) and slave system (22) with pinning control law (25) achieve

quasi synchronization with error bound
√

2π̂
ξ−γ . This proof is ended.
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When the neuron activation function is taken to be a common Lipschitz-type, Assumption (5) can be
replaced with the following condition:

Assumption (5A). Suppose there exist constants uj > 0, the following inequalities are established

|hj(p)− hj(q)| ≤ uj |p− q|, ∀, p, q ∈ R, j = 1, 2, ....,m,

|hj(p)| ≤ ϖj , j = 1, 2, ....,m.

As a special case of Theorem 5.2, we provide the corresponding result.

Corollary 5.3 Under Assumptions (1)-(2) and (5A), master system (1) and slave system (22) with
pinning control law (25) are globally asymptotically synchronized if the following algebraic inequalities
is satisfied:

ξ = min
1≤l≤m

{
2η + 2ϕl − 2zlkl − ε3 − 2

m∑
j=1

[
|clj |+ |dlj |

]
ϖjzl −

m∑
j=1

[
al|clj |ujε1 +

1

ε1
aj |cjl|ul

]

−
m∑
j=1

ε2al|dlj |uj

}
> γ = max

1≤l≤m

{ m∑
j=1

1

ε2
aj |djl|ul

}
> 0,

α = −ξ sin(µπ
2
) + γ < 0.

Remark 5.4 Reviewing existing works, there are numerous outcomes on the global asymptotic syn-
chronization analysis of integer-order discontinuous Cohen-Grossberg neural networks [16, 17] via
pinning control policy and fractional order discontinuous neural networks [8, 46] have been studied
extensively over the past few years. Recently, fractional order Cohen-Grossberg neural networks have
been received much more interest from lot of researchers, see Ref [48, 49]. However, there are no re-
sults at present to study the pinning controller for synchronization analysis of fractional order Cohen-
Grossberg neural networks with delays and discontinuous neuron activation function (FCGNNDDs)
as far as we know. In view of this, we have proposed the global asymptotical pinning synchronization
analysis of FCGNNDDs.

Remark 5.5 In order to shed light on how to design a suitable pinning controller in application
perspective to obtain global asymptotically synchronization, we take an example for the application of
Theorem 5.2, we’re able to the layout following steps:

Table 1: The Algorithm to design the pinning control strategy
Algorithm

step.1: Initialize the system parameters C, D.
step.2: Randomly choosing ζ of pinned neurons from all neurons.
step.3: Select the appropriate values ϕl, zl, āl uj , wj , ςj to Assumptions (1)-(3)

and Assumption (5).
step.4: Choose the control strengths η.
step.5: Given ε1, ε2, ε3 and solve to get ξ, γ, π̂.
step.6: Check whether ξ > γ > 0 and π̂ > 0. If success, the procedure further moves to next

level. Otherwise the procedure turns back to adjust the control strengths in step 4.
step.7: Based on the proper control strengths, we design a novel pinning control.
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Remark 5.6 Yang et al. [41] dealt with the global Mittag-Leffler stability and synchronization analysis
of fractional order neural networks with linear threshold neurons in quaternion field by designing simple
linear feedback control. Yang et al. [42] discussed the global asymptotical synchronization analysis of
fractional order neural networks with time delays in complex field by designing discontinuous feedback
control. It is seen that in all the aforementioned references, the authors controllers are applied to
every neuron of FNNs, which could be very high priced and impractically. However in our paper, we
have used the pinning control technique which is more effective than the control techniques used by the
authors in [41, 42], because it has been applied to one neuron or the huge number of neurons instead
of all neurons, which greatly reduces the control costs and consumption.

6 Numerical Examples

This segment provides two examples to indicate the advantages of the obtained stability and synchro-
nization results in previous segments.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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1
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Figure 1: The equilibrium point of (31) is global asymptotically stable.

Example 6.1 Consider the following two-state FCGNNDDs:

D0.95pl(t) = −al
(
pl(t)

)[
bl
(
pl(t)

)
−

2∑
j=1

cljhj(pj(t))−
2∑

j=1

dljhj(pj(t− λ))− kl

]
, (31)

where l = 1, 2, λ = 0.5, k1 = k2 = 0.5, a1(p) = a2(p) = 1 + 2
1+p2 , b1(p) = b2(p) = 8 + tanh(p),

hj(p) = 0.005 ∗ sin(p) + 0.09 ∗ sgn(p), j = 1, 2 and

C =
(
clj
)
2×2

=

[
0.3 −1
−0.7 0.5

]
, D =

(
dlj
)
2×2

=

[
1.5 −0.8
0.6 1.2.

]
Based on Assumptions (1) and (5), we have a1 = a1 = 0.5, a1 = a2 = 2, u1 = u2 = 0.5 and
w1 = w2 = 1. It is easy to estimate β = 3.3, γ = 1.05, π̂ = 10.7 with ε1 = ε2 = 2 and ε3 = 3,
that is the conditions presented in Theorem 4.1, −β + γ < 0 holds. Therefore, the equilibrium point
of FCGNNDDs (31) is global asymptotically stable. In Fig.1 presents the time responses of the state
variables in (31) with initial conditions p(0) = (5,−5)T . So, these simulations confirm the validity of
proposed Theorem 4.1.
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Example 6.2 Consider the following FCGNNDDs with m=3:

D0.998pl(t) = −al
(
pl(t)

)[
bl
(
pl(t)

)
−

3∑
j=1

cljhj(pj(t))−
3∑

j=1

dljhj(pj(t− λ))− kl

]
, (32)

where l = 1, 2, 3, λ = 2, k1 = k2 = k3 = 0.02, a1(p1) = 0.7 + 0.9
1+p2

1
, a2(p2) = 0.9 + 1.3

1+p2
2
, a3(p3) =

1 + 1.5
1+p2

3
, bj(p) = 3.5 + sin(p), hj(p) = tanh(p) + sgn(p), j = 1, 2, 3 and

C =
(
clj
)
3×3

=

 3 1 0.5
1 3.5 2

−1.5 −2 2.1

 , D =
(
dlj
)
3×3

=

1.5 1 −1.35
−2 0.5 2.25
2.5 −4 −0.5


The initial conditions of system (32) is taken as p(κ) =

(
p1(κ), p2(κ), p3(κ)

)T
= (−2, 3, 5)T , κ ∈

[−2, 0). Based on Assumptions (1)-(3) and (5), we have a1 = a2 = a3 = 1, ϕ1 = ϕ2 = ϕ3 = 1.5,
z1 = z2 = z3 = 0.5 u1 = u2 = u3 = 0.5, w1 = w2 = w3 = 0.2 and ς1 = ς2 = ς3 = 1.
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Figure 2: The trajectories of synchronization
states p1(t) vs. q1(t) and their error v1(t) un-
der the pinning control.
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Figure 3: The trajectories of synchronization
states p1(t) vs. q1(t) and their error v1(t)
without control inputs.
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Figure 4: The trajectories of synchronization
states p2(t) vs. q2(t) and their error v2(t) un-
der the pinning control.
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Figure 5: The trajectories of synchronization
states p2(t) vs. q2(t) and their error v2(t)
without control inputs.
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Figure 6: The trajectories of synchronization
states p3(t) vs. q3(t) and their error v3(t) un-
der the pinning control.
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Figure 7: The trajectories of synchronization
states p3(t) vs. q3(t) and their error v3(t)
without control inputs.

The corresponding slave system is defined as

D0.998ql(t) = −al
(
ql(t)

)[
bl
(
ql(t)

)
−

3∑
j=1

cljhj(qj(t))−
3∑

j=1

dljhj(qj(t− λ))− kl − El(t)
]

(33)

which shares the similar parameter values of the master system (32). El(t) is pinning control inputs
and two neurons are under control, i.e., ζ = 2. In other words, in this example, first two neurons are
selected as directly control, and third neuron is pinning controlled neuron.
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)|
| 2
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Figure 8: Synchronization error norm ∥v(t)∥ with controller.

Next, selecting the gain of controller in (25) with parameter η = 13, that satisfy the conditions pre-

sented in Theorem 5.2. The initial conditions of slave system is taken as q(κ) =
(
q1(κ), q2(κ), q3(κ)

)T
=

(−3.5, 4.5, 2)T , κ ∈ [−2, 0). In simulations, Figures 2 and 4 depicts the trajectories of the directly
controlled synchronization states p1(t), p2(t) and q1(t), q2(t) for master system and the corresponding
slave system and their errors v1(t), v2(t). The trajectories of the directly controlled synchronization
states p3(t), q3(t) and their error v3(t) are provided in Figure 6. The trajectories of p1(t), p2(t), p3(t)
and q1(t), q2(t), q3(t) and their errors v1(t), v2(t), v3(t) without control inputs are depicted in Fig-
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ures 3, 5 and 7. It is easy to estimate 6.325 = ξ > γ = 3, π̂ = 7.095 with ε1 = 0.6, ε2 = 1, ε3 = 1,
that is the conditions presented in Theorem 5.2, ξ − γ > 0 holds. Thus, the synchronization between
the master system and slave system with m = 3 can be achieved quasi-synchronization with estimated

error
√

2π̂
ξ−γ = 2.066, which is displayed in Fig. 8.

Example 6.3 Consider the following FCGNNDDs with m=4:

D0.99pl(t) = −al
(
pl(t)

)[
bl
(
pl(t)

)
−

4∑
j=1

cljhj(pj(t))−
4∑

j=1

dljhj(pj(t− λ))− kl

]
, (34)

where l = 1, 2, 3, 4, λ = 0.8, k1 = k2 = k3 = 0.5, a(p) = diag{0.8, 0.8, 0.8}, bj(p) = p, hj(p) =
tanh(p), j = 1, 2, 3, 4 and

C =
(
clj
)
4×4

=


1.4 −2.2 −0.2 −0.2
−0.1 1.5 −1.2 0.8
−0.5 −1.2 1.3 1.1
−1 −0.2 1 1.1

 , D =
(
dlj
)
4×4

=


−1 −0.5 1.2 −2
2.1 1.1 −1.6 −0.5
1.2 −1.3 −1 1.3
0.3 0.1 1.3 −0.3

 .
The initial conditions of system (34) is taken as p(κ) =

(
p1(κ), p2(κ), p3(κ), p4(κ)

)T
= (1.5, 2,−2.5,−0.5)T ,

κ ∈ [−0.8, 0). Based on Assumptions (1)-(2) and (5A), we have a1 = a2 = a3 = 0.5, ϕ1 = ϕ2 = ϕ3 =
1, u1 = u2 = u3 = 0.6, z1 = z2 = z3 = 1 and ϖ1 = ϖ2 = ϖ3 = 0.2. The corresponding slave system
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Figure 9: Synchronization error without con-
trol
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Figure 10: Synchronization error with con-
troller (25)

is defined as

D0.99ql(t) = −al
(
ql(t)

)[
bl
(
ql(t)

)
−

4∑
j=1

cljhj(qj(t))−
4∑

j=1

dljhj(qj(t− λ))− kl − El(t)
]
. (35)

The initial conditions of slave system is taken as q(κ) =
(
q1(κ), q2(κ), q3(κ), q4(κ)

)T
= (−1,−2, 2, 1)T ,

κ ∈ [−0.8, 0). If there is no control inputs, the evolution of synchronization error v1(t), v2(t), v3(t)
and v4(t) are shown in Fig. 9, which implies that system (34) and system (35) can not be global
asymptotically synchronized. Under the pinning control inputs (25), three neurons are under control,
i.e., ζ = 3 and selecting η = 5.5. It is easy to estimate 1.875 = ξ > γ = 1.02 with ε1 = ε2 = ε3 = 1.5,
that is the conditions presented in Corollary 5.3, ξ − γ > 0 holds. Under the controller (25), we can
get the state trajectories of synchronization errors v1(t), v2(t), v3(t) and v4(t) which are illustrated
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by Fig.10. The states of the error system converge to zero, which shows the validity of the condition
check of Corollary 5.3. Thus, the synchronization between the master system and slave system with
m = 4 can be achieved global asymptotically synchronized via designed pinning control law.

7 Conclusion

This article dealt with the stability and pinning synchronization analysis of fractional order delayed
Cohen-Grossberg neural networks under discontinuous activations. By means of Filippov theory,
differential inclusion theoretical analysis, as well as fractional order comparison theorem, the global
asymptotic stability criteria of such system was investigated, and some sufficient conditions were
proposed via the concept of fractional Lyapunov-functional. At the same time, a novel pinning control
strategies were designed for slave systems, and global asymptotical synchronization of FCGNNDDs was
obtained in the in the Filippov sense. At last, to help readers understand this article, two numerical
examples are provided to demonstrate the effectiveness and validity of the presented results. Moreover,
the synchronization issue has played a vital role in engineering applications, such as information
sciences [6] and secure communication [12, 18, 25]. Pinning control techniques can be suitable for
various glorious dynamics such as FNNs [15, 21, 39], memristor based FNNs [48, 50], fractional order
T-S fuzzy neural networks [36, 51] and fractional order complex networks [28, 35]. In the near future,
we will try to work on the synchronization results of the above mentioned problems.
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Adaptive synchronization of memristor-based BAM neural networks with mixed delays. Ap-

plied Mathematics and Computation, 2018; Finite-time modified projective synchronization

of memristor-based neural network with multi-links and leakage delay, Chaos, Solitons &

Fractals, 2018; Finite-time stability and synchronization of memristor-based fractional-order

fuzzy cellular neural networks, Communications in Nonlinear Science and Numerical Simu-

lation, 2018.

Ans: Thanks for suggesting such innovative and fruitful publications. In the revised manuscript,

we have included the above said papers in the reference section.

♢ Response to Reviewer 3:

This paper deals with global asymptotic stability and asymptotic synchronization problem

of fractional order competitive neutral networks with time delays. Finally numerical exam-

ples are presented to illustrate the effectiveness of the theoretical analysis. The comments are:

1. There are lots of wrong formula. For example,
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(1) Page 3, ‘dµ′ in Definition 2.2 should be ‘dκ′,

(2) Page 3, q(κ)(t0) in Property 1 should be q(κ)(0),

(3) Page 3, Eβ,1(τ) in Definition 2.3 should be Eµ,1(τ)

Ans: Thanks for your careful reading and keen observation. In the revised manuscript, we

have corrected all the above mentioned mistakes.

2. The inequality of lemma 2.6 in this manuscript is not found in Ref. [20], I think it

should be in the following form.

q1q2 ≤
(ε1q1)

q3

q3
+

(ε−1
1 q2)

q3

q3

Ans: Thanks for the valuable comment. In the revised manuscript, we have corrected the

inequality in Lemma 2.6 and also included the original reference.

3. In Eq. (6), the amplification result for ∥ − A(p(κ)B(p(κ))∥ should be ∥Ā∥∥B̄∥∥p(κ)∥
instead of ∥A∥∥B∥∥p(κ)∥.
Ans: Thanks for your careful reading. As per your suggestion, we have corrected the above

mentioned mistakes in the revised version.

4. In Eq. (7), we can obtain that (t − i − λ) < 0 for all i ∈ (t − λ, t). Thus, the fol-

lowing inequality does not hold.∫ t−λ

−λ
(t− i− λ)µ−1∥p(i)∥di ≤

∫ t

−λ
(t− i− λ)µ−1∥p(i)∥di

Ans: Thanks a lot for your valuable comment. In the revised manuscript, we have corrected

the above mentioned mistakes and also rearranged the proof of Theorem 3.4.

5. In Eq. (27), why the following inequality is true, please give detailed proof.

DµG(t) ≤
m∑
l=1

v1(t)D
µv1(t) ≤ 2

m∑
l=1

v1(t) sgn(v1(t))D
µv1(t)

Ans: Thanks for the motivational comment. In the revised manuscript, we have given detailed

proof of inequality (27).
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6. In this paper, the authors talk about the asymptotically synchronization of the addressed

models; however, in simulation example 6.2, after considering the Fig.6. we find that the

drive-response systems are not synchronized well. Maybe some errors exist in this paper,

please check carefully.

Ans: Thanks for your careful reading. The existence of errors is obvious and unavoidable.

When compared with the submitted version, we have reduced the errors and shown the syn-

chronization as well and also we have estimated the error bounds for our considered model in

the revised manuscript.

7. In the reference section, I found that some of the references have a non-standard for-

mat, for example, [8], [15-18], [20].

Ans: Thanks for your suggestion. In the revised manuscript, we have unified all the refer-

ences in the standard format.

♢ Response to Reviewer 4:

This paper studies the problem of asymptotic stability and asymptotic synchronization anal-

ysis of fractional order delayed Cohen-Grossberg neural networks with discontinuous neuron

activation functions (FCGNNDDs). The following comments should be considered:

1. In Introduction part, I think the contributions of this paper should be drawn out explic-

itly.

Ans: Thank you very much for your valuable suggestion. As per your direction, we have

shown our contribution as well in the introduction part of our revised mansucript.

2. What is the difference between ‘fractional order delayed Cohen-Grossberg neural net-

works (FDCGNNs) and ‘general delayed cohen-Grossberg neural networks (GDCGNNs)?

Ans: Thank a lot for your sensible question. The circuit configuration of GDCGNNs first-

order neuron is based on a first-order integral circuit and it consists of one operational ampli-

fier and its related common capacitor and resistors. But FDCGNNs contain fractional-order

capacitors(or generalized capacitor). Otherwise, in general, GDCGNNs does not carry any

information about the memory and learning mechanisms. But FDCGNNs has nonlocal prop-

erty, which means the future state of a system depends not only upon its current state but also

upon all its previous states. Therefore, FDCGNNs being characterized by infinite memory.

The memory effect and differential operators are the main difference between FDCGNN and
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GDCGNNs.

3. In Conclusion part, based on the work of this paper, the authors may propose some

interesting problems as future work.

Ans: Thanks for your careful reading. As per your direction, we have included the future

research topics in the conclusion section.

4. In order to improve the quality of this paper, not only the presentation of this paper

should be improved as much as possible, but also the English expression should be checked

carefully and improved.

Ans: Thanks for your comment. We have corrected all the typo errors, grammatical error

and once again verified in the revised version.

Finally, we would like to take this opportunity to thank the editor and the reviewers again

for their constructive comments and useful suggestions, and the time and efforts that they

have spent in the review process. Without the expert comments made by the editor and the

reviewers, the paper would not be of this quality.

Sincerely yours,

Dr.J.Cao

Distinguished Professor

School of Mathematics

Southeast University

Nanjing 211189

China.
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