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A Systematic Literature Review on Machine Learning Applications for Sustainable 

Agriculture Supply Chain Performance  

 

1 Introduction  

Agriculture sustainability is the key to ensure food security and hunger eradication for the ever-

growing population. It is estimated that global food production must be increased by 60-110% to 

feed 9-10 billion of the population by 2050 (Tilman et al. 2011; Pardey et al. 2014; Rockström et 

al. 2017). It is therefore required to have a strategic shift from the current paradigm of enhanced 

agricultural productivity to agricultural sustainability (Rockström et al. 2017). Sustainable 

agriculture practices not only focus on enriching agricultural productivity but also help to reduce 

harmful environmental impacts (Kuyper and Struik, 2014; Godfray and Garnett, 2014; Cobuloglu 

and Büyüktahtakın, 2015; Adnan et al. 2018). The sustainable Agriculture Supply Chains (ASCs) 

are knowledge-intensive and are based on information, skills, technologies, and attitudes of the 

supply chain partners (El Bilali and Allahyari, 2018). Knowledge transfer encourages farmers to 

enhance their decision to adopt sustainable agriculture practices (SAP) (Adnan et al. 2018). 

Strothkämper (2016) claims that the ASCs are facing tremendous pressure to increase the farming 

efficiency, which is driven by the depleting rate of water and fossil fuels, shrinking availability of 

arable land and the increasing demand by the consumers for more transparent and sustainable food 

chains (Tian, 2016; Duman et al. 2017). The need for the ASCs to respond to the increasing demand 

and supply gaps, as well as market price fluctuations, is also identified as critical drivers of farming 

efficiency (Sharma et al. 2018; Patidar et al. 2018). Further, recent studies covering the sustainable 

aspects of inventory and transportation management concerning the perishable items may help us 

to understand the complexities involved in achieving sustainable ASCs (Shah et al. 2018; Gharaei 

et al. 2019; Hao et al. 2018; Hoseini et al. 2019; Gharaei et al. 2019a; Gharaeb et al. 2019b; Gharaei 

et al. 2019c; Kazemi et al., 2018; Sarkar and Giri, 2018; Sayyadi and Awasthi, 2018; Shah et al. 

2018). The digital technologies that include the internet of things (IoT), mobile technologies and 

devices, data analytics, artificial intelligence (AI), digitally delivered services, and other 

applications are influencing the ASCs (Kamilaris and Prenafeta-Boldú, 2018; Gharaei et al. 2019). 

Numerous examples demonstrate the use of digital technologies at different stages of ASC such as 

automation of farm machinery resulting in reduced labour input, use of sensors and remote satellite 

data for improved monitoring of crops, land, and water, IoT and RFID for agriculture product 

traceability (OECD, 2019) 

As a result of going digital, a large amount of data is getting generated in the supply chains, which 

is useless unless it is organized, understood, and meaningful insights are gained using appropriate 

data analysis tools (Russo, 2013; Dubey et al. 2015; Yin et al., 2016; Rabbani et al., 2018). AI or 

https://www.digitalistmag.com/author/anjastrothkaemper
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cognitive-based technologies is the most transformative and impactful advanced analytics tool that 

can be used by the organizations for supply chain decision making (Liakos et al. 2018). AI helps 

computers interact, reason, and learn like human beings to enable them to perform a wide variety 

of cognitive tasks, usually requiring human intelligence, such as visual perception, speech 

recognition, decision-making, and translation between languages and demonstrating an ability to 

move and manipulate objects accordingly. Intelligent systems use a combination of big data 

analytics, cloud computing, machine-to-machine communication, and the IoT to operate and learn 

(OECD, 2017). Machine and deep learning algorithms, the subsets of AI, is widely used in 

combination with location intelligence technologies in ASC to identify hidden patterns in the data 

(Elavarasan et al. 2018). The study by Kazemi (2019) published in Forbes suggests ASC 

practitioners consider AI and advanced analytics as strategic investments because of the 

accelerating digital transformation in ASC and need to develop a competitive advantage. Patidar 

et al. (2018) described how information technology (IT) is impacting the expectations of farmers 

as well as customers and accordingly, their demand is changing. 

In the past, a few review studies were conducted on AI and ML applications for improving the 

supply chain performance, as mentioned in Table 1. These studies have focused on ML applications 

in the supply chain management (Min, 2010) covering specific aspects like supply chain risk 

management (Bryannis et al. 2019) or sectors (Ngai et al. 2014; Giri et al., 2019; Konovalenko and 

Ludwig, 2019). However, to the best of our knowledge, no such studies are conducted to review 

the present status of AI/ML applications in ASC management. The increasing amount of data 

captured by emerging technologies offer the ASCs new abilities to predict changes and identify 

opportunities (Giri and Masanta, 2018; Kamble et al. 2019a). The practitioners must be equipped 

with the latest knowledge to ensure that significant insights are derived from the collected data 

(Giri and Bardhan, 2014; Tsao, 2015; Rabbani et al.,2019). Extensive testing and validation of 

emerging ML applications in ASC will be critical as agriculture is impacted by environmental 

factors that cannot be controlled, unlike other industries where risk is more comfortable to model 

and predict (Sennaar, 2019). Therefore, in this study, we present a systematic literature review 

(SLR) of 93 papers on ML applications in developing sustainable ASC. It is anticipated that the 

agricultural sector will continue to see the increasing adoption of ML in future and the results of 

this study will guide the researchers and practitioners to understand the present status of ML 

applications in ASC, which will help them to understand how adoption of ML will support the 

ASC to optimize farming practices to increase yields, crop quality and incomes in a sustainable 

manner.  

The remaining of the paper is organized as follows: Section 2 presents a brief on sustainable ASC 

and ML algorithms. Section 3 presents the SLR methodology adopted in this study. Section 4 

discusses the results of the SLR. An ML-ASC framework and implications based on the findings 



3 
 

Sensitivity: Internal 

of the study are discussed in section 5. The conclusions and limitations of the study are presented 

in section 6.   

 

Table 1: Review studies on ML applications in SCM 

Authors  No. of papers 
reviewed  

Time  
period  

Objectives  

Bryannis et al. (2019) 276 1996-2018 The study explored the extent of 
research in the field of supply chain risk 
management using artificial 
intelligence capabilities such as 
prediction, autonomous decision-
making, and the ability to deal with 
uncertain, complex environments. 

Ngai et al. (2014) 35 1994-2009 Provides a comprehensive review of 
research conducted in textile and 
apparel supply chains using artificial 
intelligence and decision-support 
systems. 

Giri et al. (2019) 145 1989-2018 Highlights the impact and significance 
of artificial intelligence applications in 
apparel fashion supply chains.   

Min (2010) 
 

28  Identifies the potential supply chain 
areas where artificial intelligence can 
be deployed to solve complex 
problems. 

Konovalenko and 
Ludwig (2019) 

238 2005-2017 Highlights the potential machine 
learning and big data applications in 
supply chain management for reducing 
supply chain complexity. 

 

2 Concepts used in the study  
2.1 Agriculture supply chain  

ASCs are like the fast-moving consumer goods (FMCG) supply chains in many ways but differ in 

terms of raw material procurement and the final product. The raw materials are procured from the 

fields, and the product is made for consumption by humans or animals. As seen in Figure 1, the 

ASC includes several operations such as pre-production, production, storage, processing, retail, 

and distribution before the final product reaches the end consumers (Borodin et al. 2016).  
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Figure 1: ASC operations (Adapted from Borodin et al. 2016) 

A typical ASC includes multiple stakeholders such as farmers/producers, processors, certification 

agencies, traders, retailers, distributors, and final consumers. Therefore, the effective coordination 

of an ASC requires activities management, decision-making ranging from strategic, tactical, and 

operational levels (Patidar et al. 2018; Kamble et al. 2019a). An ASC is complex in comparison 

with other supply chains due to the perishability of the product, high supply-demand fluctuations 

due to seasonality of the produce, and increasing consumer awareness towards produce 

provenance, quality, and safety (Kamble et al. 2019b; Shukla and Jharkaria, 2013).  

2.2 Challenges for ASC  

Due to rapid industrialization and overpopulation, there is a fierce competition for natural 

resources, and the world is grappling with the challenge of feeding its people sustainably (Kummu 

et al. 2012; Pelletier and Tyedmers, 2010; FAO, 2009). It is estimated that the current food 

production systems and technologies will find it difficult to sustain the food demands of the next 

billion people (Elferink and Schierhorn, 2016). The critical issues that need to be addressed are 

lack of industrialization in the ASCs (Kamble et al. 2019a), information asymmetry (Sharma and 

Parhi, 2017), inadequate management practices (Luthra et al. 2018), poor product traceability 

(Kamble et al. 2019b), and food safety and quality norms (Naik and Suresh, 2018). Moreover, with 

the recent advances in information and communication technology, a higher number of people are 

becoming aware and concerned about the triple bottom line aspects (social, economic, and 

environmental) of the ASCs. This has led to growing pressure from various stakeholders such as 

NGOs, consumer organizations, agro-based organizations, government institutions, and 

policymakers for developing sustainable food production and consumption strategies. Most of the 

practitioners and researchers agree to the fact that current ASCs need a drastic shift towards 

sustainability to comply with the United Nation’s 2030 agenda of Sustainable Development Goals 

(SDGs) (Eyhorn et al. 2019).  
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2.3 Data-driven agriculture supply chains 

In order to effectively cope up with the ever-increasing challenges of ASCs, we need a better 

understanding of the complex agricultural ecosystems (Kamilaris et al. 2017). This can happen by 

the usage of current disruptive technological platforms, which enable continuous monitoring of the 

physical agricultural environment (through wireless sensors) while producing endless amounts of 

data (Wolfert et al. 2017). Technologies such as the internet of services (IoS) and the internet of 

things (IoT) help in real-time sharing and collection of information through the help of connected 

devices. Ahumada and Villalobos (2009) report that enhanced information sharing, 

communication, coordination, and cooperation between the ASC nodes enabled by IoT platforms 

can augment sustainability in the ASCs. Wireless sensor technologies and IoT can reduce demand-

supply gaps and address critical issues of food quality and safety (Zhong et al. 2017). As there is 

much data generated throughout the ASC, the analysis of this (big) data would enable farmers and 

organizations to draw valuable insights, thereby enhancing productivity through data-driven 

decision-making (Sharma et al. 2018). However, data-driven ASCs may pose challenges in terms 

of data storage, data collection, and data visualization. Other issues include data privacy, data 

security, data accuracy, and data access (Kamilaris et al. 2017; Sykuta, 2016). Moreover, a digital 

divide exists between developed and developing economies due to the lack of computational tools 

and adequate skillsets (Rodriguez et al. 2017). 

2.4 Machine Learning Algorithms  

ML is defined as “the scientific study of algorithms and computational models on computers using 

experience for progressively improving the performance on a specific task or to make accurate 

forecasts” (Mohri et al. 2018). The term “experience” in the above definition refers to the historical 

data accessible to the learner for building a prediction model. These datasets can be digitized 

human-labeled datasets or data collected through interactions with the environment. Table 2 lists 

the common terminologies used in ML. 

Table 2: ML terminologies (adapted from Mohri et al. 2018) 

Term Definition 
Example Instances of data used for learning. 
Feature Set of attributes (or) vector associated with an example. 
Hyperparameters Parameters specified as inputs to the learning algorithm. 
Hypothesis set Set of functions used for mapping a set of features with the set of labels. 
Label Value(s) assigned to the examples. 

Loss function 
A function, measuring the difference between a true label and the 
predicted label. 

Test sample Examples used for evaluating the performance of a learning algorithm. 
Training sample Examples used for training a learning algorithm. 
Validation sample Examples used for tuning the parameters of a learning sample. 
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A general configuration of the ML system is presented in Figure 2. Labeled or unlabeled training 

data is collected from different sources as input to the ML system. The knowledge base of the 

learning system decides the use of an appropriate ML algorithm, considering the decisions to be 

taken by the organization. Previous studies and datasets are also referred to validate the ML 

predictions obtained from the current datasets for quality output, improving the decision-making 

performance of the organization (Du and Sun, 2006).  

 
Figure 2: A machine learning system configuration (adapted from Du and Sun, 2006) 

 

The ML is categorized into three main tasks; supervised learning, unsupervised learning, and 

reinforcement learning. In supervised learning, a predictive model is developed using the labeled 

data with the prior knowledge of the input and the desired output variables. The goal of the 

supervised learning approach is to map the variables to the desired output variable (Zhu and 

Goldberg, 2009; Traore et al., 2017). Algorithms such as random forests, decision trees, Bayesian 

networks, and regression analysis are classified under supervised learning techniques. The 

unsupervised learning algorithms use unlabeled datasets without prior knowledge of the input and 

output variables. Unsupervised learning establishes the hidden patterns based on the unlabeled 

dataset and is primarily used for dimensionality reduction and exploratory data analysis (Jordan 

and Mitchell, 2015). Unsupervised learning includes algorithms such as Artificial Neural Networks 

(ANN), genetic algorithm, Instance-based learning models, deep learning, and clustering. In 

reinforcement learning, the training and testing datasets are combined, and the learner interacts 

with the environment to collect information. The learner gets awarded for his actions with the 

environment leading to an exploration versus exploitation dilemma. The learner must explore new 

unknown actions to gain more information as compared to exploiting the information already 

collected (Sutton and Barto, 2018; Mohri et al. 2018). Reinforcement learning algorithms are used 

for robot navigation, machine skill acquisition, and real-time decision-making. Reinforcement ML 
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algorithms include Q-learning (SARSA max), Deep Q-learning (DQL), and Dataset Aggregation 

(dAgger).  

A summary description of prominent ML algorithms is presented in Table 3. 

 

Table 3: Description of ML Algorithms  

ML algorithm  Description  

Bayesian network A classification algorithm that predicts the output class based on 
Bayes’ theorem by calculating class conditional probability and 
prior probability (Nielsen and Jensen, 2009). 

Decision tree This algorithm classifies the data into smaller subsets where 
each subset contains (mostly) responses of one class (either 
“yes” or “no”) (Jordan and Mitchell, 2015; Mullainathan and 
Spiess, 2017). 

Ensemble learning  This algorithm leverages the knowledge of the crowd, 
employing several independent models to make a prediction and 
aggregates the final prediction (Al-Jarrah et al. 2015; Liakos et 
al. 2018). Some of the prominent ensemble learning methods 
include random forests, gradient boosting machines (GBM), 
bootstrapped aggregation (bagging), AdaBoost, stacked 
generalization (blending), and gradient boosted regression trees 
(GBRT) 

Regression Analysis  

 

A classical predictive model that expresses the relationship 
between inputs and an output parameter in the form of an 
equation (Nasrabadi, 2007; Huang et al. 2012). Some of the 
commonly used regression models are linear regression, logistic 
regression, and polynomial regression.  

Support Vector Machine 

(SVM)  

A boundary detection algorithm that identifies/defines multi-
dimensional boundaries separating data points belonging to 
different classes Vapnik (2013). 

Artificial Neural Networks 

(ANN) 

A computational and mathematical model inspired by the 
biological nervous system. The weights in the network learn to 
reduce the error between actual and prediction (Schmidhuber, 
2015; Yang and Sudharshan, 2019). ANNs are further classified 
into perceptron networks, backpropagation networks, and 
Hopfield networks. 

Clustering Clustering algorithms such as k-means find k centroids by 
dividing the data into k clusters (Mohri et al. 2018). 

Deep learning Deep ANNs are referred to as Deep Learning because of 
multiple hidden layers (Salakhutdinov, 2015; Araque et al. 
2017). The most common deep learning model is the 
convolutional neural network (CNN). These are further 
segregated into deep belief networks (DBNs), auto-encoders, 
and deep Boltzmann machine. 

Genetic algorithm Genetic algorithms are evolutionary computational and 
stochastic search algorithms that are often used in ML 
applications (Shapiro, 1999). Genetic algorithm is used in 
discrete spaces and find their applications where other gradient-
based methods cannot be used. A genetic algorithm is best suited 
to situations where information is a critical criterion for 
performance. 
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Instance-based learning This is a memory-based model that learns based on the 
comparison, i.e., examples are compared with instances from 
the training datasets (Azar and Dolatabad, 2019). Prominent 
algorithms in Instance-based learning includes learning vector 
quantization, k-nearest neighbour (KNN), and locally weighted 
learning (Liakos et al. 2018). 

 

3 Review Methodology  
In this study, we utilized an SLR with a specific focus on reviewing the published research work 

systematically and attain an unbiased and objective summary of the current state and future 

potential of ML applications in ASC. SLR adopts an approach that is scientific and replicable 

(Cook et al. 1997) for evaluating and interpreting all the available research relevant to a question, 

topic, or phenomenon of interest (Booth et al. 2012). SLRs help in developing useful insights based 

on the theoretical synthesis of existing research and identifies possible gaps in literature (Tranfield 

et al. 2003; Kamble et al. 2018). We adopted the three-stage SLR methodology suggested by 

Tranfield et al. (2003), comprising of the pre-operational stage (“planning the review”), operational 

stage (“conducting the review), and post-operational stage (“review findings”).  

 

3.1 Planning the review  

The objective of our review was to study the applications of ML algorithms in ASC. The emphasis 

was to study the ML algorithms, as shown in Table 2, on the various ASC operations depicted in 

Figure 1.  More specifically, we sought to understand how the use of ML will help to make the 

ASCs efficient. To specify the conceptual boundaries, we used selected keywords covering ML 

algorithms such as decision trees, Bayes network, regression analysis, and artificial neural network. 

Not many limitations were applied to the keywords used for the “agriculture supply chain,” and 

the search included broad terms like “agriculture,” “food,” and “perishable items.” All the review 

papers were reviewed to match our review objectives and determine whether ASC was included in 

the scope of the papers.  

 

3.2 Conducting the review  

The keyword search was initially performed using the Scopus database. The Scopus database was 

selected as it encompasses a wide range of refereed journals belonging to major publishing houses 

such as Elsevier, Taylor and Francis, IEEE, Emerald, and Springer. Later the search was also 

extended to include ISI Web of Knowledge, Emerald Insights, and Business Source Premier so that 

we identify relevant work which is more comprehensive and not a sample of selected papers. 

However, to limit the number of papers for review, the conference contributions, articles published 

in trade journals, books, and book contributions were excluded from the search process. Backward 

and forward searches were conducted to ensure that the selected papers are comprehensive and 
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significant studies in the field of ASC deploying ML algorithms are included. A total of 549 

publications were found as an outcome of using the following keywords; "machine learning"  OR 

"feature learning" OR "anomaly detection" OR "decision trees" OR” association rules" 

OR "Artificial neural networks" OR "Support vector machine" OR “Bayesian network” OR 

"genetic algorithm" AND "Agriculture" OR "Food" OR "Agri-food" OR "agricultural" OR "agri-

business supply chain" OR “perishable supply chain.” The keyword search was implemented 

through a pairwise query taking into consideration one keyword from each category at a time. A 

review of the abstracts of these papers revealed that not all publications focused on ML applications 

in ASC. In some papers, ML and the other keywords were referred to in some other context. The 

following inclusion criteria were developed for the conducting the review: 1) The paper must have 

published in a peer-reviewed journal 2) The study focused on ML algorithms listed in Table 2. 3) 

The study discussed ML applications on any aspect of ASC management 4) Papers are written in 

English language 5) Should have passed the inter-rater reliability test. The papers were validated 

before the final selection was made for review. The papers were independently coded by three of 

the authors (two based in India and one from the UK), and their codes were compared for the 

difference in scoring to assess the inter-rater reliability (Armstrong et al. 1997).  The papers with 

zero differences in the scores were included in the final review process whereas, the papers with 

differences went through the iteration process. The papers were selected for final review upon 

resolving the differences in the review score; otherwise, it was excluded from the review process. 

The validation process helped the authors to select quality papers matching to the objectives of the 

study instead of relying on the quality rating of the journal. The above selection criteria resulted in 

an exhaustive sample of 93 papers since it includes most of the published research in this area.  

The publication selection process is outlined in Figure 3.  
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Figure 3: Publication selection process 

 

3.3 Descriptive statistics 

The final sample contains 93 research papers. Studies on the topic of interest were available in or 

after 2002 with the pace of research picking up from 2015-16, showing increased interest by the 

researchers in applying ML algorithms to solve ASC challenges (see Figure 4). It is also observed 

that high-quality peer-reviewed journals such as Computers and Electronics in Agriculture, 

International Journal of Production Economics, Journal of Cleaner Production, European Journal 

of Operations Research have recognized the need for research in this area (see Figure 5).  The use 

of different ML algorithms in ASC is presented in Figure 6. It is observed that ANN is the most 

widely used ML algorithm (32 out of 93 studies), followed by regression, clustering, and genetic 

algorithm with 23 papers each. Few studies were found to use a combination of different ML 

algorithms. Figure 7 represents the details of the ASC phases that have deployed the ML 

algorithms. The pre-production phase accounted for 39 papers, followed by a distribution phase 

with 29 papers, production (26 papers), harvest (17 papers), retailing (16 papers), and processing 

(5 papers). The statistics indicate that ML is mostly used in the pre-production phase for various 

applications such as predicting weather conditions, soil properties, weed detection, and disease 

classification.  

 

Figure 4: Year-wise publications 
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Figure 5: Journal-wise publications 
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Figure 6: Classification based on ML algorithm 

 

 

Figure 7: Classification based on the agriculture supply chain phase 
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4 Review findings and discussions  
In this section, we analyze and present the findings of SLR in four clusters. These clusters represent 

the use of ML in the different ASC phases and include; pre-production, production, processing, 

and distribution (Aramyan et al. 2006; Ahumada and Villalobos, 2009). The use of ML in each 

cluster serves specific applications for improving ASC efficiency. It is observed from the SLR that 

ML is applied in the pre-production phase (Cluster 1) for the prediction of crop yield, soil 

properties, and irrigation requirements. 

Similarly, ML is used for weather prediction, disease detection, weed detection, soil nutrient 

management, and livestock management during the production phase (Cluster II). In Cluster III 

(Processing Phase), the use of ML is for demand estimation and production planning. Inventory 

management and consumer analysis are the major application areas of ML in the distribution phase 

(Cluster IV). The SLR framework used for presenting the review findings is presented in figure 8.  

 

 
 

Figure 8: SLR presentation framework 

 

4.1 Cluster I: Pre-production phase 

In an ASC, the pre-production forms the initial phase. The activities undertaken in this phase 

include crop yield prediction, prediction of soil properties, and irrigation (Chirinda et al. 2010). 

Accurate prediction of soil properties is essential because it helps in improving the soil 

management practices according to the land potential (Morellos et al. 2016). Hively et al. (2011) 

report that the prediction of soil properties leads to a better understanding of the soil ecosystem 

dynamics. Effective soil management practices lead to sustainable agricultural and environment 

management (Rossel et al., 2009). In our study, 39 (42%) research papers dealt with the 

applications of ML in the pre-production phase. The ML applications in this phase include studies 

on developing a decision support system to predict product quality (Abbal et al., 2016), irrigation 
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requirement in arid and semi-arid regions (Ali et al., 2018a, b) and improving the smart farming 

practices (Balducci et al. 2018).  

4.1.1 Crop yield prediction  

Crop yield prediction in agriculture is significant because it supports better crop management and 

plan marketing activities (Pantazi et al. 2016). As soon as the crop yield in a specific site is 

predicted, other farm inputs such as nutrients, fertilizers, and equipment requirements could be 

planned according to the soil and crop needs. Precision agriculture techniques make use of ML and 

signal processing techniques to aid decision-support in crop yield forecasting. Yield estimation and 

evaluation helped in coordination with harvest supply and enhanced the field efficiency (Ramos et 

al. 2017; Elavarasan et al. 2018). Table 4 presents a list of different ML algorithms used for crop 

yield prediction. ANN was found to be the most popular ML algorithm for crop yield prediction.  

Table 4: ML algorithms in crop yield prediction 

ML Algorithm Research Studies 

ANN 

Osman et al. (2015); Balducci et al. (2018); Chlingaryan et al. (2018); 
Crane-Droesch (2018); Elavarasan et al. (2018); Haghverdi et al. (2018); 
Khanal et al. (2018); Liakos et al. (2018); Mehra et al. (2018); Saggi and 
Jain (2018) 

Bayesian network Zhang et al. (2017); Elavarasan et al. (2018) 
Clustering Khanal et al. (2018); Liakos et al. (2018); Elavarasan et al. (2018) 

Deep learning Osman et al. (2015); Crane-Droesch (2018); Liakos et al. (2018); Mehra et 
al. (2018); Saggi and Jain (2018) 

Decision tree Liakos et al. (2018); Balducci et al. (2018); Elavarasan et al. (2018); 
Kouadio et al. (2018); Chlingaryan et al. (2018) 

Ensemble learning Liakos et al. (2018); Kouadio et al. (2018); Khanal et al. (2018) 
Instance-based 
learning 

Liakos et al. (2018); Saggi and Jain (2018); Khanal et al. (2018) 

Regression Ridier et al. (2016); Liakos et al. (2018); Elavarasan et al. (2018) 
SVM Khanal et al. (2018); Liakos et al. (2018) 

 

4.1.2 Predicting soil properties 

ML in soil management is used for estimation of soil moisture content (Im et al. 2016; Prasad et 

al. 2018). In soil nutrient content, Morellos et al. (2016) applied two ML methods i.e., least squares 

support vector machines (LS-SVM), and Cubist on the 140 wet soil samples. The findings of the 

study show that ML methods are not only capable of tackling non-linear problems but also 

outperformed in the prediction of all three soil properties studied. Nahvi et al. (2016) used the self-

adaptive evolutionary (SaE) algorithm to enhance the performance of the extreme learning machine 

(ELM) architecture to estimate daily soil temperature. They then compared the performance of 

ELM and SaE-ELM models against genetic programming (GP) and artificial neural network 

(ANN) models developed in their study. Coopersmith et al. (2014) employed classification trees, 

k-nearest-neighbours, and boosted perceptron for soil dryness estimates and mentioned the k-

nearest-neighbour and boosted perceptron algorithms both performed with 91–94% accuracy. A 

https://www.sciencedirect.com/topics/engineering/nonlinear-problem
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-networks
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/perceptron
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new method of ML named Crop Selection Method (CSM) was proposed by Kumar et al. (2015) to 

solve crop selection problems and maximize the net yield rate of the crop over the season which 

would help to improve net yield rate of crops. Accuracy in the prediction of soil conditions leads 

to efficient soil management practices. Table 5 provide list of some different ML algorithms used 

in learning soil properties.  

 

Table 5: ML algorithms for prediction of soil properties 

ML Algorithm Research Studies 

ANN Tayyebi et al. (2017); Khanal et al. (2018); Sirsat et al. (2018); Maiti et al. 
(2008) 

Bayesian network Sirsat et al. (2018) 
Clustering Khanal et al. (2018) 
Deep learning Khanal et al. (2018); Sirsat et al. (2018) 
Decision tree Sirsat et al. (2018); Kouadio et al. (2018) 
Ensemble 
learning  

Sirsat et al. (2018); Kouadio et al. (2018); Prasad et al. (2018) 

Instance-based 
learning 

Sirsat et al. (2018) 

Regression Khanal et al. (2018); Sirsat et al. (2018); Kouadio et al. (2018) 
SVM Khanal et al. (2018); Sirsat et al. (2018) 

 

4.1.3 Irrigation management 

Irrigation management plays a critical role in affecting the quality and quantity of the crops. 

Irrigation scheduling and management cater to the spatial assessment of when, where, and how 

much to irrigate (Romero et al. 2018). An effective irrigation system makes use of soil moisture 

data, precipitation data, evaporation data, and weather forecasts for better decision-making (Goap 

et al. 2018). Efficient irrigation management in agricultural operations plays a vital role in 

maintaining the balance between climatological, hydrological, and the agronomical cycle for long 

term agricultural sustainability (Liakos et al. 2018). The ML algorithms used for developing 

efficient irrigation management systems are based on simulation and optimization techniques 

(Safavi and Esmikhani, 2013). The ML in irrigation management is used for estimation of 

evapotranspiration (Saggi and Jain, 2019; Torres et al. 2011), streamflows (Yaseen et al. 2016), 

and real-time management of reservoir release (Khalil et al. 2005). The different ML algorithms 

used for developing irrigation systems are listed in Table 6.   

 

Table 6: ML algorithms for irrigation management 

ML Algorithm Research Studies 

ANN 
Raju et al. (2006); Kaneda et al. (2017); Navarro-Hellín et al. (2016); 
Liakos et al. (2018); Mehra et al. (2018); Zhang et al. (2018) 

Clustering Liakos et al. (2018); Goap et al. (2018) 
Deep learning Kaneda et al. (2017); Liakos et al. (2018); Mehra et al. (2018) 
Decision tree Goldstein et al. (2018) 
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Ensemble learning Goldstein et al. (2018); Kaneda et al. (2017) 
Instance-based learning Liu et al. (2018) 

Regression Navarro-Hellín et al. (2016); Kaneda et al. (2017); Liakos et al. 
(2018); Goap et al. (2018) 

SVM Liakos et al. (2018) 
 

4.2 Production phase 

ML is deployed in the production phase for weather prediction, weed detection, disease detection, 

livestock management, site-specific nutrient management, harvest, and crop quality management.  

4.2.1 Weather prediction  

Weather prediction plays a critical role in the crop production phase. The weather forecasts such 

as sunlight, rainfall, humidity, and moisture guide the optimal use of water for crop irrigation 

scheduling and planning (Trore et al. 2016; McNider et al. 2015). ML algorithms make use of both 

supervised and unsupervised methods for weather predictions (Bendre et al. 2016). Table 7 lists 

the different ML algorithms used for weather prediction.  

Table 7:  ML algorithms for Weather Prediction  

ML Algorithm Research Studies 

ANN Belayneh and Adamowski (2013); Crane-Droesch (2018); Mouatadid 
et al. (2018); Navarro-Hellín et al. (2016); Saggi and Jain (2019) 

Deep learning Crane-Droesch (2018); Saggi and Jain (2019) 
Decision tree Crane-Droesch (2018); Saggi and Jain (2019) 
Ensemble learning Ali et al. (2018a); Ali et al. (2018b); Saggi and Jain (2019) 
Genetic algorithm Wahyuni and Mahmudy (2017) 
Instance-based learning Saggi and Jain (2019) 

Regression Belayneh and Adamowski (2013); Cramer et al. (2017); Ali et al. 
(2018b); Mouatadid et al. (2018) 

 

4.2.2 Crop protection  

Effective crop protection measures include early identification and diagnosis of biotic stress factors 

(weeds and pathogens) and abiotic stress factors (nutrient, water deficiency) (Behmann et al. 2015). 

Precision agriculture technologies such as site-specific management have made it possible to detect 

pest infestations, diseases, and weeds before actual outbreaks (Lee et al. 2010). High density spatial 

and temporal information is required for effective site-specific management of plant diseases and 

weed detection. Many studies have proposed the use of automated disease detection platforms 

(based on pattern recognition and machine learning) for improving the accuracy and rapidity of the 

diagnosis results (Lu et al. 2017). The ML algorithms used for disease detection are listed in Table 

8.  
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Table 8: ML algorithms for disease detection 

ML Algorithm Research Studies 
ANN Kamilaris and Prenafeta-Boldú (2018) 
Clustering Espejo-Garcia et al. (2018); Singh et al. (2018) 
Deep learning Kamilaris and Prenafeta-Boldú (2018) 
Ensemble learning Kale and Sonavane (2018); Su et al. (2018) 
Instance-based learning Kale and Sonavane (2018); Pantazi et al. (2019) 
Regression Espejo-Garcia et al. (2018); Singh et al. (2018) 
SVM Pantazi et al. (2019) 

 

4.2.3 Weed detection  

ML combined with machine vision is used for weeds removal, as weeds highlight distinct spectral 

reflectance that is considerably different from main crops (Strothmann et al. 2017; Jinglei et al. 

2017; Bakhshipour and Jafari, 2018). Compared to manual methods, machine vision with pattern 

recognition algorithms and automatic classification techniques are more effective in monitoring 

crops (Zareiforoush et al. 2015) and weeds detection (Liakos et al. 2018; Kale and Sonavane 2018). 

ML algorithms use color, texture, and shape features in crops for object discriminations (Zhang et 

al. 2014; Tang et al. 2017), enabling automated solutions for weed detection and recognition (Binch 

and Fox, 2017). ML reduces the usage of weedicides and enhances agricultural sustainability. Table 

9 lists different ML algorithms used for weeds detection.  

Table 9: ML algorithms for weeds detection 

ML Algorithm Research Studies 
ANN Liakos et al. (2018) 
Clustering Mucherino et al. (2009); Kale and Sonavane (2018) 
Deep learning Liakos et al. (2018) 
Decision tree Liakos et al. (2018) 
EL Liakos et al. (2018) 
Instance-based learning Liakos et al. (2018) 
Regression Mucherino et al. (2009) 
SVM Mucherino et al. (2009) 

 

4.2.4 Livestock Management  

Many studies (Liakos et al. 2018; Wang et al. 2018; Katamreddy et al. 2017) have highlighted 

usage of ML algorithms for effective livestock management such as grassland monitoring (Barrett 

et al. 2014), animal welfare (Pegorini et al. 2015), animal behavior tracking (Matthews et al. 2017), 

and livestock production (Craninx et al. 2008). Wathes et al. (2008) reported the use of ML 

algorithms for precision livestock farming, helping the farmers in evidence-based decision-making 

focused on real-time data monitoring and information systems (Berckmans and Guarino, 2017). 

Precision animal husbandry finds its importance in the domain of livestock management, health 

surveillance, livestock production, livestock welfare, and reducing environmental footprint 
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(Morota et al. 2018). The studies on livestock management using ML algorithms are listed in Table 

10.  

 Table 10: ML algorithms for livestock management 

ML Algorithm Research Studies 
ANN Vlontzos and Pardalos (2017); Yazdanbakhsh et al. (2017) 
Bayesian network Liakos et al. (2018) 
Clustering Vlontzos and Pardalos (2017) 
Deep learning Pourmoayed et al. (2016) 
Decision tree Vlontzos and Pardalos (2017) 
Instance-based learning Vlontzos and Pardalos (2017); Mucherino et al. (2009) 
Regression Yazdanbakhsh et al. (2017) 

 

4.2.5 Crop quality management  

Crop quality management is essential as it helps in getting the right market price for the produce. 

Crop quality management practices such as site-specific nutrient management is an optimal 

approach for targeting homogenous crop/ field areas that require similar treatment (Chlingaryan et 

al. 2018). The most widely used ML algorithms for site-specific nutrient management are 

regression and clustering. In recent years, combinations of a crop model and global sets of gridded 

data have become vital tools in forecasting crop yields (Folberth et al. 2019). The following section 

presents more specific ML applications in the production phase of ASC presented. 

4.2.6 Site-specific nutrient management 

For sustainable land management practices, it is essential to improve the quality of soil and 

maintain adequate values of nutrients (Sirsat et al. 2018). The accurate detection and classification 

of crop quality parameters help in fetching a better price for the agricultural produce (Zhang et al. 

2017). This also helps in reducing wastes and thereby minimizing the losses (Maione et al. 2016). 

Abbal et al. (2016) and Drury et al. (2017) suggests the use of Bayesian networks in enhancing 

crop quality management through effective decision-making. Table 11 lists the studies on site-

specific nutrient management using ML algorithms.  

Table 11: ML algorithms for site-specific nutrient management 

ML Algorithm Research Studies 
ANN Chlingaryan et al. (2018); Sirsat et al. (2018) 
Clustering Chlingaryan et al. (2018) 
Deep learning Sirsat et al. (2018) 
Decision tree Chlingaryan et al. (2018); Sirsat et al. (2018) 
Ensemble learning Chlingaryan et al. (2018); Sirsat et al. (2018) 
Instance-based learning Sirsat et al. (2018) 
Regression Chlingaryan et al. (2018) 

 

4.2.7 Harvesting  

 Harvesting is the final horticultural procedure performed on the field after the ripening of the crops. 

The crop production estimates provide useful information to the cultivators for planning and 
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allocating resources in the harvest and post-harvest activities (Ahn et al. 2018). The ML algorithms 

in this stage focus on predicting the crop yield using remote sensing data (Haghverdi et al. 2018). 

Kaudio et al. (2018) used an ensemble learning model for evaluating soil properties and compared 

it with random forests and logistic regression for predicting coffee yield in the harvest phase. Deep 

neural networks (Mehra et al. 2018) and data mining techniques such as k mean clustering, k 

nearest neighbour, ANN, and SVM (Mucherino et al. 2009) are used for accurate yield forecasts 

during the harvest. SVM and machine vision is used for crop segmentation using foliage detection 

(Rico-Fernández et al. 2019). ML algorithms are used for predicting the change in the color of 

crops during the harvest stage (Sadgrove et al. 2018).  

 

4.3 Processing phase 

The main activities in this phase are demand prediction and production planning (for distribution) 

of the processed agricultural products. In the processing phase, the inedible raw materials are 

processed into more useful, palatable, and stable shelf forms for consumption (Augustin et al. 

2016). Some of the prominent processing techniques are milling, heating, cooling, smoking, drying, 

and cooking (Weaver et al. 2014). Processing causes physical changes to the products and results 

in both detrimental and beneficial effects depending upon the processes used (Pellegrini and 

Fogliano, 2017). After the processing phase, the agricultural produce is packed and is ready for 

distribution and retail stages. 

Modern food processing technologies deploy software algorithms based on ML. Chandrasekaran 

and Ranganathan (2017) suggest the use of a genetic algorithm in optimizing the CO2 reduction 

during the processing of grains. Song et al. (2018) used Bayesian networks for minimizing food 

waste. Their study focused on waste processing and management for reducing the carbon footprint 

and mitigating climate change.  

 

4.3.1 Demand prediction 

A precise demand prediction of food requirements helps to avoid overstocking, overproduction, 

and overutilization of resources (Hofmann and Rutschmann, 2018; Chambers et al., 1971). Table 

12 lists the prominent ML algorithms used in demand prediction. 

Table 12: ML algorithms for demand prediction  

ML Algorithm Author(s) 

ANN Borimnejad and Eshraghi Samani (2016); da Veiga et al. (2016) 

Genetic algorithm 
Lin and Chen (2003); Ma and Wang (2019); Madani et al. (2018); Sitek et 

al. (2017) 
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4.3.2 Production planning 

The use of big data analytics in production planning helps in improving demand forecasting and 

production planning (Feng and Shanthikumar, 2018). ML algorithms help inefficient production 

planning through the reduction of setup time and better demand sensing (Lorena et al. 2011; 

Mehdizadeh et al. 2018). Table 13 lists the ML algorithms used for production planning.  

Table 13: ML algorithms for production planning. 

ML Algorithm Research Studies 
Bayesian network Luangkesorn et al. (2016) 
Clustering Devapriya et al. (2017); Khoshnevisan et al. (2015) 

Genetic algorithm Ma and Wang (2019); Mousavi-Avval et al. (2017); Nabavi-Pelesaraei et 
al. (2017) 

 

4.4 Distribution phase 

Distribution and retail phase connect food production and processing with final use and complete 

the farm to the fork loop (Manzini et al. 2019). In the distribution phase, the packaged agricultural 

product is sent to the distribution centers and warehouses. Most of the produce goes through a 

distribution channel before reaching the final consumer (Beaman and Johnson, 2006).  

4.4.1 Transportation 

The majority of the studies used genetic algorithm and focused on vehicle routing, minimizing the 

product damage, travel distance, and preserving the product quality (Qiang and Jiuping, 2008; 

Wang et al. 2018; Rabbani et al. 2016; Buelvas Padilla et al. 2018). The other studies in this phase 

used GA and memetic algorithms for handling integrated production and distribution scheduling 

problem (Devapriya et al. 2017; Sayyadi and Awasthi, 2018) and association rule mining for 

identifying the storage location assignment problem based on the cloud for distribution and storage 

of perishable food products (Hui et al. 2016). ML algorithms are also used for estimating the freight 

(Krisztin, 2018), inventory management and payment delays (Kumar et al. 2016; Shukla and 

Jharkharia, 2013), estimation of product shelf life (Larsen et al. 2010), dynamic allocation (Lin and 

Chen, 2003; Piramuthu and Zhou, 2013), predicting supply chain risks under uncertainties 

(Luangkesorn et al. 2016). ML also finds its application in developing local food supply chains 

ensuring food safety and sustainability in the logistics network (Saetta et al. 2015). Table 14 lists 

the significant ML algorithms used in the distribution phase of the ASC. 
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Table 14: ML algorithms for distribution management 

ML Algorithm Research Studies 

Clustering Ting et al. (2014); Devapriya et al. (2017); Hsiao et al. (2018); Krisztin 
(2018) 

Genetic algorithm 
Qiang and Jiuping (2008); Larsen et al. (2010); Dolgui et al. (2018); 
Govindan et al. (2014); Nakandala et al. (2016); Madani et al. (2018); 
Buelvas Padilla et al. (2018); Hsiao et al. (2018); Ma and Wang, (2019). 

Regression Ting et al. (2014); Saetta et al. (2015); Krisztin (2018) 
 

4.4.2 Consumer Analytics  

ML techniques such as deep learning and ANN are used in the food retailing phase for predicting 

consumer demand, perception, and buying behavior (Ribeiro et al. 2018). Vlontzos and Pardalos 

(2017) highlight the application of ML techniques such as ANN, Decision tree, k-means type 

algorithms, genetic algorithm, nearest neighbour method, and rule induction in food retail with a 

focus on attracting customers attention. Singh et al. (2017) deployed a big data analytics-based 

approach of text mining (Jinbo et al. 2018) using SVM and hierarchical sampling with multi-scale 

bootstrap resampling for effective supply chain planning in retailing. Their study highlighted how 

decision-makers in the supply chain management could be informed about customer feedback 

based on sentiment analysis from social media platforms and help in developing a customer-centric 

retail supply chain. Maleki and Cruz-Machado (2015) highlighted the usage of Bayesian networks 

and ANNs for integrating customer-centric practices and customer values in food retail. Bayesian 

network was found to be useful in predicting the consumers buying behavior of different food 

products (Cene and Karaman, 2015; Chen et al. 2015; Borimnejad and Eshraghi Samani 2016; 

Fiore et al. (2017) and performing the quality checks of the retail food items (Santos‐Fernández et 

al. 2017). Lilavanichakul et al. (2018) identified factors influencing consumers purchasing 

behavior for imported ready to eat foods based on ANNs and logistic regression techniques. Non-

linear demand forecasting techniques were found to be more productive and accurate in forecasting 

the customer demand for different food products (da Veiga et al. 2016; Puchalsky et al. 2018). 

Table 15 lists the studies on customer analytics using ML algorithms.  

Table 15: ML algorithms for consumer analysis 

ML Algorithm Research Studies 
ANN Lilavanichakul et al. (2018) 

Bayesian network 
Corney (2002); Cene and Karaman (2015); Maleki and Cruz-Machado 
(2015); Pourmoayed et al. (2016); Santos‐Fernández et al. (2017); Song et 
al. (2018) 

Clustering Corney (2002); Chen et al. (2015) 
Decision tree Corney (2002) 
Ensemble learning Corney (2002) 
Regression Lilavanichakul et al. (2018) 
SVM Fiore et al. (2017) 
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4.4.3 Inventory management 

Inventory is an essential driver of cost as it utilizes storage space and ties up capital (Hofmann and 

Rutschmann, 2018). Maintaining limited stock or out of stock conditions lead to negative 

consequences such as reduced customer demand and loss in revenues. The availability of a product 

drives customer satisfaction and leads to profitability (Hanson et al. 2015). ML algorithms help in 

predicting daily demand and ensure that there are no inventory-related problems. Table 16 lists the 

ML algorithms used for inventory management in the ASCs.Table16 lists the studies using Ml in 

ASC.  

Table 16: ML algorithms for inventory management 

ML Algorithm Research Studies 

Genetic algorithm 
Dolgui et al. (2018); Hui et al. (2016); Kumar et al. (2016); Li et al. 
(2016); Piramuthu and Zhou (2013); Nakandala et al. (2016); Rabbani 
et al. (2016); Sazvar et al. (2016); Shukla and Jharkharia (2013) 

 

5 Proposed framework and implications  

5.1 ML-ASC Performance Framework  

The review findings indicate that ML has a vast potential for applications in the different ASC 

phases. The data generated from different sources in the ASC is used for making predictions and 

classification using different ML algorithms. The findings indicate that ML-driven technologies 

support improving the overall efficiency of ASC and address the various challenges faced by the 

industry, such as crop yield, soil health, and disease management. The potential benefits lead to an 

improvement in the ROI for all farms and minimize their losses. We use the findings from the 

literature to develop an ML-ASC performance application framework that can be used by the 

practitioners.  

The proposed framework in Figure 9 has three main components, the ASC phases, ML algorithms, 

and ASC performance. 
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Figure 9: A ML- ASC performance framework 

 

5.1.1 ASC phase  

The first component in this framework is represented by the different ASC phases that include pre-

production, production, processing, and distribution. A considerable amount of data gets generated 

with the implementation of emerging technologies that need to be analyzed for gaining more in-

depth insights. The study reveals that the data on soil, climate, yield, spatial, irrigation, etc., are 

analyzed using different ML algorithms for improved decision making. For example, it is observed 

that soil, weather, GIS, geospatial, irrigation, and livestock data are used for decision making in 

the pre-production stage. Likewise, these data are also used for decision-making in the production 

phase. The data generated in different phases of ASC is enhanced by specificity and situation 

awareness and is triggered by real-time events supporting agile field operations and includes 

intelligent assistance in implementation, maintenance and use of the technology. Our framework 

suggests that the focus of the ASC should be on implementing and using appropriate technology 

to generate the data. The literature has identified various technologies that promise huge potential 

in improving ASC performance. IoT platform combined with drone and sensor technologies is 

considered to be a promising data analytic technology for realizing high levels of operational 

control in the farms (Porter and Heppelmann, 2015). IoT is a powerful driver that can transform 

traditional farming practices into smart webs of connected objects that are context-sensitive and 

can be identified, sensed and controlled remotely. Drones have massive potential in effectively 

sensing and monitoring crops and livestock management. Sensors and actuators support a better 

understanding of the specific farming conditions that include weather and environmental 

conditions, livestock management, pest management, weed control, and disease detection in plants.  
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5.1.2 Machine learning algorithms 

The second component in the framework is the ML algorithms that are used in different ASC 

phases. The study has found that supervised, unsupervised, and reinforcement learning techniques 

are used with specific objectives of improving ASC performance. Our framework suggests that the 

ASC phase and ML algorithms have a feedback loop that focuses on developing ML capability to 

extract maximum information from the data using appropriate ML algorithms. While it also 

suggests the best outcome from the ML-based analysis at different phases that would be used in 

ASC performance. 

 

5.1.3 Sustainable ASC performance 

The review findings reveal that the purpose of analyzing agriculture data using ML algorithms is 

to develop efficient ASCs.  It was interesting to find that the ASC used ML not only to achieve 

economic benefits but also to achieve improved environmental and social performance. The 

discussions in section 4 have identified the contribution of ML-enabled ASCs in achieving 

sustainable goals in different phases. In the pre-production phase, the ability to forecast timely 

rainfall using ML algorithms support to formulate effective water planning and resource 

management decisions (Ali et al., 2018a). The intelligent models can help in predicting accurate 

weather forecasts and thereby supports decision-making about flooding, crop sowing patterns, 

harvesting, and effective management of water resources (Terêncio et al. 2018). Efficient irrigation 

management enhances sustainable environmental performance and thereby enhances yield and 

productivity. Accurate predictions using ML algorithms are found to mitigate water-related 

disasters such as droughts and floods and reduce potential impacts on infrastructure and economy 

(Ali et al. 2018b). The literature in the production phase indicated that the site-specific and 

optimized nutrient management using ML algorithms ensure accurate crop yield and productivity 

(Chlingaryan et al. 2018). The use of remote sensing systems and ML algorithms have a positive 

impact on the yield production and nitrogen management while reducing operating costs and 

environmental impact. ML algorithms lead to the efficient management of resources and maximize 

technological investments by limiting and predicting hardware failures and replacements, reduce 

food losses, and optimize irrigation and sowing patterns (Balducci et al. 2018).  In the processing 

phase, ML algorithms are used for reduced GHG emissions, improving environmental quality 

(Chandrasekaran and Ranganathan, 2017; Nabavi-Pelesaraei et al. 2016; Mousavi-Avval et al. 

2017). Improved environmental quality reduces poverty, enhances economic growth while 

improving people’s health (Bhateja et al. 2011). The reduced post-harvest losses (PHL) by using 

appropriate ML algorithms reduce environmental damage, enhance food safety, and thereby 

enhance social sustainability through active local market development by meeting customer and 

market demands (Syahruddin and Kalchschmidt, 2011). Murthy et al. (2007) indicated that if the 
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PHL losses are minimized, the prices of agricultural commodities will reduce drastically. In the 

distribution phase, the use of ML has resulted in improved social and economic sustainable 

performance through enhanced food safety, quality, economic savings, and customer satisfaction 

(Buelvas Padilla et al., 2018; Govindan et al. 2014). The use of ANNs in demand forecasting 

leading to economic savings and enhanced customer satisfaction (de Vaiga et al., 2016). Similarly, 

the optimized vehicle routing and fleet management contribute to fuel savings enhancing 

environmental and economic performance in last-mile delivery (Wang et al. 2018; Dolgui et al. 

2018; Hsiao et al. 2018; Hui et al. 2016).  

The above discussions drive us to include sustainable ASC performance as the third significant 

component of the proposed ML-ASC performance framework. The sustainable ASC is proposed 

to address the three dimensions of sustainability, namely: Economical, Social, and Environmental 

(Elkington, 1998). 

 

5.2 Implications of the study 

5.2.1 Implications for Practitioners  

The congregating need for a transparent, efficient, and sustainable supply chain is driving the 

digital transformation in ASC. The practitioners are therefore required to assess their present 

position, while the emerging technologies are disrupting their industry. The study reveals enormous 

benefits to the ASC that have developed the ML capability implying that the adoption of ML in 

decision making is a must. With the increasing demand for food and decreasing interest of farmers 

in agriculture occupation, there is a need for a massive increase in farm productivity fulfilling the 

ecological and social requirements. The review suggests that the ML applications can be extended 

to different phases of ASC to create an intelligent web of interoperable entities, which will help to 

control and monitor all the agricultural processes. The analysis of data collected from sensors (Kale 

and Sonavane, 2018; Goap et al. 2018; Liakos et al. 2018) and drones (Fernández et al. 2018; 

Rehman et al. 2019; Rico-Fernández et al. 2019) deliver insights that enhances farm productivity 

and farmers profitability. It is, therefore, evident that the practitioners will have to plan new 

investments in emerging technologies to solve the social and environmental problems, 

simultaneously increasing efficiency. Apart from the sustainability benefits, the ML applications 

also contribute to improving supply chain visibility, transparency, and product traceability. 

However, this will require the practitioners to explore the possibilities of integrating different 

sources of ML data with blockchain technology and other technologies (Tian, 2016; Sharma, R. et 

al. 2018, Kamble et al. 2018).  

The ML algorithms can be used for improved product distribution by predicting the delays in 

outbound and inbound shipments, optimized vehicle routing, and improved fleet management. The 

use of ML will ensure real-time tracking of products enabling product traceability, monitoring the 
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food safety norms, and quick response product recalls in case of contamination or identification of 

fake products. For the practitioners in the processing phase, the ML applications hold tremendous 

potential for transforming the production systems into data-driven smart manufacturing systems. 

The IoT and cyber-physical systems will transform the manufacturing processes into autonomously 

connected objects with embedded intelligence. The ML algorithms increase the likelihood of early 

detection of food safety-related issues. ML algorithms based on simulation technologies are found 

to support early mitigation of risks in ASCs. It is therefore implied that the practitioners should 

invest in sensor technologies for monitoring the real-time processing activities, ensuring machine 

interoperability, and real-time decision making.  

The review finds that the ML algorithms have contributed to developing new servitization models 

to serve the customers efficiently (Helo et al. 2017). The practitioners will be required to deploy 

IoT and other smart devices for providing data access to the customers, as well as capturing data 

from them. This will provide customers with the ability to trace the products back to their origin, 

enhancing their experience. The information on customer buying behavior will help the 

practitioners to predict the customer preferences and needs improving their product development 

performance. The practitioners can use ML for predicting the demand based on previous buying 

patterns. This, in turn, will also improve their supplier relationships, reducing the supplier-related 

delays and inventory forecast accuracy. ML algorithms will facilitate the optimal usage and 

utilization of resources throughout the ASC, ushering a new dimension of symbiosis in this sector. 

Collaboration between various ASC organizations will accelerate effective waste management and 

disposal solutions. The machine vision applications combined with ML algorithms can be 

beneficial in predicting plant stress conditions, which will help in taking proactive decisions on the 

target plants without harming other plants in the vicinity. This will help in the optimal use of 

resources such as fertilizers, water, pesticides, and weedicides.  

Despite the benefits associated with the use of ML in ASCs, the practitioners will be required to 

address a few challenges (technical and non-technical) for the successful adoption of ML. 

Overcoming these challenges will accelerate new technological developments and value creation 

for the stakeholders. Most predominant technical challenges that need to be addressed by the 

practitioners include the following;  

• Data security: Issues related to data access, data storage, data ownership, and use of data.   

• Infrastructure: In developing economies, internet connectivity is a significant barrier 

preventing technology adoption and penetration. The deployment of smart devices will involve 

significant investments and time before connectivity issues are resolved.  

• Standardization of data: The data gets generated from different ASC phases leading to the 

issues related to data standardization.  This will require to have a robust sensor network and 

effective data conversion and standardization techniques.  
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• Device interoperability: Device interoperability will be a significant technical barrier that 

would be needed to overcome for ensuring the penetration of ML techniques. 

The non-technical barriers include lack of policy regulations on the use of data, the involvement of 

different stakeholders, and information sharing practices. Further, there is a shortage of human 

resources with analytical skills that may affect the adoption of ML applications. Therefore, it is 

required to develop capacity building programs for enhancing the skill set of the farmers and other 

stakeholders in the ASCs. 

 

5.2.2 Implications for Researchers 

Based on the discussions in this study, we present the following broad areas needing further 

investigation from researchers.    

i. The study focuses on ML applications in analyzing the data, and less attention is paid on how 

the data from different innovative technologies is captured, stored, analyzed, and shared across 

the different phases in ASC. More research is required in this direction.  

ii. The findings indicate that ML helps to enhance ASC visibility. However, it would be interesting 

to know the impact of such influence. The future studies should aim at measuring the impact of 

ML on ASC and provide specific guidelines on how the ASCs should deploy ML for enhanced 

supply chain visibility. The ML-ASC performance framework proposed in the study may be 

used as a guiding framework for such studies.  

iii. The future studies should focus on how ML can transform the existing production systems into 

data-driven smart manufacturing systems?  

iv. The future studies should aim at developing focused customer frameworks, which should 

capture insights on customer buying behavior. 

v. More studies on how ML algorithms can contribute towards facilitating the optimal use and 

utilization of resources throughout the ASC is required to be conducted. 

vi. Studies on identifying the relationships between the various barriers for implementing ML in 

ASCs are required. The identification of the driving and dependence barriers will help in 

expediting the ML implementation.  

vii. Future studies may focus on comparing the performance of different ML algorithms. For 

example, a comparative study to test the performance of regression analysis and ANN may be 

performed in predicting the moisture content in the soil.  

 

5.2.3 Implications for policymakers 

There is a lot of expectations from the local government by the ASC members. Considering the 

high cost of investment in digital technologies and developing ML capabilities, the policymakers 

are expected to subsidize investments in digital technologies and make it more affordable so that it 

can be used widely. In the emerging markets, there exists a considerable gap between the available 
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resources and education. Many farmers do not have access to the internet, mobile phones and 

training on the new technologies and data interpretation. Advisories are required to be developed 

to assist the farmers in understanding the information and recommend suitable mechanisms to 

improve farm productivity. It is therefore implied that the policymakers should plan to connect the 

farmers in the rural areas and work with governments and technology companies for pulling costs 

of data collection equipment and software. There is also the need to provide extensive and advanced 

education, which revolves around utilizing these farming measures globally. 

6 Summary 
The present study is based on an SLR to investigate the current state of research on machine 

learning (ML) applications in ASC. The SLR was performed on 93 research articles, which were 

categorized using different ML algorithms across different ASC phases. The study finds that all 

three ML algorithms, that is, supervised, unsupervised, and reinforcement learning is used to 

develop sustainable ASCs. The main contribution of the study is the ML-ASC performance 

application framework (as shown in Figure 9) that will further guide academics and practitioners 

to understand the current state of literature in this field. The study reveals considerable benefits to 

the ASC that have developed the ML capability, implying that the adoption of ML in decision 

making is beneficial. Considering the high cost of investment in digital technologies and 

developing ML capabilities, the policymakers are expected to subsidize investments in digital 

technologies and make it more affordable so that it can be used widely.  

As with any research, our study also has a few limitations. ISI Web of Science was used as the 

database for searching the papers for conducting the SLR. We might likely have missed a few 

important research papers that are not included in the ISI Web of Science database. The SLR covers 

a timeframe of 19 years, i.e., 2000-2019. The list of research studies selected is comprehensive as 

they are selected from refereed journals, although not exhaustive. Future studies can therefore 

include other databases beyond ISI Web of Science. The framework presented in this study is based 

on the findings from the review of literature which has not been tested empirically. Hence future 

studies may be conducted to validate this framework empirically. Moreover, future studies can also 

explore the extent of the ML application to ASCs in different regions across the world and provide 

a comparative assessment. 

  



28 
 

Sensitivity: Internal 

References 

Abbal, P., Sablayrolles, J.M., Matzner-Lober, É., Boursiquot, J.M., Baudrit, C. and Carbonneau, 
A., 2016. A decision support system for vine growers based on a Bayesian network. Journal 
of agricultural, biological, and environmental statistics, 21(1), pp.131-151. 

Abdullahi, H.S., Mahieddine, F. and Sheriff, R.E., 2015, July. Technology impact on agricultural 
productivity: A review of precision agriculture using unmanned aerial vehicles. 
In International Conference on Wireless and Satellite Systems (pp. 388-400). Springer, 
Cham. 

Accorsi, R., Cholette, S., Manzini, R. and Tufano, A., 2018. A hierarchical data architecture for 
sustainable food supply chain management and planning. Journal of Cleaner 
Production, 203, pp.1039-1054. 

Adnan, N., Nordin, S. M., Rahman, I., & Noor, A. (2018). The effects of knowledge transfer on 
farmers decision making toward sustainable agriculture practices: In view of green fertilizer 
technology. World Journal of Science, Technology and Sustainable Development, 15(1), 
98-115. 

Ahn, H.S., Dayoub, F., Popovic, M., MacDonald, B., Siegwart, R. and Sa, I., 2018. An Overview 
of Perception Methods for Horticultural Robots: From Pollination to Harvest. arXiv preprint 
arXiv:1807.03124. 

Ahumada, O. and Villalobos, J.R., 2009. Application of planning models in the agri-food supply 
chain: A review. European journal of Operational research, 196(1), pp.1-20. 

Akhtar, P., Tse, Y.K., Khan, Z. and Rao-Nicholson, R., 2016. Data-driven and adaptive leadership 
contributing to sustainability: Global agri-food supply chains connected with emerging 
markets. International Journal of Production Economics, 181, pp.392-401. 

Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M. and ALRahamneh, Z., 2011. Fast and 
accurate detection and classification of plant diseases. Machine learning, 14(5). 

Ali, M., Deo, R.C., Downs, N.J. and Maraseni, T., 2018a. Multi-stage hybridized online sequential 
extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm 
for rainfall forecasting. Atmospheric research, 213, pp.450-464. 

Ali, M., Deo, R.C., Downs, N.J. and Maraseni, T., 2018b. Multi-stage committee based extreme 
learning machine model incorporating the influence of climate parameters and seasonality 
on drought forecasting. Computers and Electronics in Agriculture, 152, pp.149-165. 

Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K. and Taha, K., 2015. Efficient 
machine learning for big data: A review. Big Data Research, 2(3), pp.87-93. 

Aramyan, L., Ondersteijn, C., Kooten, O. and Oude Lansink, A., 2006. Performance indicators in 
agri-food production chains. Quantifying the agri-food supply chain, pp.49-66. 

Araque, O., Corcuera-Platas, I., Sanchez-Rada, J.F. and Iglesias, C.A., 2017. Enhancing deep 
learning sentiment analysis with ensemble techniques in social applications. Expert Systems 
with Applications, 77, pp.236-246. 

Armstrong, D., A. Gosling, J. Weinman, T. Marteau, The place of inter-rater reliability in 
qualitative research: an empirical study, Sociology 31 (3) (1997) 597–606. 

Augustin, M.A., Riley, M., Stockmann, R., Bennett, L., Kahl, A., Lockett, T., Osmond, M., 
Sanguansri, P., Stonehouse, W., Zajac, I. and Cobiac, L., 2016. Role of food processing in 
food and nutrition security. Trends in Food Science & Technology, 56, pp.115-125. 

Azar, A. and Dolatabad, K.M., 2019. A method for modelling operational risk with fuzzy cognitive 
maps and Bayesian belief networks. Expert Systems with Applications, 115, pp.607-617. 

Bakhshipour, A. and Jafari, A., 2018. Evaluation of support vector machine and artificial neural 
networks in weed detection using shape features. Computers and Electronics in 
Agriculture, 145, pp.153-160. 

Balcombe, K., Bailey, A. and Fraser, I., 2005. Measuring the impact of R&D on productivity from 
a econometric time series perspective. Journal of Productivity Analysis, 24(1), pp.49-72. 

Balducci, F., Impedovo, D. and Pirlo, G., 2018. Machine Learning Applications on Agricultural 
Datasets for Smart Farm Enhancement. Machines, 6(3), p.38. 



29 
 

Sensitivity: Internal 

Baryannis, G., Validi, S., Dani, S. and Antoniou, G., 2019. Supply chain risk management and 
artificial intelligence: state of the art and future research directions. International Journal of 
Production Research, 57(7), pp.2179-2202. 

Behmann, J., Mahlein, A.K., Rumpf, T., Römer, C. and Plümer, L., 2015. A review of advanced 
machine learning methods for the detection of biotic stress in precision crop 
protection. Precision Agriculture, 16(3), pp.239-260. 

Belayneh, A. and Adamowski, J., 2013. Drought forecasting using new machine learning 
methods. Journal of Water and Land Development, 18(9), pp.3-12. 

Bendre, M.R., Thool, R.C. and Thool, V.R., 2016. Big data in precision agriculture through ICT: 
Rainfall prediction using neural network approach. In Proceedings of the International 
Congress on Information and Communication Technology (pp. 165-175). Springer, 
Singapore. 

Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.I. and 
Williams, M., 2015. Feeding 9 billion by 2050–Putting fish back on the menu. Food 
Security, 7(2), pp.261-274. 

Berckmans, D. and Guarino, M., 2017. Precision livestock farming for the global livestock 
sector. Animal Frontiers, 7(1), pp.4-5. 

Bhateja, A. K. Babbar, R. , Singh, S. and Sachdeva, A. 2011. Study of green supply chain 
management in the Indian manufacturing industries: a literature review cum an analytical 
approach for the measurement of performance. International Journal of Computational 
Engineering and Management, Vol. 13 No. 3, pp. 84-98. 

Bhatt, R., Kukal, S.S., Busari, M.A., Arora, S. and Yadav, M., 2016. Sustainability issues on rice–
wheat cropping system. International Soil and Water Conservation Research, 4(1), pp.64-
74. 

Binch, A. and Fox, C.W., 2017. Controlled comparison of machine vision algorithms for Rumex 
and Urtica detection in grassland. Computers and Electronics in Agriculture, 140, pp.123-
138. 

Borimnejad, V. and Eshraghi Samani, R., 2016. Modeling consumer’s behavior for packed 
vegetable in “Mayadin management organization of Tehran” using artificial neural 
network. Cogent Business & Management, 3(1), p.1208898. 

Borodin, V., Bourtembourg, J., Hnaien, F. and Labadie, N., 2016. Handling uncertainty in 
agricultural supply chain management: A state of the art. European Journal of Operational 
Research, 254(2), pp.348-359. 

Borodin, V., Bourtembourg, J., Hnaien, F. and Labadie, N., 2016. Handling uncertainty in 
agricultural supply chain management: A state of the art. European Journal of Operational 
Research, 254(2), pp.348-359. 

Buelvas Padilla, M.P., Nisperuza Canabal, P.A., López Pereira, J.M. and Hernández Riaño, H.E., 
2018. Vehicle routing problem for the minimization of perishable food damage considering 
road conditions. Logistics Research, 11(2), pp.1-18. 

Campbell, B.M., Vermeulen, S.J., Aggarwal, P.K., Corner-Dolloff, C., Girvetz, E., Loboguerrero, 
A.M., Ramirez-Villegas, J., Rosenstock, T., Sebastian, L., Thornton, P.K. and Wollenberg, 
E., 2016. Reducing risks to food security from climate change. Global Food Security, 11, 
pp.34-43. 

Cappato, L.P., Ferreira, M.V.S., Guimaraes, J.T., Portela, J.B., Costa, A.L.R., Freitas, M.Q., 
Cunha, R.L., Oliveira, C.A.F., Mercali, G.D., Marzack, L.D.F. and Cruz, A.G., 2017. 
Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food 
Science & Technology, 62, pp.104-112. 

Carolan, M., 2017. Publicising food: big data, precision agriculture, and co‐experimental 
techniques of addition. Sociologia Ruralis, 57(2), pp.135-154. 

Carter, C.R. and Rogers, D.S., 2008. A framework of sustainable supply chain management: 
moving toward new theory. International journal of physical distribution & logistics 
management, 38(5), pp.360-387. 

Cene, E. and Karaman, F., 2015. Analysing organic food buyers' perceptions with bayesian 
networks: A case study in turkey. Journal of Applied Statistics, 42(7), pp.1572-1590. 



30 
 

Sensitivity: Internal 

Ceruti, A., Marzocca, P., Liverani, A. and Bil, C., 2019. Maintenance in Aeronautics in an Industry 
4.0 Context: The Role of Augmented Reality and Additive Manufacturing. Journal of 
Computational Design and Engineering. 

Chabbi, A., Lehmann, J., Ciais, P., Loescher, H.W., Cotrufo, M.F., Don, A., SanClements, M., 
Schipper, L., Six, J., Smith, P. and Rumpel, C., 2017. Aligning agriculture and climate 
policy. Nature Climate Change, 7(5), p.307. 

Chandrasekaran, M. and Ranganathan, R., 2017. Modelling and optimisation of Indian traditional 
agriculture supply chain to reduce post-harvest loss and CO2 emission. Industrial 
Management & Data Systems, 117(9), pp.1817-1841. 

Chase, C., 2014. Intermittent Demand Forecasting and Multi-tiered Causal 
Analysis. Manufacturing and Supply Chain Global Practice. 

Chen, N.H., Lee, C.H. and Huang, C.T., 2015. Why buy organic rice? genetic algorithm‐based 
fuzzy association mining rules for means‐end chain data. International journal of consumer 
studies, 39(6), pp.692-707. 

Cheng, L., Sun, D.W., Zhu, Z. and Zhang, Z., 2017. Emerging techniques for assisting and 
accelerating food freezing processes: A review of recent research progresses. Critical 
reviews in food science and nutrition, 57(4), pp.769-781. 

Chlingaryan, A., Sukkarieh, S. and Whelan, B., 2018. Machine learning approaches for crop yield 
prediction and nitrogen status estimation in precision agriculture: A review. Computers and 
Electronics in Agriculture, 151, pp.61-69. 

Choi, T.M., Wallace, S.W. and Wang, Y., 2018. Big data analytics in operations 
management. Production and Operations Management, 27(10), pp.1868-1883. 

Christopher, M., 2005. Logistics and Supply Chain Management. Prentice Hall, London 
Cobuloglu, H.I. and Büyüktahtakın, İ.E., 2015. A stochastic multi-criteria decision analysis for 

sustainable biomass crop selection. Expert Systems with Applications, 42(15-16), pp.6065-
6074. 

Codex Alimentarius, Understanding Codex. FAO, Rome, 2016. http://www.fao.org/3/a-
i5667e.pdf. Accessed on 25th January 2019. 

Colaço, A.F. and Bramley, R.G.V., 2018. Do crop sensors promote improved nitrogen management 
in grain crops?. Field Crops Research, 218, pp.126-140. 

Coopersmith, E.J., Minsker, B.S., Wenzel, C.E. and Gilmore, B.J., 2014. Machine learning 
assessments of soil drying for agricultural planning. Computers and electronics in 
agriculture, 104, pp.93-104. 

Corney, D., 2002. Food bytes: intelligent systems in the food industry. British Food 
Journal, 104(10), pp.787-805. 

Corrado, S., Castellani, V., Zampori, L. and Sala, S., 2018. Systematic analysis of secondary life 
cycle inventories when modelling agricultural production: A case study for arable 
crops. Journal of cleaner production, 172, pp.3990-4000. 

Cramer, S., Kampouridis, M., Freitas, A.A. and Alexandridis, A.K., 2017. An extensive evaluation 
of seven machine learning methods for rainfall prediction in weather derivatives. Expert 
Systems with Applications, 85, pp.169-181. 

Crane-Droesch, A., 2018. Machine learning methods for crop yield prediction and climate change 
impact assessment in agriculture. Environmental Research Letters, 13(11), p.114003. 

da Veiga, C.P., da Veiga, C.R.P., Puchalski, W., dos Santos Coelho, L. and Tortato, U., 2016. 
Demand forecasting based on natural computing approaches applied to the foodstuff retail 
segment. Journal of Retailing and Consumer Services, 31, pp.174-181. 

Dasgupta, A., 2018. Technological Change and Political Turnover: The Democratizing Effects of 
the Green Revolution in India. American Political Science Review, 112(4), pp.918-938. 

De Steur, H., Wesana, J., Dora, M.K., Pearce, D. and Gellynck, X., 2016. Applying value stream 
mapping to reduce food losses and wastes in supply chains: A systematic review. Waste 
management, 58, pp.359-368. 

Deininger, K., Monchuk, D., Nagarajan, H.K. and Singh, S.K., 2017. Does land fragmentation 
increase the cost of cultivation? Evidence from India. The Journal of Development Studies, 
53(1), pp.82-98. 



31 
 

Sensitivity: Internal 

Dev, S.M., 2018. Transformation of Indian Agriculture? Growth, Inclusiveness and Sustainability 
(No. 2018-026). Indira Gandhi Institute of Development Research, Mumbai, India. 

Devalkar, S.K., Seshadri, S., Ghosh, C. and Mathias, A., 2018. Data science applications in Indian 
agriculture. Production and Operations Management. 

Devapriya, P., Ferrell, W. and Geismar, N., 2017. Integrated production and distribution scheduling 
with a perishable product. European Journal of Operational Research, 259(3), pp.906-916. 

Dolgui, A., Tiwari, M.K., Sinjana, Y., Kumar, S.K. and Son, Y.J., 2018. Optimising integrated 
inventory policy for perishable items in a multi-stage supply chain. International Journal 
of Production Research, 56(1-2), pp.902-925. 

Drury, B., Valverde-Rebaza, J., Moura, M.F. and de Andrade Lopes, A., 2017. A survey of the 
applications of Bayesian networks in agriculture. Engineering Applications of Artificial 
Intelligence, 65, pp.29-42. 

Du, C.J. and Sun, D.W., 2006. Learning techniques used in computer vision for food quality 
evaluation: a review. Journal of food engineering, 72(1), pp.39-55. 

Dubey, R., Gunasekaran, A., Sushil, & Singh, T. (2015). Building theory of sustainable 
manufacturing using total interpretive structural modelling. International Journal of 
Systems Science: Operations & Logistics, 2(4), 231-247. 

Duman, G.M., Tozanli, O., Kongar, E. and Gupta, S.M., 2017. A holistic approach for performance 
evaluation using quantitative and qualitative data: a food industry case study. Expert systems 
with applications, 81, pp.410-422. 

El Bilali, H. and Allahyari, M.S., 2018. Transition towards sustainability in agriculture and food 
systems: Role of information and communication technologies. Information Processing in 
Agriculture, 5(4), pp.456-464. 

Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y. and Srinivasan, K., 2018. Forecasting 
yield by integrating agrarian factors and machine learning models: A survey. Computers 
and Electronics in Agriculture, 155, pp.257-282. 

Elferink, M. and Schierhorn, F., 2016. Global demand for food is rising. Can we meet it?. Harvard 
Business Review, 7(04), p.2016. 

Elkington, J., 1998. Partnerships from cannibals with forks: The triple bottom line of 21st‐century 
business. Environmental Quality Management, 8(1), pp.37-51. 

Espejo-Garcia, B., Martinez-Guanter, J., Pérez-Ruiz, M., Lopez-Pellicer, F.J. and Zarazaga-Soria, 
F.J., 2018. Machine learning for automatic rule classification of agricultural regulations: A 
case study in Spain. Computers and Electronics in Agriculture, 150, pp.343-352. 

Eyhorn, F., Muller, A., Reganold, J.P., Frison, E., Herren, H.R., Luttikholt, L., Mueller, A., 
Sanders, J., Scialabba, N.E.H., Seufert, V. and Smith, P., 2019. Sustainability in global 
agriculture driven by organic farming. Nature Sustainability, 2(4), p.253. 

FAO, 2009. Press release, 19 June 2009. http://www.fao.org/news/story/en/item/ 20568/icode/. 
Feng, Q. and Shanthikumar, J.G., 2018. How research in production and operations management 

may evolve in the era of big data. Production and Operations Management, 27(9), pp.1670-
1684. 

Fernández, R., Montes, H., Surdilovic, J., Surdilovic, D., Gonzalez-De-Santos, P. and Armada, M., 
2018. Automatic Detection of Field-Grown Cucumbers for Robotic Harvesting. IEEE 
Access, 6, pp.35512-35527. 

Fiore, M., Gallo, C., Tsoukatos, E. and La Sala, P., 2017. Predicting consumer healthy choices 
regarding type 1 wheat flour. British Food Journal, 119(11), pp.2388-2405. 

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, 
M.T., Daily, G.C., Gibbs, H.K. and Helkowski, J.H., 2005. Global consequences of land 
use. science, 309(5734), pp.570-574. 

Fortin, J.G., Anctil, F., Parent, L.É. and Bolinder, M.A., 2011. Site-specific early season potato 
yield forecast by neural network in Eastern Canada. Precision agriculture, 12(6), pp.905-
923. 

Fountas, S., Sorensen, C.G., Tsiropoulos, Z., Cavalaris, C., Liakos, V. and Gemtos, T., 2015. Farm 
machinery management information system. Computers and Electronics in 
Agriculture, 110, pp.131-138. 



32 
 

Sensitivity: Internal 

Frega, N.G., Loizzo, M.R., Pacetti, D. and Lucci, P., 2016. Canning: Impact on Food Products 
Quality Attributes. In Food Processing Technologies (pp. 41-60). CRC Press. 

García-Alonso, C.R., Torres-Jiménez, M. and Hervás-Martínez, C., 2010. Income prediction in the 
agrarian sector using product unit neural networks. European Journal of Operational 
Research, 204(2), pp.355-365. 

Gathorne-Hardy, A., Reddy, D.N., Venkatanarayana, M. and Harriss-White, B., 2016. System of 
Rice Intensification provides environmental and economic gains but at the expense of social 
sustainability—A multidisciplinary analysis in India. Agricultural Systems, 143, pp.159-
168. 

Gharaei, A., Hoseini Shekarabi, S. A., & Karimi, M. (2019a). Modelling And optimal lot-sizing of 
the replenishments in constrained, multi-product and bi-objective EPQ models with 
defective products: Generalised Cross Decomposition. International Journal of Systems 
Science: Operations & Logistics, 1-13. 

Gharaei, A., Hoseini Shekarabi, S. A., Karimi, M., Pourjavad, E., & Amjadian, A. (2019d). An 
integrated stochastic EPQ model under quality and green policies: generalised cross 
decomposition under the separability approach. International Journal of Systems Science: 
Operations & Logistics, 1-13. 

Gharaei, A., Karimi, M., & Hoseini Shekarabi, S. A. (2019b). Joint economic lot-sizing in multi-
product multi-level integrated supply chains: generalized benders decomposition. 
International Journal of Systems Science: Operations & Logistics, 1-17. 

Gharaei, A., Karimi, M., & Shekarabi, S. A. H. (2019c). An integrated multi-product, multi-buyer 
supply chain under penalty, green, and quality control polices and a vendor managed 
inventory with consignment stock agreement: The outer approximation with equality 
relaxation and augmented penalty algorithm. Applied Mathematical Modelling, 69, 223-
254. 

Giri, B. C., & Bardhan, S. (2014). Coordinating a supply chain with backup supplier through 
buyback contract under supply disruption and uncertain demand. International Journal of 
Systems Science: Operations & Logistics, 1(4), 193-204. 

Giri, B. C., & Masanta, M. (2018). Developing a closed-loop supply chain model with price and 
quality dependent demand and learning in production in a stochastic environment. 
International Journal of Systems Science: Operations & Logistics, 1-17. 

Giri, C., Jain, S., Zeng, X. and Bruniaux, P., 2019. A Detailed Review of Artificial Intelligence 
Applied in the Fashion and Apparel Industry. IEEE Access, 7, pp.95364-95384. 

Goap, A., Sharma, D., Shukla, A.K. and Krishna, C.R., 2018. An IoT based smart irrigation 
management system using Machine learning and open source technologies. Computers and 
Electronics in Agriculture, 155, pp.41-49. 

Godfray, H.C.J., and T. Garnett. 2014. Food security and sustainable intensification. Philosophical 
Transactions of the Royal Society B 369: 20120273. doi:10.1098/rstb.2012.0273. 

Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O. and Ravid, G., 2018. Applying 
machine learning on sensor data for irrigation recommendations: revealing the agronomist’s 
tacit knowledge. Precision Agriculture, 19(3), pp.421-444. 

González Sánchez, A., Frausto Solís, J. and Ojeda Bustamante, W., 2014. Predictive ability of 
machine learning methods for massive crop yield prediction. 

Goodfellow, I., Bengio, Y., Courville, A. and Bengio, Y., 2016. Deep learning (Vol. 1). Cambridge: 
MIT press. 

Govindan, K., Jafarian, A., Khodaverdi, R. and Devika, K., 2014. Two-echelon multiple-vehicle 
location–routing problem with time windows for optimization of sustainable supply chain 
network of perishable food. International Journal of Production Economics, 152, pp.9-28. 

Haghverdi, A., Washington-Allen, R.A. and Leib, B.G., 2018. Prediction of cotton lint yield from 
phenology of crop indices using artificial neural networks. Computers and Electronics in 
Agriculture, 152, pp.186-197. 

Hallau, L., Neumann, M., Klatt, B., Kleinhenz, B., Klein, T., Kuhn, C., Röhrig, M., Bauckhage, 
C., Kersting, K., Mahlein, A.K. and Steiner, U., 2018. Automated identification of sugar 
beet diseases using smartphones. Plant Pathology, 67(2), pp.399-410. 



33 
 

Sensitivity: Internal 

Hanson, B.B., Hodgson, T.J., Kay, M.G., King, R.E. and Thoney-Barletta, K.A., 2015. On the 
economic lot scheduling problem: stock-out prevention and system 
feasibility. International Journal of Production Research, 53(16), pp.4903-4916. 

Hao, Y., Helo, P., & Shamsuzzoha, A. (2018). Virtual factory system design and implementation: 
integrated sustainable manufacturing. International Journal of Systems Science: Operations 
& Logistics, 5(2), 116-132. 

Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Ullah Khan, S., 2015.The rise of 
“Big Data” on cloud computing: Review and open research issues. Inf. Syst. 47,98–115. 

Heldman, D.R., Lund, D.B. and Sabliov, C. eds., 2018. Handbook of food engineering. CRC press. 
Hofmann, E. and Rutschmann, E., 2018. Big data analytics and demand forecasting in supply 

chains: a conceptual analysis. International Journal of Logistics Management, The, (just-
accepted), pp.00-00. 

Hoseini Shekarabi, S. A., Gharaei, A., & Karimi, M. (2019). Modelling and optimal lot-sizing of 
integrated multi-level multi-wholesaler supply chains under the shortage and limited 
warehouse space: generalised outer approximation. International Journal of Systems 
Science: Operations & Logistics, 6(3), 237-257. 

Hsiao, Y.H., Chen, M.C., Lu, K.Y. and Chin, C.L., 2018. Last-mile distribution planning for fruit-
and-vegetable cold chains. The International Journal of Logistics Management. 

Huang, G.B., Zhou, H., Ding, X. and Zhang, R., 2012. Extreme learning machine for regression 
and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B 
(Cybernetics), 42(2), pp.513-529. 

Hubeau, M., Marchand, F. and Van Huylenbroeck, G., 2017. Sustainability experiments in the agri-
food system: uncovering the factors of new governance and collaboration success. 
Sustainability, 9(6), p.1027. 

Hui, Y.Y., Choy, K.L., Ho, G.T.S., Leung, K.H. and Lam, H.Y., 2016. A cloud-based location 
assignment system for packaged food allocation in e-fulfillment warehouse. International 
Journal of Engineering Business Management, 8, p.1847979016684832. 

Im, J., Park, S., Rhee, J., Baik, J. and Choi, M., 2016. Downscaling of AMSR-E soil moisture with 
MODIS products using machine learning approaches. Environmental Earth Sciences, 
75(15), p.1120. 

Jana, R.K., Sharma, D.K. and Chakraborty, B., 2016. A hybrid probabilistic fuzzy goal 
programming approach for agricultural decision-making. International Journal of 
Production Economics, 173, pp.134-141. 

Jinbo, C., Yu, Z. and Lam, A., 2018. Research on Monitoring Platform of Agricultural Product 
Circulation Efficiency Supported by Cloud Computing. Wireless Personal 
Communications, pp.1-15. 

Jinglei, T., Ronghui, M., Zhiyong, Z., Jing, X., Dong, W., 2017. Distance-based separability 
criterion of ROI in classification of farmland hyper-spectral images. Int. J. Agric. Biol. Eng. 
10, 177–185 

Jordan, M.I. and Mitchell, T.M., 2015. Machine learning: Trends, perspectives, and prospects. 
Science, 349(6245), pp.255-260. 

Kale, A.P. and Sonavane, S.P., 2018. IoT based Smart Farming: Feature subset selection for 
optimized high-dimensional data using improved GA based approach for ELM. Computers 
and Electronics in Agriculture. 

Kamble, S.S., Gunasekaran, A. and Gawankar, S.A., 2018. Sustainable Industry 4.0 framework: A 
systematic literature review identifying the current trends and future perspectives. Process 
Safety and Environmental Protection, 117, pp.408-425. 

Kamble, S.S., Gunasekaran, A. and Sharma, R., 2019b. Modeling the blockchain enabled 
traceability in agriculture supply chain. International Journal of Information Management. 
https://doi.org/10.1016/j.ijinfomgt.2019.05.023 

Kamble, S.S., Gunasekaran, A., Parekh, H. and Joshi, S., 2019c. Modeling the internet of things 
adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, 
48, pp.154-168. 

Kamilaris, A. and Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: A survey. Computers 
and Electronics in Agriculture, 147, pp.70-90. 

https://doi.org/10.1016/j.ijinfomgt.2019.05.023


34 
 

Sensitivity: Internal 

Kamilaris, A., Kartakoullis, A. and Prenafeta-Boldú, F.X., 2017. A review on the practice of big 
data analysis in agriculture. Computers and Electronics in Agriculture, 143, pp.23-37. 

Kaneda, Y., Shibata, S. and Mineno, H., 2017. Multi-modal sliding window-based support vector 
regression for predicting plant water stress. Knowledge-Based Systems, 134, pp.135-148. 

Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., Oswald, I.P., 
Speijers, G., Chiodini, A., Recker, T. and Dussort, P., 2016. Impact of food processing and 
detoxification treatments on mycotoxin contamination. Mycotoxin Research, 32(4), pp.179-
205. 

Kazemi, N., Abdul-Rashid, S. H., Ghazilla, R. A. R., Shekarian, E., & Zanoni, S. (2018). Economic 
order quantity models for items with imperfect quality and emission considerations. 
International Journal of Systems Science: Operations & Logistics, 5(2), 99-115. 

Kazemi, Y,. 2019. AI, Big Data & Advanced Analytics In The Supply Chain. Available at : 
https://www.forbes.com/sites/yasamankazemi/2019/01/29/ai-big-data-advanced-analytics-
in-the-supply-chain/#75db62f4244f 

Kesavan, P.C. and Swaminathan, M.S., 2017. The Transition from Green to Evergreen Revolution. 
In Sustainable Development of Organic Agriculture (pp. 91-100). Apple Academic Press. 

Khalil, A., McKee, M., Kemblowski, M. and Asefa, T., 2005. Sparse Bayesian learning machine 
for real‐time management of reservoir releases. Water Resources Research, 41(11). 

Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N. and Shearer, S., 2018. Integration of high 
resolution remotely sensed data and machine learning techniques for spatial prediction of 
soil properties and corn yield. Computers and Electronics in Agriculture, 153, pp.213-225. 

Khoshnevisan, B., Bolandnazar, E., Shamshirband, S., Shariati, H.M., Anuar, N.B. and Kiah, 
M.L.M., 2015. Decreasing environmental impacts of cropping systems using life cycle 
assessment (LCA) and multi-objective genetic algorithm. Journal of Cleaner 
Production, 86, pp.67-77. 

Kim, K.H., Kabir, E. and Jahan, S.A., 2017. Exposure to pesticides and the associated human health 
effects. Science of the Total Environment, 575, pp.525-535. 

Konovalenko, I. and Ludwig, A., 2019. Event processing in supply chain management–The status 
quo and research outlook. Computers in Industry, 105, pp.229-249. 

Kouadio, L., Deo, R.C., Byrareddy, V., Adamowski, J.F., Mushtaq, S. and Nguyen, V.P., 2018. 
Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility 
properties. Computers and Electronics in Agriculture, 155, pp.324-338. 

Krisztin, T., 2018. Semi-parametric spatial autoregressive models in freight generation 
modeling. Transportation Research Part E: Logistics and Transportation Review, 114, 
pp.121-143. 

Kumar, C., Joardder, M.U.H., Farrell, T.W., Millar, G.J. and Karim, M.A., 2016. Mathematical 
model for intermittent microwave convective drying of food materials. Drying Technology, 
34(8), pp.962-973. 

Kumar, R., Singh, M.P., Kumar, P. and Singh, J.P., 2015, May. Crop Selection Method to 
maximize crop yield rate using machine learning technique. In Smart Technologies and 
Management for Computing, Communication, Controls, Energy and Materials (ICSTM), 
2015 International Conference on (pp. 138-145). IEEE. 

Kumar, S. and Kumar, N., 2016. An inventory model for deteriorating items under inflation and 
permissible delay in payments by genetic algorithm. Cogent Business & Management, 3(1), 
p.1239605. 

Kummu, M., De Moel, H., Porkka, M., Siebert, S., Varis, O. and Ward, P.J., 2012. Lost food, 
wasted resources: Global food supply chain losses and their impacts on freshwater, 
cropland, and fertiliser use. Science of the total environment, 438, pp.477-489. 

Kuyper, T.W., and P.C. Struik. 2014. Epilogue: Global food security, rhetoric, and the sustainable 
intensification debate. Current Opinion in Environmental Sustainability 8: 71–79 

Larsen, R.A., Schaalje, G.B. and Lawson, J.S., 2010. Food shelf life: estimation and optimal 
design. Journal of Statistical Computation and Simulation, 80(2), pp.143-157. 

León-Bravo, V., Caniato, F., Caridi, M. and Johnsen, T., 2017. Collaboration for sustainability in 
the food supply chain: A multi-stage study in Italy. Sustainability, 9(7), p.1253. 

https://www.forbes.com/sites/yasamankazemi/2019/01/29/ai-big-data-advanced-analytics-in-the-supply-chain/#75db62f4244f
https://www.forbes.com/sites/yasamankazemi/2019/01/29/ai-big-data-advanced-analytics-in-the-supply-chain/#75db62f4244f


35 
 

Sensitivity: Internal 

Li, D. and Wang, X., 2017. Dynamic supply chain decisions based on networked sensor data: an 
application in the chilled food retail chain. International Journal of Production Research, 
55(17), pp.5127-5141. 

Li, L., Chi, T., Hao, T. and Yu, T., 2018. Customer demand analysis of the electronic commerce 
supply chain using Big Data. Annals of Operations Research, 268(1-2), pp.113-128. 

Li, X., Sun, G. and Li, Y., 2016. A multi-period ordering and clearance pricing model considering 
the competition between new and out-of-season products. Annals of Operations 
Research, 242(2), pp.207-221. 

Liakos, K., Busato, P., Moshou, D., Pearson, S. and Bochtis, D., 2018. Machine learning in 
agriculture: A review. Sensors, 18(8), p.2674. 

Lilavanichakul, A., Chaveesuk, R. and Kessuvan, A., 2018. Classifying Consumer Purchasing 
Decision for Imported Ready-to-Eat Foods in China Using Comparative Models. Journal 
of Asia-Pacific Business, 19(4), pp.286-298. 

Lin, C.W.R. and Chen, H.Y.S., 2003. Dynamic allocation of uncertain supply for the perishable 
commodity supply chain. International Journal of Production Research, 41(13), pp.3119-
3138. 

Liu, D., Li, G., Fu, Q., Li, M., Liu, C., Faiz, M.A., Khan, M.I., Li, T. and Cui, S., 2018. Application 
of Particle Swarm Optimization and Extreme Learning Machine Forecasting Models for 
Regional Groundwater Depth Using Nonlinear Prediction Models as Preprocessor. Journal 
of Hydrologic Engineering, 23(12), p.04018052. 

Liu, Y., Groll, E.A., Yazawa, K. and Kurtulus, O., 2016. Theoretical analysis of energy-saving 
performance and economics of CO2 and NH3 heat pumps with simultaneous cooling and 
heating applications in food processing. International Journal of Refrigeration, 65, pp.129-
141. 

Lorena, A.C., Jacintho, L.F., Siqueira, M.F., De Giovanni, R., Lohmann, L.G., De Carvalho, A.C. 
and Yamamoto, M., 2011. Comparing machine learning classifiers in potential distribution 
modelling. Expert Systems with Applications, 38(5), pp.5268-5275. 

Luangkesorn, K.L., Klein, G. and Bidanda, B., 2016. Analysis of production systems with potential 
for severe disruptions. International Journal of Production Economics, 171, pp.478-486. 

Luthra, S., Mangla, S.K., Chan, F.T. and Venkatesh, V.G., 2018. Evaluating the drivers to 
information and communication technology for effective sustainability initiatives in supply 
chains. International Journal of Information Technology & Decision Making, 17(01), 
pp.311-338. 

Luxhøj, J.T., Joyce, W. and Luxhøj, C., 2017. A ConOps derived UAS safety risk model. Journal 
of Risk Research, pp.1-23. 

Ma, X., Wang, S. and Bai, Q., 2019. Coordination of production scheduling and vehicle routing 
problems for perishable food products. International Journal of Internet Manufacturing and 
Services, 6(1), pp.79-96. 

Madani, S.R., Nookabadi, A.S. and Hejazi, S.R., 2018. A bi-objective, reliable single allocation p-
hub maximal covering location problem: Mathematical formulation and solution 
approach. Journal of Air Transport Management, 68, pp.118-136. 

Maga, J.A., 2018. Smoke in Food Processing: 0. CRC Press. 
Mahajan, S., Das, A., Sardana, H.K., 2015. Image acquisition techniques for assessment of legume 

quality. Trends Food Sci. Technol. 42 (2), 116–133. 
Maione, C., Batista, B.L., Campiglia, A.D., Barbosa Jr, F. and Barbosa, R.M., 2016. Classification 

of geographic origin of rice by data mining and inductively coupled plasma mass 
spectrometry. Computers and Electronics in Agriculture, 121, pp.101-107. 

Maiti, T., Miller, C.P. and Mukhopadhyay, P.K., 2008. Neural network imputation: An experience 
with the national resources inventory survey. Journal of agricultural, biological, and 
environmental statistics, 13(3), p.255. 

Maleki, M. and Cruz-Machado, V., 2015. Integration of practices and customer values in a supply 
chain. International Journal of Management Science and Engineering Management, 10(1), 
pp.9-19. 

Manning, L., 2016. Food fraud: Policy and food chain. Current Opinion in Food Science, 10, 
pp.16-21. 



36 
 

Sensitivity: Internal 

Matopoulos, A., Vlachopoulou, M., Manthou, V. and Manos, B., 2007. A conceptual framework 
for supply chain collaboration: empirical evidence from the agri-food industry. Supply 
Chain Management: an international journal, 12(3), pp.177-186. 

Matson, J. and Thayer, J., 2016. The role of food hubs in food supply chains. Journal of Agriculture, 
Food Systems, and Community Development, 3(4), pp.43-47. 

Mehdizadeh, E., Niaki, S.T.A. and Hemati, M., 2018. A bi-objective aggregate production planning 
problem with learning effect and machine deterioration: Modeling and solution. Computers 
& Operations Research, 91, pp.21-36. 

Mehra, M., Saxena, S., Sankaranarayanan, S., Tom, R.J. and Veeramanikandan, M., 2018. IoT 
based hydroponics system using Deep Neural Networks. Computers and Electronics in 
Agriculture, 155, pp.473-486. 

Migliore, G., Schifani, G. and Cembalo, L., 2015. Opening the black box of food quality in the 
short supply chain: Effects of conventions of quality on consumer choice. Food Quality and 
Preference, 39, pp.141-146. 

Min, H., 2010. Artificial intelligence in supply chain management: theory and 
applications. International Journal of Logistics: Research and Applications, 13(1), pp.13-
39. 

Mohanty, S.P., Hughes, D.P. and Salathé, M., 2016. Using deep learning for image-based plant 
disease detection. Frontiers in plant science, 7, p.1419. 

Mohri, M., Rostamizadeh, A. and Talwalkar, A., 2018. Foundations of machine learning. MIT 
press. 

Mol, A.P., 2015. Transparency and value chain sustainability. Journal of Cleaner Production, 107, 
pp.154-161. 

Morellos, A., Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R., Tziotzios, G., Wiebensohn, 
J., Bill, R. and Mouazen, A.M., 2016. Machine learning based prediction of soil total 
nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems 
Engineering, 152, pp.104-116. 

Morota, G., Ventura, R.V., Silva, F.F., Koyama, M. and Fernando, S.C., 2018. Machine learning 
and data mining advance predictive big data analysis in precision animal agriculture. 
Journal of Animal Science. 

Mouatadid, S., Raj, N., Deo, R.C. and Adamowski, J.F., 2018. Input selection and data-driven 
model performance optimization for predicting Standardized Precipitation and Evaporation 
Index in a drought-prone region. Atmospheric Research. 

Mousavi-Avval, S.H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G. and 
Renzulli, P.A., 2017. Application of multi-objective genetic algorithms for optimization of 
energy, economics and environmental life cycle assessment in oilseed production. Journal 
of Cleaner Production, 140, pp.804-815. 

Mucherino, A., Papajorgji, P. and Pardalos, P.M., 2009. A survey of data mining techniques applied 
to agriculture. Operational Research, 9(2), pp.121-140. 

Mullainathan, S. and Spiess, J., 2017. Machine learning: an applied econometric approach. Journal 
of Economic Perspectives, 31(2), pp.87-106. 

Murthy, D.S., Gajanana, T.M., Sudha, M. and Dakshinamoorthy, V., 2007. Marketing losses and 
their impact on marketing margins: A case study of banana in Karnataka. Agricultural 
Economics Research Review, 20(347-2016-16623), pp.47-60. 

Nabavi-Pelesaraei, A., Hosseinzadeh-Bandbafha, H., Qasemi-Kordkheili, P., Kouchaki-Penchah, 
H. and Riahi-Dorcheh, F., 2016. Applying optimization techniques to improve of energy 
efficiency and GHG (greenhouse gas) emissions of wheat production. Energy, 103, pp.672-
678. 

Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S.S., Hosseinzadeh-Bandbafha, H. and Chau, K.W., 
2017. Energy consumption enhancement and environmental life cycle assessment in paddy 
production using optimization techniques. Journal of cleaner production, 162, pp.571-586. 

Nahvi, B., Habibi, J., Mohammadi, K., Shamshirband, S. and Al Razgan, O.S., 2016. Using self-
adaptive evolutionary algorithm to improve the performance of an extreme learning 
machine for estimating soil temperature. Computers and Electronics in Agriculture, 124, 
pp.150-160. 



37 
 

Sensitivity: Internal 

Naik, G. and Suresh, D.N., 2018. Challenges of creating sustainable agri-retail supply chains. IIMB 
management review, 30(3), pp.270-282. 

Nakandala, D., Lau, H. and Zhang, J., 2016. Cost-optimization modelling for fresh food quality 
and transportation. Industrial Management & Data Systems, 116(3), pp.564-583. 

Nasrabadi, N.M., 2007. Pattern recognition and machine learning. Journal of electronic imaging, 
16(4), p.049901. 

Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F. and Torres-
Sánchez, R., 2016. A decision support system for managing irrigation in 
agriculture. Computers and Electronics in Agriculture, 124, pp.121-131. 

Ngai, E.W.T., Peng, S., Alexander, P. and Moon, K.K., 2014. Decision support and intelligent 
systems in the textile and apparel supply chain: An academic review of research 
articles. Expert Systems with Applications, 41(1), pp.81-91. 

Nielsen, T.D. and Jensen, F.V., 2009. Bayesian networks and decision graphs. Springer Science & 
Business Media. 

Nychas, G.J.E., Panagou, E.Z. and Mohareb, F., 2016. Novel approaches for food safety 
management and communication. Current Opinion in Food Science, 12, pp.13-20. 

OECD. 2017. Going digital: Making the transformation work for growth and well-being, Meeting 
of the OECD Council at Ministerial Level Paris, 7-8 June 2017. 

OECD. 2019, Technology and digital in agriculture. Available at: 
http://www.oecd.org/agriculture/topics/technology-and-digital-agriculture/ 

Osman, J., Inglada, J. and Dejoux, J.F., 2015. Assessment of a Markov logic model of crop 
rotations for early crop mapping. Computers and Electronics in Agriculture, 113, pp.234-
243. 

Pantazi, X.E., Moshou, D. and Tamouridou, A.A., 2019. Automated leaf disease detection in 
different crop species through image features analysis and One Class Classifiers. Computers 
and Electronics in Agriculture, 156, pp.96-104. 

Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L. and Mouazen, A.M., 2016. Wheat yield 
prediction using machine learning and advanced sensing techniques. Computers and 
Electronics in Agriculture, 121, pp.57-65. 

Pantazi, X.E., Moshou, D., Oberti, R., West, J., Mouazen, A.M. and Bochtis, D., 2017. Detection 
of biotic and abiotic stresses in crops by using hierarchical self organizing 
classifiers. Precision Agriculture, 18(3), pp.383-393. 

Pardey, P.G., Beddow, J.M., Hurley, T.M., Beatty, T.K. and Eidman, V.R., 2014. A bounds 
analysis of world food futures: Global agriculture through to 2050. Australian Journal of 
Agricultural and Resource Economics, 58(4), pp.571-589. 

Park, S., Im, J., Jang, E. and Rhee, J., 2016. Drought assessment and monitoring through blending 
of multi-sensor indices using machine learning approaches for different climate 
regions. Agricultural and forest meteorology, 216, pp.157-169. 

Patidar, R., Agrawal, S., & Pratap, S. (2018). Development of novel strategies for designing 
sustainable Indian agri-fresh food supply chain. Sādhanā, 43(10), 167. 

Patrício, D.I. and Rieder, R., 2018. Computer vision and artificial intelligence in precision 
agriculture for grain crops: a systematic review. Computers and Electronics in 
Agriculture, 153, pp.69-81. 

Pellegrini, N. and Fogliano, V., 2017. Cooking, industrial processing and caloric density of 
foods. Current Opinion in Food Science, 14, pp.98-102. 

Pelletier, N. and Tyedmers, P., 2010. Forecasting potential global environmental costs of livestock 
production 2000–2050. Proceedings of the National Academy of Sciences, 107(43), 
pp.18371-18374. 

Piramuthu, S. and Zhou, W., 2013. RFID and perishable inventory management with shelf-space 
and freshness dependent demand. International Journal of Production Economics, 144(2), 
pp.635-640. 

Porter, M.E. and Heppelmann, J.E., 2015. How smart, connected products are transforming 
companies. Harvard Business Review, 93(10), pp.96-114. 

http://www.oecd.org/agriculture/topics/technology-and-digital-agriculture/


38 
 

Sensitivity: Internal 

Pourmoayed, R., Nielsen, L.R. and Kristensen, A.R., 2016. A hierarchical Markov decision process 
modeling feeding and marketing decisions of growing pigs. European Journal of 
Operational Research, 250(3), pp.925-938. 

Prasad, R., Deo, R.C., Li, Y. and Maraseni, T., 2018. Soil moisture forecasting by a hybrid machine 
learning technique: ELM integrated with ensemble empirical mode decomposition. 
Geoderma, 330, pp.136-161. 

Puchalsky, W., Ribeiro, G.T., da Veiga, C.P., Freire, R.Z. and dos Santos Coelho, L., 2018. 
Agribusiness time series forecasting using Wavelet neural networks and metaheuristic 
optimization: an analysis of the soybean sack price and perishable products 
demand. International Journal of Production Economics. 

Qiang, L. and Jiuping, X., 2008. A study on vehicle routing problem in the delivery of fresh 
agricultural products under random fuzzy environment. International Journal of 
Information and Management Sciences, 19(4), pp.673-690. 

Rabbani, M., Farshbaf-Geranmayeh, A. and Haghjoo, N., 2016. Vehicle routing problem with 
considering multi-middle depots for perishable food delivery. Uncertain Supply Chain 
Management, 4(3), pp.171-182. 

Rabbani, M., Foroozesh, N., Mousavi, S. M., & Farrokhi-Asl, H. (2019). Sustainable supplier 
selection by a new decision model based on interval-valued fuzzy sets and possibilistic 
statistical reference point systems under uncertainty. International Journal of Systems 
Science: Operations & Logistics, 6(2), 162-178. 

Rabbani, M., Hosseini-Mokhallesun, S. A. A., Ordibazar, A. H., & Farrokhi-Asl, H. (2018). A 
hybrid robust possibilistic approach for a sustainable supply chain location-allocation 
network design. International Journal of Systems Science: Operations & Logistics, 1-16. 

Raju, K.S., Kumar, D.N. and Duckstein, L., 2006. Artificial neural networks and multicriterion 
analysis for sustainable irrigation planning. Computers & Operations Research, 33(4), 
pp.1138-1153. 

Ramanathan, U., Bentley, Y. and Pang, G., 2014. The role of collaboration in the UK green supply 
chains: an exploratory study of the perspectives of suppliers, logistics and retailers. Journal 
of Cleaner Production, 70, pp.231-241. 

Regier, M., Knoerzer, K. and Schubert, H. eds., 2016. The microwave processing of foods. 
Woodhead publishing. 

Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J. and Shin, J., 2019. Current and future 
applications of statistical machine learning algorithms for agricultural machine vision 
systems. Computers and Electronics in Agriculture, 156, pp.585-605. 

Ribeiro, F.D.S., Gong, L., Calivá, F., Swainson, M., Gudmundsson, K., Yu, M., Leontidis, G., Ye, 
X. and Kollias, S., 2018, October. An end-to-end deep neural architecture for optical 
character verification and recognition in retail food packaging. In 2018 25th IEEE 
International Conference on Image Processing (ICIP) (pp. 2376-2380). IEEE. 

Rico-Fernández, M.P., Rios-Cabrera, R., Castelán, M., Guerrero-Reyes, H.I. and Juarez-
Maldonado, A., 2019. A contextualized approach for segmentation of foliage in different 
crop species. Computers and Electronics in Agriculture, 156, pp.378-386. 

Ridier, A., Chaib, K. and Roussy, C., 2016. A Dynamic Stochastic Programming model of crop 
rotation choice to test the adoption of long rotation under price and production 
risks. European Journal of Operational Research, 252(1), pp.270-279. 

Rockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., 
DeClerck, F., Shah, M., Steduto, P. and de Fraiture, C., 2017. Sustainable intensification of 
agriculture for human prosperity and global sustainability. Ambio, 46(1), pp.4-17. 

Rodriguez, D., de Voil, P., Rufino, M.C., Odendo, M. and van Wijk, M.T., 2017. To mulch or to 
munch? Big modelling of big data. Agricultural Systems, 153, pp.32-42. 

Sadgrove, E.J., Falzon, G., Miron, D. and Lamb, D.W., 2018. Real-time object detection in 
agricultural/remote environments using the multiple-expert colour feature extreme learning 
machine (MEC-ELM). Computers in Industry, 98, pp.183-191. 

Saetta, S.A., Caldarelli, V., Tiacci, L., Lerche, N. and Geldermann, J., 2015. A logistic network to 
harmonise the development of local food system with safety and 
sustainability. International Journal of Integrated Supply Management, 9(4), pp.307-328. 



39 
 

Sensitivity: Internal 

Safavi, H.R. and Esmikhani, M., 2013. Conjunctive use of surface water and groundwater: 
application of support vector machines (SVMs) and genetic algorithms. Water resources 
management, 27(7), pp.2623-2644. 

Saggi, M.K. and Jain, S., 2018. A survey towards an integration of big data analytics to big insights 
for value-creation. Information Processing & Management, 54(5), pp.758-790. 

Saggi, M.K. and Jain, S., 2019. Reference evapotranspiration estimation and modeling of the 
Punjab Northern India using deep learning. Computers and Electronics in Agriculture, 156, 
pp.387-398. 

Salakhutdinov, R., 2015. Learning deep generative models. Annual Review of Statistics and Its 
Application, 2, pp.361-385. 

Salin, V., 1998. Information technology in agri-food supply chains. The International Food and 
Agribusiness Management Review, 1(3), pp.329-334. 

Samuel, A.L., 1959. Some studies in machine learning using the game of checkers. IBM Journal 
of research and development, 3(3), pp.210-229. 

Santos‐Fernández, E., Govindaraju, K. and Jones, G., 2017. Effects of imperfect testing on 
presence‐absence sampling plans. Quality and Reliability Engineering International, 33(6), 
pp.1197-1210. 

Sarkar, S., & Giri, B. C. (2018). Stochastic supply chain model with imperfect production and 
controllable defective rate. International Journal of Systems Science: Operations & 
Logistics, 1-14. 

Sasmal, J., 2015. Food price inflation in India: The growing economy with sluggish agriculture. 
Journal of Economics, Finance and Administrative Science, 20(38), pp.30-40. 

Sayyadi, R., & Awasthi, A. (2018). A simulation-based optimisation approach for identifying key 
determinants for sustainable transportation planning. International Journal of Systems 
Science: Operations & Logistics, 5(2), 161-174. 

Sayyadi, R., & Awasthi, A. (2018). An integrated approach based on system dynamics and ANP 
for evaluating sustainable transportation policies. International Journal of Systems Science: 
Operations & Logistics, 1-10. 

Sazvar, Z., Mirzapour Al-e-hashem, S.M.J., Govindan, K. and Bahli, B., 2016. A novel 
mathematical model for a multi-period, multi-product optimal ordering problem 
considering expiry dates in a FEFO system. Transportation Research Part E: Logistics and 
Transportation Review, 93, pp.232-261. 

Schmidhuber, J., 2015. Deep learning in neural networks: An overview. Neural networks, 61, 
pp.85-117. 

Sennaar, K. 2019. AI in Agriculture – Present Applications and Impact. Available at: 
https://emerj.com/ai-sector-overviews/ai-agriculture-present-applications-impact/ 

Serna-Saldivar, S.O. and Carrillo, E.P., 2019. Food uses of whole corn and dry-milled fractions. In 
Corn (pp. 435-467). AACC International Press. 

Sethy, P.K., Negi, B., Barpanda, N.K., Behera, S.K. and Rath, A.K., 2018. Measurement of Disease 
Severity of Rice Crop Using Machine Learning and Computational Intelligence. 
In Cognitive Science and Artificial Intelligence (pp. 1-11). Springer, Singapore. 

Shah, N. H., Chaudhari, U., & Cárdenas-Barrón, L. E. (2018). Integrating credit and replenishment 
policies for deteriorating items under quadratic demand in a three-echelon supply chain. 
International Journal of Systems Science: Operations & Logistics, 1-12. 

Shapiro, J., 1999, July. Genetic algorithms in machine learning. In Advanced Course on Artificial 
Intelligence (pp. 146-168). Springer, Berlin, Heidelberg. 

Sharma, A.K., Chaurasia, S. and Srivastava, D.K., 2018, February. Supervised Rainfall Learning 
Model Using Machine Learning Algorithms. In International Conference on Advanced 
Machine Learning Technologies and Applications (pp. 275-283). Springer, Cham. 

Sharma, R. and Parhi, S., 2017, October. A review on use of Big data in warehousing to enhance 
accessibility of food. In 2017 2nd International Conference on Communication and 
Electronics Systems (ICCES) (pp. 663-667). IEEE. 

https://emerj.com/author/kumba-sennaar/
https://emerj.com/ai-sector-overviews/ai-agriculture-present-applications-impact/


40 
 

Sensitivity: Internal 

Sharma, R., Kamble, S.S. and Gunasekaran, A., 2018. Big GIS analytics framework for agriculture 
supply chains: A literature review identifying the current trends and future 
perspectives. Computers and Electronics in Agriculture, 155, pp.103-120. 

Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M. and Ebrahimie, E., 2014. Determining the 
most important physiological and agronomic traits contributing to maize grain yield through 
machine learning algorithms: a new avenue in intelligent agriculture. PloS one, 9(5), 
p.e97288. 

Shiva, V., 2016. The violence of the green revolution: Third world agriculture, ecology, and 
politics. University Press of Kentucky. 

Shukla, M. and Jharkharia, S., 2013. Agri-fresh produce supply chain management: a state-of-the-
art literature review. International Journal of Operations & Production Management, 
33(2), pp.114-158. 

Shukla, M. and Jharkharia, S., 2013. An inventory model for continuously deteriorating agri–fresh 
produce: an artificial immune system–based solution approach. International Journal of 
Integrated Supply Management, 9(1-2), pp.110-135. 

Singh, A., Ganapathysubramanian, B., Singh, A.K. and Sarkar, S., 2016. Machine learning for 
high-throughput stress phenotyping in plants. Trends in plant science, 21(2), pp.110-124. 

Singh, A., Shukla, N. and Mishra, N., 2018. Social media data analytics to improve supply chain 
management in food industries. Transportation Research Part E: Logistics and 
Transportation Review, 114, pp.398-415. 

Singh, G., Singh, S. and Singh, J., 2004. Optimization of energy inputs for wheat crop in 
Punjab. Energy Conversion and Management, 45(3), pp.453-465. 

Sirsat, M.S., Cernadas, E., Fernández-Delgado, M. and Barro, S., 2018. Automatic prediction of 
village-wise soil fertility for several nutrients in India using a wide range of regression 
methods. Computers and Electronics in Agriculture, 154, pp.120-133. 

Sitek, P., Wikarek, J. and Nielsen, P., 2017. A constraint-driven approach to food supply chain 
management. Industrial Management & Data Systems, 117(9), pp.2115-2138. 

Song, G., Semakula, H.M. and Fullana-i-Palmer, P., 2018. Chinese household food waste and its’ 
climatic burden driven by urbanization: A Bayesian Belief Network modelling for reduction 
possibilities in the context of global efforts. Journal of Cleaner Production, 202, pp.916-
924. 

Strothkämper, A. 2016. Farm to Fork Goes Digital: How Agribusiness Digitization Can Feed the 
World. Available at: https://www.digitalistmag.com/digital-supply-
networks/2016/09/07/farm-to-fork-agribusiness-digitization-can-feed-world-04446745 

Strothmann, W., Ruckelshausen, A., Hertzberg, J., Scholz, C. and Langsenkamp, F., 2017. Plant 
classification with In-field-labeling for crop/weed discrimination using spectral features and 
3D surface features from a multi-wavelength laser line profile system. Computers and 
Electronics in Agriculture, 134, pp.79-93. 

Su, J., Liu, C., Coombes, M., Hu, X., Wang, C., Xu, X., Li, Q., Guo, L. and Chen, W.H., 2018. 
Wheat yellow rust monitoring by learning from multispectral UAV aerial 
imagery. Computers and Electronics in Agriculture, 155, pp.157-166. 

Sun, D.W., 2016. Handbook of frozen food processing and packaging. CRC Press. 
Sun, J., Zhou, W., Yan, L., Huang, D. and Lin, L.Y., 2018. Extrusion-based food printing for 

digitalized food design and nutrition control. Journal of Food Engineering, 220, pp.1-11. 
Sundmaeker, H., Verdouw, C., Wolfert, S. and Pérez Freire, L., 2016. Internet of food and farm 

2020. Digitising the Industry-Internet of Things connecting physical, digital and virtual 
worlds. Ed: Vermesan, O., & Friess, P, pp.129-151. 

Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press. 
Swaminathan, M.S. and Kesavan, P.C., 2017. The Transition from Green to Evergreen Revolution. 

Sustainable Development of Organic Agriculture: Historical Perspectives, p.69. 
Syahruddin, N. and Kalchschmidt, M. 2011. “POMS 2011 – 22nd annual conference of the 

production and operations management society”, Production and Operations Management 
Society, May 9-12, 2014, Nevada, NV. 

https://www.digitalistmag.com/author/anjastrothkaemper
https://www.digitalistmag.com/digital-supply-networks/2016/09/07/farm-to-fork-agribusiness-digitization-can-feed-world-04446745
https://www.digitalistmag.com/digital-supply-networks/2016/09/07/farm-to-fork-agribusiness-digitization-can-feed-world-04446745


41 
 

Sensitivity: Internal 

Sykuta, M.E., 2016. Big data in agriculture: property rights, privacy and competition in ag data 
services. International Food and Agribusiness Management Review, 19(1030-2016-83141), 
pp.57-74. 

Tsao, Y. C. (2015). Design of a carbon-efficient supply-chain network under trade credits. 
International Journal of Systems Science: Operations & Logistics, 2(3), 177-186. 

Tang, J., Wang, D., Zhang, Z., He, L., Xin, J. and Xu, Y., 2017. Weed identification based on K-
means feature learning combined with convolutional neural network. Computers and 
electronics in agriculture, 135, pp.63-70. 

Taormina, R. and Chau, K.W., 2015. Data-driven input variable selection for rainfall–runoff 
modeling using binary-coded particle swarm optimization and Extreme Learning 
Machines. Journal of hydrology, 529, pp.1617-1632. 

Tayyebi, A., Tayyebi, A.H., Pekin, B.K., Omrani, H. and Pijanowski, B.C., 2017. Modeling 
Historical Land Use Changes at A Regional Scale: Applying Quantity and Locational Error 
Metrics to Assess Performance of An Artificial Neural Network Based Back-Cast 
Model. Journal of Environmental Informatics, 31(2), pp.74-86. 

Terêncio, D.P.S., Fernandes, L.S., Cortes, R.M.V. and Pacheco, F.A.L., 2017. Improved 
framework model to allocate optimal rainwater harvesting sites in small watersheds for 
agro-forestry uses. Journal of hydrology, 550, pp.318-330. 

Tibola, C.S., Fernandes, J.M.C. and Guarienti, E.M., 2016. Effect of cleaning, sorting and milling 
processes in wheat mycotoxin content. Food Control, 60, pp.174-179. 

Tilman, D., Balzer, C., Hill, J. and Befort, B.L., 2011. Global food demand and the sustainable 
intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 
pp.20260-20264. 

Ting, S.L., Tse, Y.K., Ho, G.T.S., Chung, S.H. and Pang, G., 2014. Mining logistics data to assure 
the quality in a sustainable food supply chain: A case in the red wine industry. International 
Journal of Production Economics, 152, pp.200-209. 

Torres, A.F., Walker, W.R. and McKee, M., 2011. Forecasting daily potential evapotranspiration 
using machine learning and limited climatic data. Agricultural Water Management, 98(4), 
pp.553-562. 

Traore, B.B., Kamsu-Foguem, B. and Tangara, F., 2017. Data mining techniques on satellite 
images for discovery of risk areas. Expert Systems with Applications, 72, pp.443-456. 

Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E. and Avizzano, C.A., 2015, July. Towards smart 
farming and sustainable agriculture with drones. In Intelligent Environments (IE), 2015 
International Conference on (pp. 140-143). IEEE. 

Vasisht, D., Kapetanovic, Z., Won, J., Jin, X., Chandra, R., Sinha, S.N., Kapoor, A., Sudarshan, 
M. and Stratman, S., 2017, March. FarmBeats: An IoT Platform for Data-Driven 
Agriculture. In NSDI (pp. 515-529). 

Vithu, P. and Moses, J.A., 2016. Machine vision system for food grain quality evaluation: A 
review. Trends in Food Science & Technology, 56, pp.13-20. 

Vlontzos, G. and Pardalos, P.M., 2017. Data mining and optimisation issues in the food 
industry. International Journal of Sustainable Agricultural Management and 
Informatics, 3(1), pp.44-64. 

Wahyuni, I. and Mahmudy, W.F., 2017. Rainfall Prediction in Tengger, Indonesia Using Hybrid 
Tsukamoto FIS and Genetic Algorithm Method. Journal of ICT Research and 
Applications, 11(1), pp.38-54. 

Wallace, C.A., Sperber, W.H. and Mortimore, S.E., 2018. Food safety for the 21st century: 
Managing HACCP and food safety throughout the global supply chain. John Wiley & Sons. 

Wang, X.P., Wang, M., Ruan, J.H. and Li, Y., 2018. Multi-objective optimization for delivering 
perishable products with mixed time windows. Advances in Production Engineering & 
Management, 13(3), pp.321-332. 

Wathes, C.M., Kristensen, H.H., Aerts, J.M. and Berckmans, D., 2008. Is precision livestock 
farming an engineer's daydream or nightmare, an animal's friend or foe, and a farmer's 
panacea or pitfall?. Computers and electronics in agriculture, 64(1), pp.2-10. 

Wolfert, S., Ge, L., Verdouw, C. and Bogaardt, M.J., 2017. Big data in smart farming–a 
review. Agricultural Systems, 153, pp.69-80. 



42 
 

Sensitivity: Internal 

Xiong, T., Li, C. and Bao, Y., 2018. Seasonal forecasting of agricultural commodity price using a 
hybrid STL and ELM method: Evidence from the vegetable market in 
China. Neurocomputing, 275, pp.2831-2844. 

Yan, B., Wu, J. and Wang, F., 2018. CVaR-based risk assessment and control of the agricultural 
supply chain. Management Decision. 

Yang, Z. and Sudharshan, D., 2019. Examining multi-category cross purchases models with 
increasing dataset scale–An artificial neural network approach. Expert Systems with 
Applications, 120, pp.310-318. 

Yaseen, Z.M., Jaafar, O., Deo, R.C., Kisi, O., Adamowski, J., Quilty, J. and El-Shafie, A., 2016. 
Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region 
in Iraq. Journal of Hydrology, 542, pp.603-614. 

Yazdanbakhsh, O., Zhou, Y. and Dick, S., 2017. An intelligent system for livestock disease 
surveillance. Information Sciences, 378, pp.26-47.  

Yin, S., Nishi, T., & Zhang, G. (2016). A game theoretic model for coordination of single 
manufacturer and multiple suppliers with quality variations under uncertain demands. 
International Journal of Systems Science: Operations & Logistics, 3(2), 79-91. 

Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A., 2015. Potential applications of 
computer vision in quality inspection of rice: a review. Food Eng. Rev. 7 (3), 321–345.  

Zhang, C., Li, M. and Guo, P., 2017. An interval multistage joint-probabilistic chance-constrained 
programming model with left-hand-side randomness for crop area planning under 
uncertainty. Journal of Cleaner Production, 167, pp.1276-1289. 

Zhang, C., Liu, J., Shang, J. and Cai, H., 2018. Capability of crop water content for revealing 
variability of winter wheat grain yield and soil moisture under limited irrigation. Science of 
The Total Environment, 631, pp.677-687. 

Zhang, J., Song, F. and Tang, J., 2014. Identification of crop weed based on image texture 
features. Moment, 67(66.6184), pp.64-1488. 

Zhang, M., Li, C. and Yang, F., 2017. Classification of foreign matter embedded inside cotton lint 
using short wave infrared (SWIR) hyperspectral transmittance imaging. Computers and 
Electronics in Agriculture, 139, pp.75-90. 

Zhao, Y., Zhang, D., Tang, Y., Wang, J. and Zheng, L., 2009. An optimal model of a agriculture 
circular system for paddy & edible fungus & dry land. International Journal of 
Management Science and Engineering Management, 4(4), pp.302-310. 

Zheng, B., Myint, S.W., Thenkabail, P.S. and Aggarwal, R.M., 2015. A support vector machine to 
identify irrigated crop types using time-series Landsat NDVI data. International Journal of 
Applied Earth Observation and Geoinformation, 34, pp.103-112. 

Zhong, D.R.Y., Tan, P.K. and Bhaskaran, P.G., 2017. Data-driven food supply chain management 
and systems. Industrial Management & Data Systems, 117(9), pp.1779-1781. 

Zhu, X. and Goldberg, A.B., 2009. Introduction to semi-supervised learning. Synthesis lectures on 
artificial intelligence and machine learning, 3(1), pp.1-130. 


	1 Introduction
	2 Concepts used in the study
	2.1 Agriculture supply chain
	2.2 Challenges for ASC
	2.3 Data-driven agriculture supply chains
	2.4 Machine Learning Algorithms

	3 Review Methodology
	3.1 Planning the review
	3.2 Conducting the review
	3.3 Descriptive statistics

	4 Review findings and discussions
	4.1 Cluster I: Pre-production phase
	4.1.1 Crop yield prediction
	4.1.2 Predicting soil properties
	4.1.3 Irrigation management

	4.2 Production phase
	4.2.1 Weather prediction
	4.2.2 Crop protection
	4.2.3 Weed detection
	4.2.4 Livestock Management
	4.2.5 Crop quality management
	4.2.6 Site-specific nutrient management
	4.2.7 Harvesting

	4.3 Processing phase
	4.3.1 Demand prediction
	4.3.2 Production planning

	4.4 Distribution phase
	4.4.1 Transportation
	4.4.2 Consumer Analytics
	4.4.3 Inventory management


	5 Proposed framework and implications
	5.1 ML-ASC Performance Framework
	5.1.1 ASC phase
	5.1.2 Machine learning algorithms
	5.1.3 Sustainable ASC performance

	5.2 Implications of the study
	5.2.1 Implications for Practitioners
	5.2.2 Implications for Researchers
	5.2.3 Implications for policymakers


	6 Summary

