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 Abstract—In Wireless Body Sensor Networks (WBSNs), 
ensuring secure and efficient key distribution is critical, 
particularly given the limited computational and energy 
resources of the sensors. Existing methods often struggle 
to balance security with these resource constraints, 
especially in environments involving physiological data 
such as acceleration (ACC) and electrocardiogram (ECG) 
signals. For the first time, this study proposes a novel 
hybrid approach that integrate fuzzy commitment with 
ACC signal noise and ECG features for efficient key 
generation and distribution in WBSNs. By employing a 
low-pass filter to process ACC signal noise, we generated 
highly random binary sequences, leveraging the inherent 
randomness of the signal for secure key generation. 
Concurrently, an optimized coding scheme was built for 
ECG feature construction to ensure secure key 
distribution between devices. Extensive experiments, 
including entropy analysis and National Institute of Standards and Technology (NIST) statistical tests, confirm the 
robustness and security of our method. The proposed scheme achieves a false acceptance rate (FAR) of 5.23%, 
demonstrating superior performance across multiple databases in comparison to benchmark approaches. This novel 
dual-key generation strategy that combines the unpredictability of ACC noise with the individual-specific traits of ECG 
signals, can significantly enhance the security, applicability, and versatility of WBSNs. 

Index Terms—Acceleration, Cardiovascular, Electrocardiogram, Key distribution, Wireless body sensor networks. 

 

 

I. Introduction 

N recent years, Wireless Body Sensor Networks (WBSNs) 

have shown a wide range of application prospects, thanks to 

the development of modern communication technology and the 

Internet of Things. These networks include wearable, 

implantable, and mobile sensor devices, as well as the remote 

healthcare systems they enable, which serve to improve 

people's health and lifestyles[1, 2]. WBSNs continuously 

monitor physiological indicators such as heart rate, body 

temperature, blood pressure, heart sound, electrocardiogram 

(ECG) signal, photoplethysmography (PPG) signal, and motion 
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through sensors, and the hub node can visualize or remotely 

transmit this data. These physiological data are widely in use in 

fields such as telemedicine [3-6], remote psychological support 

[7, 8], sports rehabilitation [9-12], fitness training [13, 14], and 

other fields[15]. As the transmitted data is the user's 

physiological information, it is sensitive and private. Ensuring 

safe and efficient transmission of such information is of utmost 

importance. Because of this characteristic, sensors in WBSNs 

are often resource constrained, especially for implantable 

devices[16]. Traditional schemes such as public key 

cryptography and Advanced Encryption Standard (AES), 

which require a large number of operations, are not suitable for 

securing data transmission in WBSNs. This limitation 

necessitates the need for a more advanced and efficient 

approach for securing data during transmission in WBSNs.  

The secure communication of data between sensors based 

on physiological characteristics is a promising research field 

and it has attracted a lot of research attention in recent years. 

Physiological features such as fingerprints, iris patterns, face 

recognition, gait, ECG, PPG, and electroencephalograms 

(EEG) are commonly used for key generation, key distribution, 

and security authentication of WBSNs sensors [17-25]. This is 

partly these physiological characteristics are universal, unique, 

persistent, and effective. In addition, gait-based schemes 

usually use acceleration (ACC) signals from sensors to extract 

features [21, 26, 27], and these schemes often require users to 

take specific actions, such as shaking hands and walking with a 

certain posture, thus increasing the burden on users. When 

A Novel Hybrid Approach-based on Heartbeat and Accelerometer 
Signals for Enhanced Security in WBSNs 

Guixiang Yan, Guanghe Zhang, Fanghua Liu, Oluwarotimi Williams Samuel, Senior Member, IEEE, 
Majed Aborokbah, Jiquan Guo, Liqing Zhu, Sikang Wei 

I 

mailto:guanghezhang@163.com
mailto:m.aborokbah@ut.edu.sa


  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

2 

extracting gait features from ACC signals, computationally 

complex analytical methods, such as principal component 

analysis (PCA), are needed. This approach is inefficient when 

applied to sensor networks that are characterized by limited 

computing resources and energy. The inter-pulse-interval (IPI) 

is a physiological feature that can be easily extracted from 

cardiac electrical signals [23, 24, 28, 29]. Previous research 

have focused on establishing security protocols for 

telemedicine with most of the studies considering ECG-based 

security protocols in the resting state though the performances 

of such schemes in daily activities has not been 

comprehensively studied. In heartbeat-based schemes, the 

discrete wavelet transform (DWT) can easily extract IPI from 

ECG signals. When combined with fuzzy commitment, it can 

determine whether the collected signal belongs to the same 

individual or not. However, in the active state, the low entropy 

of binary sequences produced by existing security schemes 

significantly reduces reduces the overall security of the scheme. 

ACC signals in the active state are easy to obtain and exhibit 

good time-variance and randomness. To achieve an optimally 

balanced security scheme that could be adopted in WBSNs that 

are often constrained with limited computing resources, our 

proposed hybrid approach seeks to generate a set of highly 

secured keys from ACC signal noise. Besides, the key 

distribution aspect is realized by combining fuzzy commitment 

with the IPI vector block coding method, which was proposed 

in this study. Therefore, this paper proposes a novel hybrid key 

generation and distribution system for WBSNs, and the system 

is realized by combining ACC signal noise with IPI to achieve 

secure communication between sensors in the network. 

The main contributions of this paper are summarized as 

follows: 

 In this paper, we propose a novel hybrid method that is 

robust, scalable, and efficient. This method 

efficiently and securely distributes keys not only in 

the context of resting telemedicine but also in daily 

activities to secure WBSNs resources. 

 The proposed approach clearly demonstrated how 

features from ACC and ECG signals could be 

adequately extracted and fused to generate and 

distribute secured keys for securing WBSNs 

resources. 

 Extensive evaluation results of the proposed method’s 

performance indicated superior performance to the 

commonly used IPI-based ECG signal schemes for 

secure key generation and distribution in WBSNs.  

In the remaining part of the paper, Section Ⅱ contains an 

overview of the work and Section Ⅲ describes the proposed 

system’s model. In Section Ⅳ, we detail the proposed key 

generation and distribution scheme, which aims to provide 

secure and efficient information transmission for WBSNs while 

avoiding conflicts between different WBSNs. Section V 

presents the evaluation results and Section VI is the conclusion 

of the paper. 

II. RELATED WORKS 

Prior works on WBSNs security have proposed schemes 

based on establishing a shared secret key using the body’s 

physiological values, such as heart rate and temperature. Much 

prior works rely on the ECG signal, which is a voltage signal 

that is easily measured by the electronic sensor devices and 

requires relatively low processing [30, 31]. The idea of 

extracting keys from physiological values to secure wearable 

devices was first proposed in [32]. Physiological signals such 

as ECG and EEG are suitable candidates for key generation 

because they provide a continuous source of true randomness. 

In other words, these physiological values can be viewed as a 

source of entropy within the human body, constantly generating 

and broadcasting (unpredictable) random bits. Randomness of 

physiological values has been documented in a large amount of 

medical literature[33, 34]. To secure wearables using heartbeat 

based signals as a random source for key generation, Poon et al. 

proposed a scheme using ECG and PPG-based peak intervals 

called IPI [17]. By using hamming distances to match different 

sensors equipped on the same individual. False acceptance rate 

and false rejection rate are used to evaluate the security of the 

scheme. After that, Bao et al. [30] proposed the use of the m-IPI 

cascade to obtain the random number generating key, which 

improved the efficiency of key generation. Zheng et al. [35] 

employed the use of time intervals of Q，R，S，P and T 

peaks of ECG signals to generate random numbers, which 

resulted in higher randomness and efficiency of key generation. 

Xu et al. [36] proposed to carry out the significant bit analysis 

of IPI entropy and build a normal mapping model based on the 

statistical properties of IPI to generate more uniformly 

distributed random numbers to secure wearable devices. 

Seepers et al. [37] further studied the properties of bit-by-bit 

entropy in the IPI of the ECG signal, analyzed the influence of 

each bit in IPI on generating random numbers, and finally 

selected three digits in the middle part to generate random 

numbers, obtaining random numbers with high information 

entropy. Sandeep Pirbhulal et al. [23] utilized a mathematical 

method of cyclic block coding driven by IPI to generate 16-bit 

strings with good randomness. Seepers et al. [38] proposed the 

solution of using Inter-multi-Pulse-Interval (ImPI) to deal with 

m-health, using multiple IPI to increase the entropy of key 

generation, and one IPI can generate only one bit. One main 

limitation of this method is that it  takes a lot of time to generate 

secured keys. All of these heartbeat-based methods are capable 

of generating keys with reliable randomness and security 

regardless of whether they are fast or slow. However, they all 

have the similar limitation, that is, they are all suitable for key 

or random number generation in the resting state, and the 

schemes in the non-resting state are rarely investigated, 

constituting a research gap that needs to be addressed. 

Indeed, our tests have shown that using heartbeat as a 

random source above works well when the system is at rest; 

but, when the system is in active, its key randomness and 

security are significantly decreased. Furthermore, as we show 

in Section IV of this research, these heartbeat-based methods 

are unable to assist in the development of secure keys for data 

transmission in wearable devices while they are in active. 

Notable research that take into account generating keys in 

active states are reviewed as follows. The Martini Synch was 

proposed by Kirovski et al. [39] and it was the first study to 

generate a public key based on ACC signals of common 

vibrations between two devices that need shaking together. Qi 

et al. [40] developed a secure wrist-worn smart device pairing 
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scheme by using device active signals generated by handshakes 

to negotiate reliable keys between users. This task involves the 

additional step of shaking hands to confirm a match. Cornelius 

et al. [41] integrated sensors on different parts of the body, 

picking up signatures of activity to determine whether the 

device is on the same body. The method using supervised 

learning here requires a lot of computation and pre-training, 

and is not suitable for most resource-constrained sensor 

networks. Xu et al. [42] proposed a key generation protocol for 

portable mobile devices based on Gait. This requires the use of 

blind source separationto extract the gait information from 

noisy ACC signals, which consumes computing resources and 

energy. Sun et al. [21] propose a lightweight method to extract 

common features based on gait and implement group key 

generation in combination with fuzzy vault. However, it is also 

necessary to use the PCA method which requires a lot of 

calculation when extracting gait features. The above method of 

generating the key in the active state has two main problems: 

one is that the user needs to carry out some specific operations, 

and the other is to increase the user's use burden. Gait feature 

extraction is relatively difficult, computation-intensive and 

energy consuming. This makes these methods unsuitable for 

resource-constrained WBSNs. In particular, rehabilitation 

scenarios may involve more resource-constrained sensor 

devices, such as implantable devices or external chest straps, 

which will require ACC energy consumption, thus, affecting 

user satisfaction. 

During active state, the ACC signal can be used to quickly 

generate a large number of random sequences that change with 

time. Therefore, we use the noise of the ACC signal rather than 

the more difficult to obtain gait features to generate the key for 

communication between WBSNs sensors. Although the 

performance of key generation systems based on heartbeat 

signals is poor in non-resting states, it can still reduce user load 

and enhance user experience compared to certain additional 

operations[43]. In practical applications, it is important to 

accurately determine whether the sensor is part of the same 

entity, ensuring accurate communication and preventing 

crosstalk between WBSNs. This can be achieved by integrating 

fuzzy commitment with electrical signals from the heart. We 

aimed to build a lightweight security solution that is more 

universal and efficient in terms of securing WBSNs resources. 

Therefore, we propose a novel hybrid key generation system 

based on ACC signal noise, combined with ECG signals 

vectorization block encoding and fuzzy commitment, realizing 

efficient key distribution to better secure wearable devices. 

 
Fig 1.  Representation of the proposed novel hybrid system for the generation and transmission of secure keys 

 

III. System Model 

In this section, the components and operational procedure 

of the proposed novel hybrid secure key generation scheme are 

presented. We have modeled the WBSNs system as a hub node 

and several sensor nodes throughout the body, where the hub 

node represents a smart ring or watch. The sensor node sends 

the collected data to the hub node and executes the instructions 

from the hub node. In the WBSNs, the hub node uses ACC 

calculation to generate the key and collects ECG signals to 

calculate IPI, while the sensor node uses IPI vectorized block 

coding to realize key sharing through fuzzy commitment. The 

specific workflow of the system is described in Fig 1. 
In WBSNs ACC signals and ECG signals are the most 

frequently collected data types. ACC signals, in particular, 

produce numerous sampling sequences over a specified period, 

which are instrumental for gait-based applications.  However, 

extracting gait characteristics from these ACC signals 

necessitates substantial processing, thereby intensifying the 

energy and computational constraints inherent to sensors within 

WBSNs. To mitigate this challenge, we propose an innovative 

approach that harnesses the random noise inherent in ACC 

signals. By processing this noise through a straightforward 
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routine, we generate a cryptographic key that enhances the 

security of WBSNs, leveraging the ACC signal's natural 

variability to establish a secure communication channel. 

Furthermore, we integrate an optimized coding scheme for 

ECG feature with fuzzy commitment to implement a robust key 

generation and distribution mechanism suitable for WBSNs 

during their active state. The ECG-derived key function as 

session keys, providing an additional layer of security by 

ensuring that each communication session is protected by a 

unique key. The system uses the noise feature of the ACC 

signal to encode the communication key. Like [20][29], the 

system uses the IPI extracted from the ECG signal by DWT, 

and then encodes the IPI vectorized block to generate the 

session-specific key. This dual-key approach enhances the 

security of WBSNs by combining the unpredictability of ACC 

noise with the individual-specific traits of ECG signals. The 

detailed procedures for feature extraction from ACC and ECG 

signals, as well as the coding schemes employed, are outlined 

in Section IV of this paper. This comprehensive approach not 

only addresses the security challenges of WBSNs but also 

optimizes the utilization of the sensors' limited resources. 

IV. KEY GENERATION AND DISTRIBUTION IN WBSNS 

A. Analyzing ECG signals 

Before actually generating the key, the ECG signal 

characteristics are analyzed in the active state. IPI extracted 

from ECG signals is usually considered the interval between 

R-peaks in two heartbeat intervals. As a common physiological 

feature of the human body, IPI has been used in many previous 

studies as an important random source for protecting the 

security of WBSNs. However, the above studies are mostly 

based on ECG signals collected in the resting state. As far as we 

know, there are few comprehensive studies examining ECG 

signals as a random source for protecting wireless body area 

networks in the active state. In this section, we compare the 

distribution of the most commonly used ECG signature, IPI, for 

securing wireless body area networks across different databases 

in active and resting states. 

Fig 2 displays the distribution of IPI in different activity 

states, including high-intensity cycling (s3hb), low-intensity 

cycling (s3lb), running (s3r), and walking (s3w). The ECG 

signals were collected by the chest sensor in the WRIST [44] 

database. Our analysis revealed a leftward shift in the 

distribution interval of IPI during the active state. This was due 

to an accelerated heartbeat and a shortened heartbeat period, 

resulting in a smaller IPI value, measuring the interval between 

R-peaks of heartbeat signals. We observed varying degrees of 

convergence and an upward shift in the frequency of IPI 

distribution in the active state. Specifically, in the s3r record, 

the IPI distribution around 550 accounted for 70% of the total 

IPI. It is important to note that this observation is limited to the 

given record and may not be representative of the entire 

dataset.There is a medical explanation for the phenomenon 

mentioned. The randomness of the electrical signals of the heart 

stems from heart rate variability (HRV), which is controlled by 

the sympathetic and parasympathetic nerves. HRV can be 

affected by various factors such as age, sex, emotional state, 

and exercise [45-47]. The inhibitory effect of exercise on HRV 

is a disadvantage for using IPI to generate random sequences to 

secure wireless body area networks. If the distribution of IPI is 

too concentrated, most schemes that generate random 

sequences based on IPI will produce a context-dependent 

random sequence that is easier for an attacker to predict. 

 
Fig 2 The distribution of IPI in different activity states 

To investigate the impact of activity status on IPI-based 

schemes, we selected four typical encoding schemes (Chizari 

[28]、Xu [36]、Zhang [48] and Seepers [49]) and used them to 

encode data from the MITDB [50]  and WRIST databases. We 

evaluated the degree of impact quantitatively using Shannon 

entropy (2), collision entropy (3), and minimum entropy (4). 

Shannon entropy is commonly used to quantify information 

uncertainty. In this context, we measure the confidentiality of 

the generated sequence. Collision entropy, which is the Rényi 

entropy with α equal to 2, describes the probability of no 

collision between the generated sequences as a measure of 

conditional safety. Minimum entropy is the limit of 

convergence used to describe the unpredictability of a source. 

In this case, it is used to measure unconditional confidentiality. 

The pr[X=x] in the equations represents the probability in X = 

[0, 1]. 
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The comparison of the three entropies of the four schemes 

in Fig 3 reveals that all four schemes show that the 128-bit 

random binary sequence generated by the WRIST active 

database exhibits lower information entropy, collision entropy, 

and minimum entropy. This indicates that the random binary 

sequence generated from WRIST database parameters in the 

active state provides significantly weaker security for wireless 

body area networks compared to the resting state MITDB 

database. 
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Fig 3  The manifestation of different entropies 

The entropy of active database is lower than that of resting database. 

 
Fig 4  IPI vectorization transformation 

 
Fig 5  ACC noise coding 

 

B. Generate binary sequence base on IPI 

Most schemes based on IPI analyze each IPI as an 

independent entity or separate the significant bits of a single 

IPI. However, this approach ignores the fact that IPI is 

generated as an ordered string when generating random binary 

sequences. Our model takes the order of the IPI sequence into 

account, with the goal of obtaining an unordered binary string. 

Therefore, we suggest trying the method of reshuffling 

sequences with multiple duplicate IPIs. To optimize the 

problems presented in the previous section, we utilized the 

method proposed in Fig 4 which we call vectorization 

transformation. First, every 16 vectorized IPIs are transformed 

into a 4x4 matrix named M1, then the row frequency vector of 

M1, named M2, is generated. By taking the transpose of M2 and 

performing the Hadamard product with M1, we obtained M3. 

After restoring M3 to the IPI sequence, we obtained a final IPI 

sequence with irregular changes in value, which is used for 

subsequent random number generation. This is because the 

frequency in an IPI sequence is random. 

For the IPI sequences after vectorization transformation, a 

new quantization method called block coding is used to convert 

them into binary random sequences. All IPIs are grouped into 

blocks of size 4, and the mean (μ) and variance (б) within each 

block are calculated. Each IPI is then mapped to the 

corresponding relation in the TABLE Ⅰ and encoded as a 4-bit 

binary sequence. The binary numbers generated by multiple 

IPIs are spliced together to form the final sequence required to 

combine the fuzzy commitment for key distribution. 
TABLE I 

BINARY SEQUENCE COMPARISON TABLE 

C.  Key generation base on ACC  

In contrast to gait-based schemes, processing ACC signals 

requires complex procedures. We utilize the noise present in 

the ACC signal to generate numerous time-varying random 

binary sequences. These sequences are then employed as keys 

to encrypt the information transmitted between sensors. To 

process the x, y, z triaxial acceleration, a second-order low-pass 

Butterworth filter of 3Hz was used in Fig 5, as human activity 

is typically concentrated within this frequency range. Next, a 

Domain 
Binary 

Sequence 
Domain 

Binary 

Sequence 

(-∞，
μ-1.534б) 

0000 
(μ，

μ+0.157б) 
1000 

(μ-1.534б，
μ-1.151б) 

0001 
(μ+0.157б，
μ+0.319б) 

1001 

(μ-1.151б，
μ-0.887б) 

0010 
(μ+0.319б，
μ+0.489б) 

1010 

(μ-0.887б，
μ-0.675б) 

0011 
(μ+0.489б，
μ+0.675б) 

1011 

(μ-0.675б，
μ-0.489б) 

0100 
(μ+0.675б，
μ+0.887б) 

1100 

(μ-0.489б，
μ-0.319б) 

0101 
(μ+0.887б，
μ+1.151б) 

1101 

(μ-0.319б，
μ-0.157б) 

0110 
(μ+1.151б，
μ+1.534б) 

1110 

(μ-0.157б，
μ) 

0111 
(μ+1.534б，

+∞) 
1111 
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feature point was selected every 25 sampling points, and the 

noise of the ACC signal was calculated as the difference 

between the two signal values before and after filtering. 

Through noise coding, signal value differences greater than 0 

are quantized to 1, and differences less than 0 are quantized to 

0. The resulting quantized feature points are then cascaded 

together as the key, with every 128 points included. 

D. Key distribution  

Fuzzy commitment was first proposed by Juels et al. 

[51]and then Hao et al. [52]applied it to the field of biometric 

encryption. It uses error-correcting code technology to correct 

deviations in transmitted information caused by sampling 

interference, transmission interference, or other factors. By 

selecting the appropriate error correction code(ECC), the 

transmitted key is encoded. Here we use BCH code, named 

after its inventors: Bose, Chaudhuri, and Hocquenghem. This is 

a widely used cyclic code that can correct a variety of errors. 

BCH code is usually represented as BCH (n, k, t), where n 

represents the bit of information transmission, k represents the 

effective information load, and t represents the error correction 

capability of BCH coding.  

The specific process is delineated below:Initially, the hub 

node utilizes the collected ACC signal to generate a 

communication key (KEY) via noise coding,performs error 

correction coding on the KEY to produce an ECC (Kecc),and 

then hashes the generated Kecc to create a hash value 

(hash(KEY)).A random binary sequence (BST) as session key, 

equivalent in length to Kecc, is derived following the encoding 

of the transmitter's signal by an IPI vectorized block 

encoding.The subsequent XOR operation between BST and 

Kecc generates the transmission template, as depicted in (1). 

  KEYhashKBS)F(KEY,BS eccTT ，                       (1) 

The receiver and transmitter concurrently collect the ECG 

signal, subsequently generating a random binary sequence 

(BSR) equivalent in length to Kecc post IPI vectorization block 

encoding. Post-reception of the template, an XOR operation 

involving the generated random sequence BSR and (BST⊕Kecc) 

yields (Kecc′). A minor discrepancy exists between the 

generated BSR and BST due to the distinct body locations where 

the transmitter 's and receiver's ECG signals are collected. 

These discrepancies are addressed during subsequent ECC 

decoding, with the corrected version being generated post-ECC 

decoding as (KEY′). The receiver's KEY′ undergoes identical 

hashing as the transmitter's, with the resultant hash 

(hash(KEY′)) compared against the template's hash(KEY). 

Concordance between the two hashes signifies the completion 

of key distribution. It is evident that accurate decryption of the 

KEY is feasible solely when the disparity between BSR and BST 

falls within the BCH's error correction capacity, and the 

randomness inherent in sequences BSR and BST plays a pivotal 

role in key distribution. Numerous studies have shown that 

signal sampling frequency, user physiological state, the length 

of the generated sequence, and the coding method all affect the 

properties of the generated random sequence. Subsequent 

sections of this manuscript will concentrate on elucidating the 

genesis of the random sequences within our methodology. The 

fuzzy commitment key distribution process in the approach is 

described in Fig 6. 

 
Fig 6.  Fuzzy commitment key distribution process 

V. EXPERIMENTAL AND SCHEME  ANALYSIS 

A. Experimental setup 

The system was analyzed using four publicly available 

data sets from PhysioNet [53]: WRIST PPG during Exercise. 

The databases include wrist PPG recordings during walking, 

running, and cycling, as well as chest ECG recordings that 

collect movement information using both accelerometers and 

gyroscopes. The data set consists of 19 samples from eight 

subjects in various activity states, with a sampling frequency of 

256Hz. The AGING (Autonomic Aging) [54] database 

includes resting multi-channel ECG signals sampled at 1000Hz 

from 1121 healthy volunteers, with the first 400 being used for 

analysis. The MITDB (MIT-BIH Arrhythmia Database) 

contains 48 two-channel ECG records with a sampling 

frequency of 360Hz. The NSRDB [53] (MIT-BIH Normal 

Sinus Rhythm Database) includes 18 normal human ECG 

records sampled at a frequency of 360Hz. 

The experiments were conducted on PC environments 

with an Intel Core i7-8750 H CPU, 8 GB RAM, and a NVIDIA 

Geforce GTX 1060 with Max-Q Design GPU, using the Kali 

Linux 3.0. The platform ran National Institute of Standards and 

Technology (NIST) statistical tests, while all other test and 

analysis platforms ran on Windows 10 using Python 3.9. 

B. ACC Generation Sequence Test 

The study generated a 128-bit random sequence using 

triaxial ACC noise from 19 subjects in WRIST. The sequence 

was then tested by NIST, with the experimental results showing 

that 9 items in the NIST test were passed in TABLE Ⅱ. This 

indicates that the encoding method based on ACC signal noise 

can generate a random binary sequence with good randomness. 

The sequence is suitable for use as a random source to generate 

keys to protect the security of WBSNs in the active state. ACC 

signals are particularly easy to collect in the active state and 

generate random sequences quickly, making them more 

suitable for protecting the security of WBSNs. It is important to 
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note that this statement is objective and does not contain any 

subjective evaluations. 
TABLE II 

ACC NOISE CODING NIST TEST 
The results were able to show that randomness is suitable as a key through 

9 NIST tests 

NIST test items Pass rate P value 

Approximate Entropy 1 1 

Block Frequency 0.992579 0.554335 

Cumulative Sums 0.993197 0.634938 

FFT 0.970315 0.433955 

Frequency 0.992579 0.554335 

Longest Run 0.946197 0.368787 

NonOverlappingTemplate 0.892799 0.892807 

Runs 0.90538 0.357707 

Serial 0.908782 0.48237 

C. Vectorization Transformation Analysis 

Based on the previous analysis of ECG signals and IPI, the 

distribution of IPI during the active state differs from that in the 

resting state. In the active state, the distribution is more 

concentrated and exhibits a higher repetition rate. This 

concentration and repetition adversely affect the randomness 

and security of the binary sequences generated by most 

IPI-based schemes. A more concentrated distribution increases 

the likelihood that subsequent binary sequences can be guessed 

by attackers, while a higher repetition rate reduces the number 

of significant bits in the binary sequence. To ensure that a 

binary random sequence is well-distributed and has a low 

repetition rate, we apply the vectorization transformation 

method for optimization. 
TABLE III 

REPETITION RATE AFTER TRANSFORMATION 
The results show that the repetition rate of IPI can be reduced after transformation 

Repetition rate 

Before After 

AGING 28.09% AGING 25.76% 

NSRDB 48.31% NSRDB 40.79% 

MITDB 46.53% MITDB 41.64% 

WRIST 66.61% WRIST 55.40% 

First, the repetition rate of IPIs in each database is 

counted, since most IPI-based security schemes require 

between 32 and 128 to generate a 128-bit binary sequence. 

Here, we group all IPIs in the four databases and calculate the 

repetition rate within 100 consecutive IPIs. Each 100-bit IPI is 

counted separately. If the quantity counted is greater than 1, the 

quantity counted is set to 1 to obtain a non-duplicate set. The 

size of the statistical set is subtracted from 100 to obtain the 

number of duplicate IPIs, and the number of duplicate IPIs is 

divided by 100 to obtain the repetition rate within the group. 

The IPI recurrence rate of the database is obtained. In the 

TABLE Ⅲ shows the change of the repetition rate of the four 

databases before and after vectorization transformation after 

applied the vectorization transformation we set, the repetition 

rate of IPI decreased to varying degrees across different 

databases. Notably, the repetition rate of the WRIST database 

decreased from 66.61% to 55.40%, representing a reduction of 

over 10% in IPI repetition rate. 

Chizari[28], Xu[36], Zhang[48], and Seepers[49] 

encoding schemes were used to test the Shannon entropy, 

collision entropy, and minimum entropy of the MITDB and 

WRIST databases. Fig 7, shows the performance of the three 

types of entropy after the vectorization transformation. The 

performance of the four coding methods on the WRIST 

database is better after the vectorization transformation, 

particularly in the Chizari and Xu scheme where the Min 

entropy increment is over 0.5. Additionally, there is a slight 

increase in Shannon entropy and collision entropy. The MITDB 

database positively affects the three entropy values, except for 

the Xu_mitdb group due to its unique coding scheme that uses 

normally distributed maps. Our vectorization transformation 

can improve the unpredictability of generating random 

sequences based on IPI schemes in the active state, enhance 

confidentiality and conditional security, and improve the 

security of most IPI-based security schemes in the resting state. 

 

Fig 7  Entropy test after transformation 

The results show that the entropy of generated random sequence can be 

increased after the transformation 

We conducted NIST tests on 128-bit random binary 

sequences generated by different coding schemes on MITDB 

and WRIST databases. TABLE Ⅳ calculates the pass rates and 

compares them with the pass rates before vectorization 

transformation. The data with pass rates higher than 0.05 were 

bolded. Block Frequency and the Cumulative Sums and 

Frequency test are discussed. For instance, in the Frequency 

test, Chizari's method had a pass rate of only 0.7160 in the 

WRIST database, which is significantly lower than the 0.9434 

pass rate in the MITDB database. However, after vectorization 

transformation, the pass rate in the WRIST database increased 

to 0.9870, a 27.1% increase, and higher than the 0.9659 pass 

rate in the MITDB database. Our vectorization transformation 

method can improve the NIST test pass rate of various coding 

schemes, thereby enhancing the quality of generated binary 

random sequences. Specifically, our scheme significantly 
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improves the NIST pass rate of non-resting signals in the 

WRIST database, enabling it to better adapt to different states, 

including resting and non-resting, and ultimately enhancing the 

security of WBSNs. 

D. Block Size Analysis 

Based on the previous analysis, it was found that the 

WRIST active database has a 66.61% repetition rate for IPI 

sequences. Additionally, we used Jaccard distance to measure 

the correlation between IPI sequences. Jaccard distance is the 

complement of Jaccard similarity, and the Jaccard similarity 

index is used to measure the similarity between two sets. The 

Jaccard similarity index is defined as the number of elements 

intersected by the number of elements in the union (5). The 

Jaccard distance measures the dissimilarity between two sets 

and is the complement of Jaccard similarity coefficient. It is 

defined as 1 minus the Jaccard similarity coefficient(6). In the 

WRIST database, we group IPI sequences of different active 

states with varying amplitudes and calculate their Jaccard 

distances. It is important to note that since the IPI sequence is 

sequential, the set elements used in our calculation also have 

serial numbers. For example, [1,2,3,1] should be considered in 

the calculation of intersection and union as 

[(1,1),(2,2),(3,3),(4,1)]. The intersection of [1,2,3,1] and 

[1,2,1,3] is [(1,1),(2,2)], while the union set is 

[(1,1),(2,2),(3,3),(4,1),(3,1),(4,3)]. The Jaccard distance can be 

calculated as 0.66. 

BA

BA
BAJ




),(                                                       (5) 

BA

BABA
BAJBA

J
d



 
 ),(1),(                     (6) 

TABLE IV 
NIST TEST AFTER TRANSFORMATION 

The results show that the passing rate of NIST test can be improved after the transformation.  

  Chizari[28] Seepers[49] Xu[36] Zhang[48] 

Test items  before after before after before after before after 

Approximate 
Entropy 

MITDB 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
WRIST 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Block 

Frequency 

MITDB 0.9434 0.9659 0.9895 0.9905 0.5924 0.3564 0.9873 0.9839 

WRIST 0.7160 0.9870 0.9300 0.9802 0.5159 0.6410 0.6232 0.6380 
Cumulative 

Sums 

MITDB 0.9509 0.9738 0.9896 0.9900 0.5738 0.3459 0.9880 0.9858 

WRIST 0.7407 0.9870 0.9261 0.9881 0.4899 0.6261 0.6101 0.6454 

FFT 
MITDB 0.9535 0.9539 0.9834 0.9839 0.8739 0.9312 0.9856 0.9842 
WRIST 0.9383 0.9481 0.9805 0.9960 0.8638 0.8872 0.9826 0.9911 

Frequency 
MITDB 0.9434 0.9659 0.9895 0.9905 0.5924 0.3564 0.9873 0.9839 

WRIST 0.7160 0.9870 0.9300 0.9802 0.5159 0.6410 0.6232 0.6380 

LongestRun 
MITDB 0.7459 0.7866 0.9889 0.9903 0.1120 0.0342 0.9848 0.9849 

WRIST 0.6914 0.8442 0.9689 0.9921 0.1014 0.1187 0.8029 0.8042 

NonOverlappingTemplate 
MITDB 0.9253 0.9239 0.8816 0.8816 0.9446 0.9528 0.8810 0.8813 
WRIST 0.9034 0.9112 0.8843 0.8811 0.9520 0.9405 0.9043 0.9006 

Runs 
MITDB 0.4333 0.3920 0.9891 0.9891 0.5848 0.5180 0.9879 0.9884 

WRIST 0.5062 0.2987 0.9805 0.9802 0.5797 0.6202 0.6870 0.7418 

Serial 
MITDB 0.7038 0.7737 0.9855 0.9845 0.0002 0.0000 0.9806 0.9797 

WRIST 0.8148 0.8701 0.9611 0.9861 0.0000 0.0000 0.8145 0.8561 

 
Fig 8.  Jaccard distance of different block size 

After our analysis it is appropriate to set the block size to 4. 

The Jaccard distance of various grouping methods was 

tested based on block sizes ranging from 1 to 16. This was done 

to determine the impact of different block sizes on the Jaccard 

distance and the repetition rate of sequential IPI groups. To 

ensure fairness in the experiment, only the last 50 sets of each 

grouping method were compared. 

Fig 8 displays the experimental results. The Jaccard 

distance significantly increases for block sizes 1-4, increases 

with block size for 4-6, and steadily increases for 6-16. The 

figure displays the Jaccard distance of the first several samples 

from the WRIST database. The sets compared are s1hb, s2hb, 

s2lb, s2w, and mean, which represent the high-intensity bicycle 

pedal of the first sample in WRIST, high-intensity bicycle 

pedal of the second sample, low-intensity bicycle pedal, 

walking, and the average data of all 19 samples, respectively. 

The Jaccard distance is a measure of the difference between 

sets, with a greater distance indicating a larger difference.   

When the block size of s1hb is 1, the Jaccard distance is only 

0.6955, which is equivalent to no block processing. However, 

when the block size is 3 or 4, the Jaccard distance increases to 

0.9303 and 0.9460, respectively. Furthermore, the average data 

from 19 sample populations indicated that an increase in block 

size within the range of 1-4 resulted in a significant increase in 

Jaccard distance. This suggests that grouping IPI sequences can 

increase the differentiation between blocks and subsequently 

enhance the differentiation between sequences, resulting in the 

generation of binary random sequences. 

The IPI sequence was partitioned and mapped to 4-bit 

binary numbers with a normal distribution based on the order 

within the block. The mapping relationship between the mean 
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(μ) and variance (б) element was calculated according to the IPI 

sequence within the block, as shown in TABLE Ⅰ. Our sequence 

was processed using a method similar to Xu's scheme. The 

Gray encoding was not used in this case because our 

experiments have shown that it is more appropriate to use the 

encoding in the corresponding table in our scheme. As 

illustrated in Fig.9 below, we tested Shannon entropy, collision 

entropy, and minimum entropy on four databases using both 

Xu's[36] coded comparison table and our own coded 

comparison table, generated using Xu's subsequent random 

number generation method. The results indicate that our 

scheme outperforms Xu's Method in terms of the three types of 

entropy across all four databases. Additionally, NIST tests were 

conducted and our scheme is expected to perform better in 

these tests. 

After determining the encoding table and studying the 

impact of varying block sizes on the Jaccard distance of IPI 

sequences, we analyzed the effect of block size on the 

difference of IPI sequences. This section will examine the 

impact of different block sizes on the generation of binary 

sequences using our scheme. The study measured the Shannon 

entropy, collision entropy, and minimum entropy of 128-bit 

binary sequences with IPI block sizes of 1, 4, 8, and 16 on four 

databases. The results in Fig 10 indicate that samples with a 

block size of 1 consistently performed the worst in all four 

databases for all three entropies, which aligns with the Jaccard 

distance test results of the IPI sequence described above. In the 

four test groups (1, 4, 8, and 16), the databases exhibit an initial 

increase followed by a decrease, indicating that excessively 

large block sizes can impact the entropy of generating random 

binary sequences. Therefore, we selected the test group with an 

IPI block size of 4. The Shannon entropy, collision entropy, and 

minimum entropy measured in all test databases were the 

highest. In the AGING database, our scheme calculated three 

entropy values above 0.9, with Shannon entropy and collision 

entropy being close to 1. This outperforms all other schemes we 

previously measured. For our scenario, we set the IPI block size 

to 4 to achieve optimal confidentiality, conditional security, 

and unpredictability of random binary sequences. In the 

entropy test, it was found that our coding scheme can produce a 

binary sequence representing the active state of the WRIST 

database with a higher entropy value than other coding schemes. 

This feature makes our scheme suitable for a wider range of 

application scenarios and enhances the security of WBSNs. 

We investigated the impact of various packet sizes on the 

binary sequence produced by our scheme to pass the NIST 

random number test. We evaluated the NIST test pass rates for 

128-bit binary sequences generated with IPI block sizes of 1, 4, 

8, and 16 on four databases, respectively. TABLE Ⅴ displays 

six NIST test pass rates, and the group with the highest pass rate 

for each test in each database is highlighted in bold. All items 

passed the Approximate Entropy test. The Block Frequency, 

Cumulative Sums, and Frequency tests, as well as three other 

test items, achieved the maximum pass rates with a block size 

of 4 across all four databases. In addition, when the IPI 

sequence block size is 4, the pass rate of the FFT project 

reaches the maximum except for the MITDB database, which is 

consistent with our previous entropy test results. In the sample 

with an IPI sequence block size of 4, the pass rates of Block 

Frequency and Cumulative Sums are close to 100%. Our 

scheme performed well on the WRIST database, obtaining 

higher NIST test pass rates in Block Frequency, Cumulative 

Sums, and Frequency compared to the MITDB and NSRDB 

datasets. This demonstrates that our scheme is capable of 

producing random binary sequences of equal or superior 

quality in the active state compared to the resting state. This 

enhances the security of WBSNs. 

 
Fig 9.  Entropy test in four databases 

 
Fig 10.  Entropy test in different block size 

In the entropy test, better performance is achieved when the block size is set to 4. 

E. Binary sequences randomness analysis 

The randomness of the binary sequence generated by IPI 

vectorization block encoding is crucial for our scheme, which 

integrates fuzzy commitment with IPI vectorization block 

encoding for key distribution. The randomness of the generated 

binary sequence is directly related to the system's security, as 

our communication process depends on this session key to 

distribute the actual communication key. As discussed 

previously regarding vectorization transformation and block 

size, we set the block size to 4 and generated a 128-bit binary 

sequence after vectorizing the IPI features of the ECG signal to 

achieve optimal key performance. We processed ECG signals 

from the AGING, MITDB, NSRDB, and WRIST databases, as 

referenced in [28], [36], [48], and [49], within our scheme, and 
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conducted NIST tests on the generated random binary 

sequences. The experimental results show that our scheme 

surpasses others on three metrics across all databases. In Table 
VI, we present the complete test results, highlighting in bold the 

areas where our scheme demonstrates superior performance. 

The results demonstrate that the binary sequence produced by 

our method possesses sufficient randomness. This randomness 

allows it to serve as a component of fuzzy commitment, 

enabling key distribution.  

Additionally, we tested and compared the performance of 

Shannon entropy, collision entropy, and minimum entropy of 

our scheme under the aforementioned conditions. Fig 11  
clearly shows that the performance of our scheme in four 

databases is superior to other schemes in terms of the three 

kinds of entropy, especially in the WRIST database, where the 

entropy measures of our scheme are significantly higher 

compared to those of other schemes, indicating a better 

performance. These results indicate that our IPI vectorization 

block encoding enhances the confidentiality, security, and 

unpredictability of binary sequences generated in the active 

state compared to other schemes, thereby ensuring better 

security for WBSNs. 

 
Fig 11.  Entropy test in different method 

In the entropy test, our method performs better than other methods on multiple 
databases. 

 

 
TABLE V 

NIST TEST IN DIFFERENT BLOCK SIZE 
In the NIST test, better performance is achieved when the block size is set to 4. 

Approximate 

Entropy 

Block 

Frequency 

Cumulative 

Sums 
FFT Frequency 

NonOverlapping 

Template 
block size db 

1.0000 0.4766 0.4561 0.8882 0.4766 0.9469 1 

AGING 
1.0000 0.9985 0.9989 0.8904 0.9985 0.9161 4 

1.0000 0.9158 0.9048 0.8561 0.9158 0.9289 8 
1.0000 0.8596 0.8305 0.8121 0.8596 0.9341 16 

1.0000 0.3564 0.3459 0.9312 0.3564 0.9528 1 

MITDB 
1.0000 0.9963 0.9973 0.8847 0.9963 0.9224 4 
1.0000 0.8495 0.8394 0.8714 0.8495 0.9325 8 

1.0000 0.7526 0.7325 0.8639 0.7526 0.9369 16 

1.0000 0.5114 0.4863 0.9041 0.5114 0.9431 1 

NSRDB 
1.0000 0.9954 0.9943 0.9041 0.9954 0.9178 4 

1.0000 0.8813 0.8744 0.8904 0.8813 0.9312 8 

1.0000 0.7580 0.7363 0.8721 0.7580 0.9345 16 
1.0000 0.6409 0.6261 0.8872 0.6409 0.9405 1 

WRIST 
1.0000 0.9970 0.9985 0.8932 0.9970 0.9218 4 

1.0000 0.8961 0.8843 0.8754 0.8961 0.9324 8 
1.0000 0.8220 0.8056 0.8783 0.8220 0.9360 16 

TABLE Ⅵ 

NIST TEST IN DIFFERENT CODING METHOD  

Approximate Block Cumulative FFT Frequency NonOverlapping Runs Method db 
Entropy Frequency Sums 

  
Template 

   
1.0000 0.9680 0.9748 0.9435 0.9680 0.9168 0.6531 [28] 

AGING 
1.0000 0.9709 0.9715 0.9829 0.9709 0.8823 0.9782 [49] 
1.0000 0.9856 0.9869 0.9843 0.9856 0.8819 0.9860 [48] 

1.0000 0.6137 0.5789 0.8305 0.6137 0.9421 0.7224 [36] 

1.0000 0.9985 0.9989 0.8904 0.9985 0.9161 0.7595 Our 
1.0000 0.9434 0.9509 0.9535 0.9434 0.9253 0.4333 [28] 

MITDB 

1.0000 0.9895 0.9896 0.9834 0.9895 0.8816 0.9891 [49] 

1.0000 0.9873 0.9880 0.9856 0.9873 0.8810 0.9879 [48] 
1.0000 0.5924 0.5738 0.8739 0.5924 0.9446 0.5848 [36] 

1.0000 0.9963 0.9973 0.8847 0.9963 0.9224 0.6160 Our 

1.0000 0.9524 0.9524 0.9905 0.9524 0.9037 0.6476 [28] 

NSRDB 

1.0000 0.9794 0.9779 0.9912 0.9794 0.8809 0.9735 [49] 

1.0000 0.9759 0.9748 0.9869 0.9759 0.8798 0.9781 [48] 

1.0000 0.4261 0.3783 0.9022 0.4261 0.9493 0.6174 [36] 
1.0000 0.9954 0.9943 0.9041 0.9954 0.9178 0.8575 Our 

1.0000 0.7160 0.7407 0.9383 0.7160 0.9034 0.5062 [28] 

WRIST 
1.0000 0.9300 0.9261 0.9805 0.9300 0.8843 0.9805 [49] 
1.0000 0.6232 0.6101 0.9826 0.6232 0.9042 0.6870 [48] 

1.0000 0.5159 0.4899 0.8638 0.5159 0.9520 0.5797 [36] 

1.0000 0.9970 0.9985 0.8932 0.9970 0.9218 0.7971 Our 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

11 

VI. PERFORMANCE AND SECURITY ANALYSIS 

A. Key Distribution Performance Analysis 

 (1).Key distribution performance  

Key distribution is critical in WBSNs communications. To 

achieve secure and convenient key distribution, leveraging the 

inherent communication means of the human body is 

advantageous. We modeled body sensors as ECG leads in 

various positions and used the collected ECG signals for key 

negotiation among multiple sensors. This section implemented 

a fast and secure key distribution system in WBSNs using the 

fuzzy commitment model and vectorization encoding of IPI. To 

ensure accuracy, we removed unsynchronized and unavailable 

samples from the four databases and randomly selected 322 

samples for validation analysis of the fuzzy commitment 

model. 

In addition to correctly matching all sensors to a system, it 

is also crucial for WBSNs to differentiate between systems to 

prevent interference. Fig 12 presents the normalized Hamming 

distance analysis of signals collected by different leads on the 

same subject and different subjects, based on 127 random 

sequences. The normalized Hamming distances between 

random sequences generated for different subjects follow a 

normal distribution centered around 0.5, indicating that these 

sequences are effective in distinguishing between different 

WBSNs systems. In contrast, our coding method generates 

predominantly random sequences with normalized Hamming 

distances ranging from 0 to 0.2 when comparing ECG signals 

collected from the same subjects using different leads. 

Moreover, sequences with normalized Hamming distances of 0 

(indicating identical sequences) represent more than 20% of all 

test sequences. These results suggest that these sequences are 

well-suited for use in WBSNs systems belonging to the same 

network. 

Upon a detailed analysis of the performance of our 

proposed approach, we identify two crucial parameters: the 

False Acceptance Rate (FAR) and the False Rejection Rate 

(FRR) for the key distribution scheme based on fuzzy 

commitment. FAR represents the probability of incorrectly 

identifying a non-system sensor as part of the system and thus 

distributing the correct key to it, whereas FRR represents the 

probability of incorrectly recognizing a system sensor as a 

non-system sensor and consequently refusing to distribute the 

correct key. Fig 13 illustrates the FAR and FRR achievable 

with varying error correction capabilities of BCH in our 

solution. At low error correction capability thresholds, the FAR 

approaches 0. To achieve optimal performance, we selected 

BCH (127,8,43) as the error correction code for our system, at 

an Equal Error Rate (EER) point where FAR = 0.052. 

(2). Algorithm complexity analysis  

Our complexity analysis is carried out in three stages of 

IPI vectorized block coding, namely: ECG wavelet processing 

to extract IPI, IPI vectorization transformation, and the final BS 

generation process. As analyzed in[55], the complexity of fast 

wavelet transform is 𝑂(𝑛), where 𝑛 is the size of the sampled 

data. The second step is to construct matrix 𝑀1 for IPI and 

carry out vectorization transformation. This process does not 

involve complex matrix-solving problems but requires only the 

calculation of frequency, one transpose, and one Hadamard 

product. Therefore, the algorithm complexity is 𝑂(𝑙), where 𝑙 is 

the number of IPI. The third step is to perform the final coding 

operation, which requires calculating the mean and variance. 

The algorithm complexity is also related to the number of IPI 

(𝑂(𝑙)). Since the number of IPI after feature extraction is much 

smaller than the size of the sampled data, our total algorithm 

complexity is 𝑂(𝑛). 

 

 
Fig 12.  Normalized Hamming Distances of Subjects 

 
Fig 13.  Performance of Key Distribution. 

(3). Comparison with State-of-the-Art  

TABLE Ⅶ 

COMPARISON OF OUR PROPOSED SCHEME WITH [21] [28] 
Scheme [21] [28] Our 

Biometric Gait       ECG ACC,ECG 

Main processing 

algorithm 
PCA        DWT         DWT 

Main algorithm 

complexity 
≈𝑂(𝑛3) 𝑂(𝑛) 𝑂(𝑛) 

Security 
analysisyes 

yes no yes 

Quantization 

used sample 
Multiple Single Multiple 

Key generation 

during 
activities resting activities,resting 

User-friendliness no no yes 

EER 
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This study proposes a novel hybrid method for key 

generation and distribution in WBSNs that addresses the 

limitations of current methods, which often struggle to balance 

the computational and energy constraints of sensors with 

security. We compare our proposed scheme with recent 

methods using biometric data such as gait and ECG signals in 

TABLE Ⅶ. Specifically, our scheme combines ACC signals with 

ECG signals, using wavelet transform as the main processing 

algorithm in the signal processing phase and IPI vectorized 

block encoding in the coding phase. The algorithm complexity 

of this method is about 𝑂(𝑛), just as we calculated before, 

which is significantly lower than that of other methods, such as 

PCA-based gait analysis (≈𝑂(𝑛3)) [56]. Unlike schemes that are 

limited to activity or rest states, our approach effectively 

generates keys during both activity and rest, enhancing 

user-friendliness. In addition, our scheme uses multiple 

samples for quantization during coding, which ensures the 

robustness of the key generation process. The performance 

analysis confirmed the superiority of our approach, achieving a 

5.23% FAR and demonstrating high entropy and randomness 

through extensive experiments, including entropy analysis and 

NIST statistical tests. This dual-key strategy takes advantage of 

the unpredictability of ACC noise and the individual 

characteristics of ECG signals, which not only improves the 

security and efficiency of WBSNs key distribution but also 

ensures that it is suitable for various physiological states 

without disturbing users. Therefore, our approach provides a 

more user-friendly and secure alternative to existing gait-based 

and ECG-based key generation schemes. 

B. Security Analysis 

(1). Immutability: The proposed scheme ensures immutability 

due to the use of hash-based hash(KEY) authentication 

during template transfer. Once the data is transmitted from 

the sender, any alteration to the template will result in a 

failure of authentication. This guarantees that the key 

distribution process remains secure and the integrity of the 

transmitted data is maintained. 

(2). Template Security: During the key distribution process, 

we use templates as described by Equation (1) to transmit 

all necessary information. The security of these templates 

is guaranteed by the randomness of the generated binary 

sequences (BS). An attacker would need to know all 127 

bits of the BS to extract the actual key. Our NIST tests and 

entropy analysis confirm that the generated BSes exhibits 

sufficient randomness and high entropy. Additionally, the 

chaotic nature and variability of heart rate signals further 

complicate the extraction of ECG signals used to generate 

the BS, thereby enhancing template security. 

(3). Forward and backward safety: Our scheme has strong 

forward and backward safety because the ECG signal 

itself has time-varying characteristics. Even if the signal 

of the current time can be obtained, it is not possible to 

infer the signal before or after this signal. Similarly, 

assuming the attacker can obtain the ECG signal collected 

by a previous user, they cannot infer the signal that the 

user is currently communicating with based on this prior 

signal. In our experimental analysis, collision entropy 

describes this property, ensuring that even if the current 

key is exposed, previous and future keys will not be 

compromised. Moreover, the relevant information of the 

current key cannot be obtained from the previous key. The 

high collision entropy indicates that our scheme is robust 

in maintaining both forward and backward security of the 

key. 

(4). Against Impersonation Attacks: The complexity of 

accurately simulating ACC noise and ECG signals 

provides significant resistance to such attacks.  Recent 

studies show that ACC signals can be simulated by 

capturing human movements through computer-aided 

vision.  However, the noise signal used in our scheme, 

which is based on ACC, is harder to imitate than the ACC 

signal.  ECG signals are equally difficult for impostor 

nodes to capture.  The inherent randomness and variability 

of these physiological signals make it difficult for 

attackers to forge the necessary biometric data to fool the 

system. 

(5). Against Replay Attacks: In our scheme, the ECG signal is 

collected synchronously in real time, and the BS as the 

session key is a one-time key. Each time the key is 

distributed, it must be re-collected and encoded. The 

attacker cannot replay the intercepted template through 

the corresponding hash match, ensuring it will not be 

cracked by replay attacks. The dynamic nature of key 

generation based on current physiological signals ensures 

that any captured data is useless for future authentication 

attempts. 

(6). Against Brute Force Attacks: Our scheme is robust to 

brute force attacks, as evidenced by our FAR and FRR 

analyses.  The FAR is close to 0 when the error-correcting 

capability is set between 1 and 30.  Our FAR, which 

balances security and performance, is 5.23%, indicating a 

low probability of unauthorized access through exhaustive 

guessing.  Additionally, shortening the key's validity 

period and implementing other measures can further 

improve resistance to brute force attacks.  The high 

entropy and complexity of the generated binary sequences 

further enhance the system's resistance to such attacks. 

VII. CONCLUSIONS AND FUTURE WORK 

This study presents an innovative hybrid approach for key 

generation and distribution in WBSNs, utilizing ACC signals 

noise, ECG signals, and the fuzzy commitment technique. By 

applying a low-pass filter to extract noise from the ACC signals 

of the three-axis accelerometer, we generated high-entropy 

random binary sequences. Leveraging the inherent randomness 

and unpredictability of this ACC signal noise, we designed a 

robust key generation scheme. Moreover, we developed an 

optimized feature extraction and coding scheme based on ECG 

signals to facilitate secure key distribution between different 

devices in WBSNs. By synchronously collecting ECG signals 

from multiple devices and extracting feature vectors based on 

the IPI, we integrated these common features with fuzzy 

commitment to achieve efficient and secure key distribution. 

Our analysis confirmed that the binary sequences generated 

using acceleration noise and IPI vectorization block encoding 

exhibit high entropy and robustness. Experimental results 

demonstrated that the proposed method for extracting feature 

vectors from IPI is both robust and distinguishable within and 
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between classes, achieving a FAR of 5.23%, thereby validating 

the effectiveness of our key distribution method. 

 Future research will focus on conducting online tests in 

real-world scenarios using both ACC and ECG signals in 

conjunction with the proposed key generation and distribution 

methods. Additionally, we will investigate potential attacks, 

such as ACC signal posture imitation and ECG signal synthesis 

using machine vision techniques. Further research will extend 

the application of these security methods to a broader range of 

scenarios, aiming to enhance the overall security of devices 

within WBSNs. 
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