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Abstract
Despite technological advancements, human decision errors still contribute to civil aviation accidents. This study investigated whether flight time, cognitive reflection, task-load, metacognition, and perceived stress predicted decision-making (DM) performance during two in-flight training simulations with 104 commercial pilots at Bogota International Airport.  Hierarchical regression analysis revealed that the predictors accounted for 56% of the variance. Cognitive reflection, flight time and performance task load emerged as significant positive predictors. Cognitive reflection significantly moderated the relationship between flight time and DM performance, with pilots scoring lower on cognitive reflection showing improved DM with increased flight time, while controlling for performance task load. The study did not find significant relationships between stress metacognition and DM performance. The study emphasizes the significance of advanced training methods in improving pilots' DM, especially for those with low cognitive reflection. Future research should expand to multiple airlines, address gender balance, and incorporate direct measures of metacognitive monitoring. Keywords: Cognitive reflection, workload, metacognition, stress and decision-making performance.

Practitioner Summary: This paper examines predictors of decision-making performance among commercial pilots during in-flight simulations. Findings suggest that cognitive reflection, flight time and performance task load positively influence decision-making, while task-load has a negative impact. This insight can inform aviation training programs to enhance safety and update pilots’ training in uncertain conditions.












1.Introduction 
1.1 Background and Importance of Decision Making in Aviation
In aviation, decisions that warrant examination are those that result in catastrophic events (Flight Safety Foundation [FSF], 2010).  Researchers investigating accidents often focus on the "moment of choice" when a decision is made (Strauch, 2016). However, this narrow view of decision-making processes can misrepresent the situations faced by pilots in a dynamic sequential context (Brehmer, 1992). Erdfelder and Buchner (1998) refer to this view of decision-making as hindsight bias, which is the belief that an event was more predictable than it actually was. As a result, decision-making can lead to over-simplification of cause and effect, where the correct choice appears obvious after the fact but not at the time the decision was made. The FSF (2010) linked several fatal accidents to this error.
Improved industry standards, systemic changes, and technological developments have made aviation safer in recent decades (International Civil Aviation Organisation [ICAO], 2019). These systemic changes include the introduction of standard operating procedures (SOPs) and flight crew checklists covering a variety of anticipated emergencies (ICAO, 2019). While these systems offer benefits, problems can escalate in ways that make standard checklists or solutions ineffective. Consequently, decision-making errors persist and contribute to accidents due to rule fragility (Orasanu & Martin, 1998). Rule fragility refers to the susceptibility of rule-based decision-making to failure or misapplication in certain situations (e.g., low visibility landings for pilots) (Clewley & Stupple 2015). Although rule-based cognition is crucial in these situations, there's a risk that rules may be applied incorrectly or may not fit the specific circumstances. Thus, it is essential to assist pilots in maintaining cognitive flexibility to adapt and make effective decisions when faced with unforeseen challenges. 
1.2 Naturalistic Decision Making (NDM)
Naturalistic Decision Making (NDM) provides the theoretical explanation of decision-making processes in the aeronautical industry (Klein et al., 1993). NDM identifies the ways individuals use domain-specific knowledge and prior experience to make decisions in safety-critical situations in the real world (Cannon-Bowers et al., 1996). In time-sensitive scenarios, NDM results in intuitive, automatic decision-making processes that require minimal mental effort and occur with little conscious awareness (Lipshitz, 1993). Pilots rely on experience and knowledge to rapidly process and execute decision-making strategies based on context-bound modeling, shifting from normative processes to a more naturalistic process based on past experiences (Klein et al., 2010).  Thus, the choice of action is accepted or rejected rapidly and based on pattern recognition until the satisfying course of action is deemed reasonable
The premises of NDM align with Simon’s (1987) model of satisficing, whereby experts make quick decisions in highly critical situations using Recognition Primed Decision Making (RPD) (Klein, 2010). RPD can be effective in real-life scenarios, as demonstrated by the famous Hudson River landing (Eisen & Savel, 2009). In this case, when the engine restart checklist failed, the captain successfully employed RPD by instinctively deciding to land the plane using available options (National Transportation Safety Board, 2010). However, RPD can also lead to errors if the situation is incorrectly assessed, as seen in the 1989 British Midlands B737-400 Kegworth crash, where the crew mistakenly shut down the wrong engine [AAIB], 1990).
1.3 Dual Process Theory and Workload
The RPD model aligns with Kahneman’s (2011) dual process theory, categorizing Type I processes (fast, automatic, associative and intuitive) in contrast to Type II processes (slow, analytic, rule-based and logical). This model posits that expert decision-makers pivot between intuitive and analytical processes based on prior learning (Klein, 1998; 2010). The position on this continuum is predominantly dictated by external workload conditions, with optimal workload correlating with peak performance (Young & Stanton, 2002). Excessive workload leads to maladaptive reactions, degrading crucial cognitive resources such as attention, working memory, and cognitive reflection (Eysenck et al., 2007). In such scenarios, operators may lack cognitive resources to recognize inaccuracies in situational assessments and DM (Di Nocera et al., 2007). Additionally, DM processes can succumb to biases (Stupple et al., 2013), as operators resist changing initial assessments and lack awareness of cues necessitating a change of plan (Orasanu et al., 2002). Clewley and Stupple (2015) demonstrated that increased system complexity raises the chance of rule-based failures, with situational dynamism and uncertainty contributing to rule fragility and failure. This highlights the need for nuanced workload management to optimize decision-making efficacy in complex operational contexts.
Indeed, pilots are influenced by cognitive biases and can resort to Type I, heuristic processing, forming quick deductions rather than rational responses in uncertain situations (Causse et al., 2013; Walmsley & Gilbey, 2016, 2017). Heuristic processing can reduce mental workload but can also lead to riskier decisions based on incorrect assumptions (Croskerry, 2014). For instance, VFR pilots making weather-related decisions tend to under-adjust to new information and make decisions based on the outcome instead of information quality (Walmsley & Gilbey, 2016; 2017). Furthermore, they are likely to land during bad weather conditions, and can be biased towards risk taking (Causse et al., 2013; Orasanu et al., 2002).  Thus, prioritizing Type I processing may impede reflective and safer decisions. It should be noted that we acknowledge that skilled intuitive judgment can be developed with experience, and it is likely to be acquired when the individual operates in a high-validity environment (Kahneman & Klein, 2009). Indeed, the decisions that pilots need to make to respond appropriately in a particular situation may be unique, and since the required DM is not rehearsed it is prone to heuristic processing and biases that require Type II, reflective correction (Dismukes et al., 2015).  
1.4 Reflective Processing and Metacognition
[bookmark: _Hlk156902658]Reflective processing positively correlates with decision-making (Lesage et al.,2013; Sirota & Juanchich, 2011; Toplak et al., 2014), however, there is limited research on the impact of reflective processing in NDM models. Juanchich et al. (2016) found that reflective processing, as measured via cognitive refection test (CRT) predicted positive real-world decision outcomes. Nevertheless, the real-world decision-making scenarios utilised by Juanchich et al. (2016) are very different from the dynamic scenarios faced by pilots. Therefore, research specifically into reflective processing in safety critical environments is required to clarify this relationship. This is particularly important because high cognitive reflection is associated with less risky decision-making behaviour (Frederick, 2005), avoidance of decision biases (Toplak et al., 2014) and a greater likelihood of inhibiting and overriding 'hot' processes in stressful situations with 'cool' reflective processes (Causse et al., 2013; Simonovic et al., 2017; 2018). 
An important aspect of cognitive reflection is its potential to facilitate awareness, control, and monitoring processes to help identify potential thinking errors and encourage the deployment of alternative strategies (Thompson & Johnson 2014). These metacognitive strategies aid self-regulation processes in task performance monitoring, good reasoning and decision-making performance (Ackerman & Thompson, 2017). Metacognition refers to thinking about thinking and metacognitive processes consist of task monitoring, analysis, inferences and drawing conclusions during complex cognitive tasks (Dwyer et al., 2014). There is some evidence that metacognitive training can improve pilot awareness and regulation of cognitive processes, allowing less experienced pilots to make satisfactory decisions in a timely manner (Simpson, 2001). Furthermore, strong metacognitive abilities may be pivotal in developing strong monitoring skills that enhance understanding of rules and explicit procedures, allowing for more effective and flexible decision-making and detection of rule failure (Ong et al., 2008; Orasanu, 1993). Moreover, metacognition can mitigate the effects of stress on cognition processes (Toneatto, 2000).  However, the evidence is not conclusive as a mock air defence study found no significant impact of metacognition under high-stress conditions, possibly due to its sample of university students rather than trained pilots (Adam-White et al., 2018). This raises questions about whether experience and training enhance metacognitive skills and if these can be developed through domain-specific practice (Wojcik et al., 2021; Rosa et al., 2020). 
1.5 Research Motivation and Objectives
Much research on aviation and NDM focuses on acute situational stress (Keinan, 1987; Staal, 2004) or the impact of strong negative emotions (Causse et al., 2013). Acute situational stress is believed to compromise the performance of even highly skilled pilots (Dismukes et al., 2015), and stress increases the likelihood of riskier decisions (Lehner et al., 1997). These studies highlight the detrimental effects of stress on situational assessment and DM among pilots (Strauch, 1997; Wickens, 2002). However, there is a lack of research on how everyday life-related stress and workload affect expert performance, despite evidence linking poor pilot performance to home stress, workload, and workload related performance (Garboczy et al., 2021; Fiedler et al., 2000; Skare et al., 2021; Young, 2008). Thus, a critical gap exists in understanding how more generalized stress and workload may significantly impact pilot’s DM performance and their cognitive reflection abilities. 
The current study investigated pilot’s DM performance during two highly realistic scenarios taken from a large international commercial airline's recurrent simulator training programme. Correlations between stress, workload, cognitive reflection, metacognition and DM performance during the Evidence-Based Training (EBT) and its derivative, Competency-Based Training and assessment (CBTA) were examined. EBT and CBT are intended to prepare pilots for unanticipated operational risks by developing and assessing key competencies (ICAO, 2013). This development in aviation training is pertinent as domain-specific training may not encourage flight crew to reflect upon their decision-making process, which could limit their ability to deal with irregular events (Rosa et al., 2020). Cultivating a finite number of competencies allows pilots to handle in-flight scenarios that are unanticipated by the industry and for which the crew has not been specifically trained. Therefore, the DM performance of the pilot sample is expected to be at a high standard across all competencies (ICAO, 2013).
High-quality CBTA has a positive effect on aviation safety, regardless of accumulated flight time (FTime) experience (Smith et al., 2016). This is of concern given the projected growth of the aviation industry (Sainarayan, 2018) and the prediction that pilot demand will outpace supply by up to three times (Schonland, 2016). Consequently, pilots may need to be promoted to Captain positions at a younger age and with less operational FTime than in previous decades (Keller et al., 2019). The scenarios used in this study were developed by subject matter experts to test DM performance by simulating a series of high-fidelity, safety-critical events from the operational environment.  The environment is considered naturalistic, as simulated tasks have been shown to elicit behaviours that are similar to those seen in an actual event but without the corresponding risk (Lipshitz, Klein, Orasanu, & Salas, 2001).
The study predicts a significant combined relationship between FTime cognitive reflection, stress, workload, and metacognition on pilot’s DM performance in two high-fidelity simulated inflight emergency scenarios. Based on the evidence presented above, it is predicted that metacognition and cognitive reflection will mitigate the negative effects of stress and workload, resulting in a positive overall relationship. We hypothesize a significant positive relationship between cognitive reflection ability and DM performance. Additionally, we predict significant negative relationships between task load and DM, and between perceived stress and DM, as well as a significant positive relationship between metacognition and DM. We also conducted a moderation analysis using flight time as the predictor, DM performance on different flight scenarios as the outcome, cognitive reflection as the moderator, and workload as a covariate. This approach allows us to examine how cognitive reflection influences the relationship between FTime and DM performance, while accounting for workload. Understanding these dynamics is crucial, given that high-quality CBTA positively affects aviation safety regardless of flight time experience (Smith et al., 2016), especially considering the anticipated growth in the aviation industry (Sainarayan, 2018).
2.Methods 
2.1 Participants
Pilots were recruited via the Competency Based and Evidence Based Training programme (CBTA and EBT) from a large international airline. A priori power analysis was conducted for the regression analysis, and for a small to medium effect size, a minimum of 105 participants would be required to have 80% power. There were 103 males and one female; 54 Captains, 50 First Officers. Participant’s total FTime ranged from 3,000 to 27,000 hours, with an average of 10847.58 hours (SD = 4891.62). Participation was voluntary and participants were current operational flight crew of wide-body jet aircraft with no known training or performance issues and no diagnosed psychiatric, affective, neurological disorders or brain injuries. 
2.2. Materials
2.2.1. The 10 item Perceived Stress Scale (PSS; Cohen, 1994). 
This scale was developed as a 14-item scale however the shorter 10-item version is used in the current study as it has stronger psychometric properties with higher internal consistency (Lee, 2012). Participants completed the Perceived Stress Scale (PSS) before the simulation to measure their stress levels accurately at that time. Pre-simulation measures are crucial because post-simulation measures may not accurately reflect the participants' initial stress state, as the simulation experience could alter their perceived stress levels (Moylan et al., 2022). Thus, we assured that the baseline stress is not influenced by the experimental task, providing a more valid measure of participants' stress. Responses were recorded on a 5-point Likert scale, from 0 (never) to 4 (very often) except for the four positively framed items (items 4, 5, 7, and 8). which were reversely scored. The scale showed moderate reliability in our study (Cronbach’s α = .595).
[bookmark: _Hlk99353212]2.2.2. The Nasa Task Load Index (NASA-TLX; Hart & Staveland, 1988). 
The NASA-TLX is a subjective measure of workload across 6 dimensions including: Mental demand, physical demand, temporal demand, effort, performance and frustration level which has good internal consistency (Xiao, Wang, Wang & Lan, 2005). Participants rate their subjective score on an interval scale ranging from one (low) to 21 (high). Sums of scores provide an overall workload rating (Hart & Staveland, 1988). The scale showed good reliability in our study (Cronbach’s α = .720). We also calculated individual subscales that were used because the dimensions contribute differently to overall workload and can detect subtle variations that may be missed by the composite score alone (Louis et al., 2023). Using the subscales provided more diagnostic power, allowing us to determine which specific aspects of workload are most affected by task demands. 
2.2.3. The Seven-item Cognitive Reflection Test (CRT; Toplak et al., 2014). 
The CRT comprises 7 items that measure one’s ability to resist and override intuitive responses by engaging analytic ability (e.g., “A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How much does the ball cost?”). Here, one’s intuitive response is to state that the ball costs $0.10 (totalling $1.20), when the correct answer is $0.05. Each item is rated as either correct or incorrect, with higher scores indicative of greater levels of cognitive reflection The original CRT showed high reliability (Cronbach’s α = .720) which was replicated in our study (Cronbach’s α = .742). The test was presented in the four-option multiple choice version validated by Sirota and Juanchich (2018), answer presentation was randomised for each participant. 
2.2.4. Metacognition Self-Assessment Scale (MSAS; Pedone et al., 2017). 
The MSAS measures five components of metacognition: monitoring, differentiation, integration, decentration and mastery with 18 items. These are scored on a 5-point Likert scale which yields a summed score ranging between 18 and 90. Higher scores indicate better self-evaluation of metacognitive functioning. It has a good factorial validity and internal consistency and is considered a useful, rapid screening tool of functional metacognitive ability (Pedone et al., 2017). The scale showed good reliability in our study (Cronbach’s α = .752).
2.2.5. Decision Making. 
Decision-making (DM) performance was assessed and graded by type rating examiners (TREs), who are subject matter experts with extensive airline operational and training experience. The assessment was based on observable behaviors demonstrating the relevant knowledge, skills, and attitudes required to perform job-related activities under specified conditions (ICAO, 2020). Performance was evaluated according to the demonstration of observable 'on the job' behaviors. The airline's performance framework uses a five-level grading scale, integrating elements from the EBT Implementation Guide (ICAO, 2013). Grades 3-5 indicate achievement of completion standards, while grades 1-2 signify performance below required standards. Thus, performance on both scenarios were graded together for on overall DM performance grade.  
To ensure consistency and objectivity in assessment, TREs use a detailed list of observable behaviors and descriptive word pictures for each performance level. This approach helps characterize the level of performance and resolve any uncertainties in grading DM performance. 
2.3. Procedure
The study was approved by the REMOVED FOR REVIEW ethics committee. TREs were briefed by their training manager and provided with detailed facilitator instructions via email. They invited crews attending recurrent training in March, April, and May 2021 to participate voluntarily, stressing that participation would not affect their training outcomes and that results would remain anonymous and confidential. Participants accessed the study through a Qualtrics link provided by their TRE.
The study consisted of three stages.  In Stage 1, permission to conduct the study was obtained from the Senior Vice President for Flight Operations at the participating airline. Participants completed the PSS before the simulation to measure pre-simulation stress levels. Demographic information, including age, sex, education level, total flight-time hours, and current rank, was recorded.
In Stage 2, the observational element was conducted in a CAE Inc. full-motion aircraft simulator. Two highly realistic scenarios, developed by subject matter experts, were used from the airline’s recurrent training program. These scenarios took place at Bogota International Airport, a challenging environment due to high elevation, mountainous terrain, and prevailing wind conditions (GCAA, 2021). In the first scenario, pilots experienced an aircraft technical malfunction resulting in a loss of instrumentation. In the second scenario, they managed an engine failure. Both scenarios required critical decision-making to continue the flight to Miami, divert to an alternate airfield, or return to Bogota. The TRE assessed and graded DM performance, recording grades in Qualtrics.
In Stage 3, after the simulation, participants completed the NASA TLX, CRT, and MSAS. Finally, participants were debriefed and re-consented to having their data 
2.4. Procedural Adjustments
Prior to the main study, a pilot test involving a small group of participants was conducted to refine the procedure and materials. Feedback from this testing led to minor adjustments in the instructions and the simulation scenarios to enhance clarity and realism. Flight Ops managed the pilot and trainer pairings based on operational factors like scheduling and training needs, making the pairings random. The disparity between male and female crew arose from the low number of female pilots, with the participating female being the only one scheduled for training during the experiment. This random pairing ensured that the DM process was not influenced by prior familiarity or specific pair dynamics. Each pair was composed of a Captain and a First Officer, reflecting real operational settings.
To control for potential confounding variables, all participants received the same instructions regarding the simulation and the completion of questionnaires. The simulation scenarios were standardized for all participants to ensure consistency. Furthermore, the TREs were aware about the purpose of the study but were blinded to the study's specific hypotheses to prevent bias in their assessments Lastly, randomization was used in the presentation of CRT questions and in pairing pilots to mitigate order effects and pairing biases.
2.5. Analytic strategy and scoring
[bookmark: _Hlk169870244]Prior to analysis, data were subjected to graphical and statistical screening. To address the non-normal distribution observed in DM and CRT variables, a logarithmic transformation was applied to the data and used in all analyses. All variables’ scores are computed according to the original Authors instructions. We used the total PSS, CRT and MSAS scores. For the NASA-TLX scale we used 6 subscales (Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD), Effort (E), Performance (P) and Frustration (F)) separately as the granular information can be valuable for identifying particular sources of workload in complex tasks such as DM task in this study Hertzum, 2021). Initial analysis examined inter-correlations between all variables. Next, a hierarchical regression was conducted only with significant correlations observed. Thus, FTime, Temporal Demand, Performance, Frustration, and CRT as predictors of DM performance as an outcome. Lastly, a bootstrapped moderation analysis was conducted to examine whether the relationship between FTime and DM was moderated by cognitive reflection, while controlling for potential covariates of workload. We used the Process macro for SPSS (Hayes, 2012), with 5,000 bootstrapping re-samples and bias-corrected 95% Confidence Intervals (CIs) to test the moderation effect.. IBM SPSS Statistics 27 software package for Mac was used to analyse data. 
3. Results
3.1. Intercorrelations between all dependent measures
Table 1 presents inter-correlations between all dependent measures. A negative correlation between DM Temporal Demand (TD) and Frustration (F) was observed. Additionally, FTime, cognitive reflection (CRT) and Performance (P) positively correlated with DM.
Table 1.
Intercorrelations between the variables (N = 104)
	Variables 
	DM
	FTime
	MD 
	PD 
	TD 
	E
	P
	F
	CRT
	MSAS
	PSS

	DM
	
	.
	
	
	
	
	
	
	
	
	

	FTime
	.25**
	
	
	
	
	
	
	
	
	
	

	MD
	-.13
	-.12
	
	
	
	
	
	
	
	
	

	PD 
	-.06
	-.09
	.54*
	
	
	
	
	
	
	
	

	TD 
	-.32*
	-.08
	.45*
	.40*
	
	
	
	
	
	
	

	E
	-.31
	-16
	.64
	.33*
	.40*
	
	
	
	
	
	

	P
	.40*
	.13
	-.16
	.04
	.40*
	-1.4
	
	
	
	
	

	F
	-.33*
	.20***
	.30*
	.31*
	.51*
	.30*
	.45*
	
	
	
	

	CRT
	.26**
	.14
	.05
	.08
	.05
	-.01
	.15
	-.03
	
	
	

	MSAS
	.01
	.01
	.17
	-.11
	-.09
	.05
	.14
	.19***
	.23***
	.
	

	PSS
	-.03
	.01
	.13
	.03
	.11
	.18
	-.01
	.12
	-.05
	.11
	


Note all *significant at p < .001; all ** significant at p = .01 and all *** significant at p < .05
3.2. Hierarchical regression 
The selection of predictors and their order of entry in the hierarchical regression analysis was based on theoretical considerations from prior research and the strength of previously observed significant correlations, following the recommendations of Field (2013). This approach ensures a logical and empirically supported sequence of variable entry, allowing for a more meaningful interpretation of the incremental contributions of each predictor to the model. FTime was entered first, as previous research indicated that FTime experience strongly influences pilot decision-making performance (Smith et al., 2016). Temporal Demand, Performance and Effort were entered next due to evidence suggesting that heavy task load correlates with decreased decision-making performance (Young & Stanton, 2002). CRT was entered in the last block, as previous research indicated that higher-order cognitive processing may enhance pilot decision-making performance (Walmsley & Gilbey, 2017).  All steps within the hierarchal regression were significant (Step1, (F(1, 102) = 6.69, p = 0.01; R2 = .06); Step 2, (F(4, 99) = 7.46, p < 0.001; R2 = .23) Step 3, (F(5, 98) = 5.50, p < 0.001; R2 = .27).  Data indicated that the five predictors combined accounted for 56% of the variability in DM performance. The Beta for CRT, FTime and Performance task load showed a positive correlation. Other predictors were not significant. The results indicated that higher cognitive reflection, longer flight time experience, and higher perceived quality and accuracy of pilot performance were associated with better decision-making (DM) performance. Other predictors were not significant (Table 2).
Table 2. 
Summary of hierarchical regression analysis with DM Performance as an outcome variable 
	DM predictors
	B
	SE B
	β
	Significance
	R2

	Step 1
	
	
	
	
	

	FTime
	0.09
	0.03
	0.25
	p= 0.01*
	0.06

	Step 2
	
	
	
	
	

	FTime
	0.06
	0.03
	0.18
	p=0.04*
	

	Temporal demand
	-0.03
	0.02
	-0.14
	p=0.18
	

	Performance load
	0.19
	0.07
	0.17
	p=0.008*
	

	Frustration
	-0.02
	0.02
	-0.09
	p=0.37
	0.23

	Step 3
	
	
	
	
	

	FTime
	0.05
	0.03
	0.15
	p=0.08
	

	Temporal demand
	-0.04
	0.02
	-0.17
	p=0.10
	

	Performance load
	0.17
	0.07
	0.24
	p=0.02*
	

	Frustration
	-0.02
	0.02
	-0.10
	p=0.35
	

	CRT
	0.05
	0.02
	0.21
	p=0.02*
	0.27


*Denotes significant p values 
3.3. Moderation analysis  
A moderation analysis was conducted to examine whether the relationship between FTime and DM was moderated by CRT (M), while controlling for performance task load. The main effect of FTime on DM was not significant, (β=.05, t(99)=1.62, p=.11). However, the conditional effect of CRT on DM was significant, (β=.05, t(99)=2.21, p=.03).The overall model was significant, (F(4,99)=10.06, p<.001), indicating that CRT was a significant moderator of the effect of FTime on DM (when controlling for performance task load)   (β = -.30, SE = .11. p = .005. R2=.29) accounting for 28.89% added variation on DM. 
Table 3.
Conditional Effects of FTime on DM at Different Levels of CRT
	CRT
	β
	SE
	t
	p
	LLCI
	ULCI

	-.27
	.13
	.04
	3.39
	.001*
	.05
	.21

	.00
	.05
	.03
	1.62
	.10
	-.01
	.11

	.27
	-.03
	.04
	-.76
	.44
	-.12
	.05


* Denotes significant p value
The Johnson-Neyman technique identified the significance region of CRT where the effect of FTime on DM becomes significant. The effect was significant for low CRT values. Further simple slopes analysis indicated that for pilots with lower CRT scores, increased FTime is associated with a significant increase in DM performance (Figure 1).

Figure 1.
CRT values as moderators of flight time
[image: A graph with lines and numbers

Description automatically generated]

This suggests that pilots who perform poorly on the CRT may benefit from additional FTime in terms of their decision-making abilities.

4. Discussion
[bookmark: _Hlk158887276]The current study aimed to investigate the relationship between flight time, cognitive reflection, workload, perceived stress, metacognition, and pilot’s DM grades during two highly realistic NDM scenarios taken directly from a large international commercial airline's recurrent EBT program. The results revealed a combined positive relationship between the predictors and the DM performance. FTime, CRT and performance task load were significant independent positive predictors of DM. Other predictors were not significant. The moderation analysis revealed that the relationship between FTime and DM is moderated by CRT when controlling for performance task load. 
4.1. Flight time and Decision Making
The results of our study offer intriguing insights into the complex nature of pilot expertise and cognitive processes. While FTime is traditionally viewed as a key predictor of DM performance, our findings suggest a more nuanced relationship. Although a significant positive relationship between FTime and DM performance supports the notion that experience improves decision-making skills (Smith et al., 2016), the moderation effect of CRT scores indicates that the impact of flight experience on DM is not uniform across all pilots. This interaction between FTime and CRT implies that higher-order cognitive processes are important for effective DM (Walmsley & Gilbey, 2017). This aligns with Mumford et al.'s (2015) concept of adaptive expertise suggesting that effective DM in complex environments like aviation requires not just experience, but also the cognitive flexibility to apply that experience appropriately. Furthermore, the significant contribution of performance task load to the model aligns with the work of Young and Stanton (2002), highlighting the impact of workload on cognitive performance in aviation settings. The combined influence of flight time, cognitive reflection, and task load on DM performance highlights the multifaceted nature of pilot expertise, emphasizing the need for a holistic approach to pilot training and assessment. These findings suggest that while accumulating flight hours is important, developing cognitive reflection skills and managing task load effectively are equally fundamental.
4.2. Cognitive Reflection and Decision Making
[bookmark: _Hlk156902689]To our knowledge, this study is the first to investigate CRT and DM in a NDM context. The results concur with studies showing a positive correlation between CRT and DM (Lesage et al., 2013; Sirota & Juanchich, 2011; Toplak et al., 2014). Our results are in line with previous research that reflective thinking can foster a thorough information search and heightened analytical cognition that helps good DM processes (Causse et al., 2013; Mosier & Fischer, 2010; Rosa et al., 2020). However, we do not suggest that pilots' judgment must always be based on analytical thinking. In certain scenarios, a combination of strategies may be necessary.  For instance, during landing, a pilot might initially scrutinize cockpit instruments analytically, configuring mode and flight parameters to capture the glide slope, and subsequently cross-reference external cues to validate the overall assessment. Conversely, in low visibility conditions, a pilot may rely on analytical processing of cockpit information, to engage in rule-based processes (Clewley & Stupple, 2015), or alternatively, opt to manually control aircraft functions during favorable visibility conditions (Walmsley & Gilbey, 2017). Our results also indicate that for pilots with low cognitive reflection, increased flight time may be beneficial for DM performance. These findings highlight the necessity of considering individual cognitive differences when evaluating the impact of flight time, suggesting that personalized training and flight schedules could optimize DM outcomes (Causse et al., 2013; Taylor et al., 2005). Note that, while the results of the study are promising they may be limited to airlines that utilise effective EBT models as gaps in knowledge could lead to poorer DM performance despite high cognitive reflection. 
4.3. Workload and Decision Making
The present study supports human factors research that demonstrates high mental workload, reduces the ability to integrate new information and increases errors (e.g., Di Nocera et al., 2007). The NASA-TLX subscales provided detailed insights into this phenomenon. For instance, temporal demand and frustration were negatively correlated, indicating that as the time pressure of a task increases, frustration levels tend to decrease, possibly due to increased focus and urgency. Conversely, performance task load showed a positive correlation with DM, suggesting that higher perceived quality and accuracy of performance are associated with better decision-making. This aligns with previous research indicating that heavy task load correlates with decreased DM performance (Young & Stanton, 2002). However, it's important to note that while mental workload had a significant, albeit small (Cohen, 1988), negative impact on DM, there is no clear benchmark for what constitutes high workload on the NASA-TLX scale (Hart, 2006). The simulation workload might not have been high enough to demonstrate a larger effect size. Moreover, while simulator behaviors can resemble actual in-flight events (Lipshitz et al., 2001), the absence of inherent risk in simulations could attenuate the TLX results' effect size, considering the potential emotional impact on cognitive performance (Hancock & Warm, 1989). Completing the NASA-TLX within 15 minutes of event completion has demonstrated strong validity (Hart, 2006). However, the subjective nature of the NASA-TLX and its post-simulation completion could introduce hindsight bias (Erdfelder & Buchner, 1998). The self-reported nature of the data, influenced by participants' mood during survey completion rather than the event (Paulhus & Vazire, 2007), should also be acknowledged.
4.4. Perceived Stress, Metacognition and DM
Previous research on the effects of everyday stress on NDM is limited, although pilots have reported perceived correlations between home stress and poorer flying performance (Fiedler et al., 2000). Perceived stress was not a significant unique predictor of DM in the current study, despite the mean stress score falling into the "very high" stress category (Lee, 2012). In the present study the anticipation of the simulation environment may not have been sufficiently stressful or prolonged to demonstrate significant impacts of stress. Indeed, the observed Cronbach's alpha value for perceived stress indicates only moderate reliability, highlighting potential issues with the scale's consistency such as test length and item interrelatedness. Thus, future research could investigate whether high levels of perceived global stress progressively degrade DM performance in experts and whether stress levels in simulation translate into real world stress.
Metacognition did not have a significant unique effect on DM, which was unexpected given the hypothesis that pilots trained in DM should exhibit better metacognitive monitoring (Lichtenstein et al., 1977) and, consequently, greater metacognitive control over their cognitive process of DM (Kim, 2018). However, this finding is consistent with a study by Adams-White, Wheatcroft, and Jump (2018) on DM in high-stress conditions, which also found no impact of metacognition on DM. The results may be limited by the measure of metacognition used. Although the Metacognitive Skills Assessment Scale (MSAS) has good internal reliability and appears to distinguish well between different metacognitive abilities (Pedone et al., 2017), it is important to note that metacognition was self-reported and not directly observable during the task. Due to practical reasons and to maintain the realism of the simulation this study assessed metacognition as a trait rather than directly measuring monitoring during the task.  Utilizing a more direct measure of monitoring may offer greater insight into cognitive processes (Craig et al.,2020).
4.5. Theoretical Implications
[bookmark: _Hlk156902715]The RPD acknowledge that analytic processes come into play when situations are unfamiliar or when facets of the situation do not align with expectations (Klein, 2010). Situations may necessitate analytic or constructive thought processes such as sensemaking, involving an understanding of the situation by connecting situational elements into a causal and/or temporal order. This includes placing elements into frameworks, accounting for unexpected or inconsistent elements, and engaging in planning and replanning (Klein, 2008; Klein et al., 2003). Thus, it is possible that the pilots’ DM strategies shift between Type I and Type II processes depending on what data or information is received. It is also possible that, framing the study as a training event with no actual risk beyond simulated emergencies may afford participants cognitive flexibility for more Type II processes. In scenarios with tangible risk, external pressure and internal uncertainty may compromise analytic cognitive performance, favouring intuitive processing (Hunter & Allen, 2006). However, our results contradict the idea that intuitive cognition (Type I processes) rather than logical reflective cognition (Type II processes) guides correct DM in reaction to task settings. This implies limitations in studying NDM in simulated environments. 
4.6. Practical Implications
The results of the current study align with the Airline’s existing policies indicating that high-quality CBTA positively impacts pilot’s DM performance, regardless of flight time experience (Smith et al., 2016). Cultivating CBTA in NDM environments can enhance overall performance in unexpected emergency scenarios, a premise worth further exploration given the anticipated growth of the aviation industry and the increased demand to promote First Officers to Captains with less operational flight time experience (Keller et al., 2019; Sainarayan, 2018). Additionally, for pilots with low cognitive reflection, additional flight time may help improve DM performance. Moreover, the correlation between working memory capacity and cognitive reflection (Stupple, Gale, & Richmond, 2013) suggests that pilots with higher working memory capacity may better manage mental workload during flight operations. Updating pilot training manuals to enhance cognitive skills and improve performance in challenging scenarios could be beneficial. These findings also raise concerns for airlines using traditional task-based pilot training, which may not emphasize core decision-making or soft skills, posing risks even for experienced pilots who might rely on pattern recognition over comprehensive information processing. Cognitive reflection is crucial for rule-based cognition, especially in dynamic and uncertain conditions, as it supports the application and monitoring of rules, enhancing flight safety (Clewley & Stupple, 2015). Without reflective processes, errors can occur in complex systems, highlighting the importance of incorporating reflective cognitive training into pilot education.
[bookmark: _Hlk156901307]4.7. Limitations and future research 
Several limitations need to be addressed. First, the study involved pilots from only one airline, limiting the generalizability of the findings. The claims should be made only concerning this airline's training approach. Second, we acknowledge that our sample reflects the gender imbalance in flight crew, which may affect the generalizability of the findings. However, this imbalance accurately represents the current, male population of pilots.  This limitation should be considered, and future research should include a more balanced gender representation. Third, while simulator behaviors may resemble actual in-flight events, the absence of inherent risk in simulated events could attenuate the NASA-TLX results' effect size, particularly considering the potential emotional impact on cognitive performance in DM (Hancock & Warm, 1989). Fourth, self-reported measures such as MSAS and perceived stress could generate hindsight bias and may not accurately reflect the cognitive processes during the tasks. Finally, the study assessed metacognition as a trait rather than directly measuring it during the task. Utilizing more direct measures of monitoring could provide greater insight into cognitive processes (Craig et al., 2020).
Future research should address the limitations identified. Studies should include pilots from multiple airlines to enhance generalizability and explore the impact of gender balance on DM performance. Additionally, examining the relationship between global stress and DM performance over time could provide insights into how stress levels in simulations translate to real-world stress. Direct measures of metacognitive monitoring during tasks could offer a more accurate assessment of its impact on DM.
Cognitive reflection emerges as a unique and significant predictor of DM and a moderator of the flight time DM relationship in a naturalistic setting, marking the first examination of this relationship in a simulated aviation environment. Our findings reaffirm the connection between workload and DM performance. Focusing on Type II analytical processes in training sessions could enhance robust analytical cognition and promote more coherent judgment and DM strategies. The study highlights the need for further investigation into the cognitive processes underpinning pilot decision-making and the importance of developing training methodologies that enhance cognitive skills and improve performance outcomes in challenging operational scenarios. 
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