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Abstract 5 

This study uses machine learning (ML) and large eddy simulation (LES) to predict the mass 6 
fractions of species and flame characteristics in partially premixed turbulent jet flames. A 7 
flamelet-based chemistry technique was used to perform high-fidelity LES simulations of 8 
Sandia Flame D. The resulting dataset was used to train three ML models—Neural Networks 9 
(NN), Linear Regression (LR), and Decision Tree Regression (DTR)—for surrogate prediction. 10 
Among them, the NN model achieved the highest accuracy, with R-squared (R²) values 11 
exceeding 0.9998 and Mean Absolute Error (MAE) values below 1.0×10⁻⁴ across all species. 12 
Sensitivity analysis identified temperature and progress variable as dominant input features. 13 
Uncertainty quantification confirmed high model confidence in stable regions, while elevated 14 
uncertainty was observed for the hydroxyl radical due to its short-lived, highly reactive nature 15 
in turbulent flame fronts. The NN surrogate was also used for targeted optimisation, enabling 16 
to find ten combustion states with species compositions that were consistent with experimental 17 
data within the reported range of uncertainty. Four fitness functions—Euclidean distance, 18 
Manhattan distance, Collinearity coefficient, and Amplitude correlation coefficient—were 19 
applied to guide the optimisation process. Manhattan distance consistently demonstrated the 20 
lowest absolute errors for key species such as CH₄(0.0014), OH(0.0002), and O₂(0.0072), 21 
indicating its superior accuracy and compatibility with the LES benchmark data. Additionally, 22 
the ML surrogate achieved a 17.25× reduction in total computing time compared to LES solver, 23 
promising efficient parametric exploration and rapid predictive capability. These findings 24 
demonstrate the potential of ML-based surrogates to support real-time combustion diagnostics, 25 
optimization, and design. 26 
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1. Introduction 29 

Combustion is a fundamental process with wide-ranging applications in various industrial 30 
sectors. Accurate modelling and prediction of turbulent combustion systems are essential for 31 
optimizing performance, improving efficiency, and reducing emissions [1]. Combustion 32 
processes, particularly those involving turbulent flows, are inherently complex due to the 33 
interplay of fluid dynamics, chemical reactions, and heat transfer. The accurate prediction and 34 
modelling of such processes are crucial for the design and optimization of combustion systems, 35 
which are pivotal in energy production, propulsion, and manufacturing industries. This 36 
complexity is further amplified in the context of partially premixed flames, such as those found 37 
in methane/air combustion systems, where the non-homogeneous mixture of fuel and oxidizer 38 
introduces additional variability in flame behaviour and emissions [2]. Recent advancements 39 
in computational power and numerical methods have enabled significant progress in the field 40 
of turbulent combustion modelling. However, the development of models that can accurately 41 
predict species mass fraction, flame characteristics, and emissions in turbulent jet flows with 42 
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partially premixed methane/air flames remains a challenging endeavour. This is due to the 43 
intricate coupling between the turbulence and chemical kinetics, which requires detailed 44 
representation in computational models to achieve predictive accuracy [3-6]. Flamelet 45 
combustion is characterized by partially mixed reactants, resulting in a flame structure with 46 
distinct regions. The flamelet model approach has emerged as a promising method for tackling 47 
the complexities of turbulent combustion, particularly for partially premixed flames. This 48 
approach simplifies the multidimensional nature of turbulent flames into a series of one-49 
dimensional flamelets, thereby reducing computational complexity while retaining the 50 
essential physics of combustion. Despite its advantages, the flamelet model's reliance on 51 
precomputed libraries of laminar flame solutions necessitates careful consideration of the 52 
underlying assumptions and their applicability to real-world combustion scenarios [7]. 53 

In the context of turbulent combustion modelling, large eddy simulation (LES) has emerged as 54 
a powerful tool for understanding and predicting the complex interactions between fluid 55 
dynamics, chemistry, and heat transfer in non-premixed and premixed combustion systems. 56 
LES is particularly useful in capturing the large-scale turbulent structures that dominate the 57 
behaviour of combustion systems while modelling the smaller-scale effects that are not 58 
explicitly resolved. This approach has been successfully applied to various combustion 59 
problems, including partially premixed flames, which are relevant to practical combustion 60 
devices such as gas turbines, internal combustion engines, and industrial burners [8-11].  Sun 61 
et al. [12] conducted a LES study on a 1 m methanol pool fire, uncovering buoyancy-driven 62 
flame motion and notable temporal-spatial variations in radiative heat feedback. Their 63 
investigation, employing the fire FOAM framework, delved into flame properties and thermal 64 
radiation characteristics. However, the study highlights limitations in radiation transfer models, 65 
resulting in challenges when predicting the heat feedback due to ray effects causing non-66 
uniform radiative heat flux distributions. Soteriou [13] introduced a new specified filter 67 
approach to LES for turbulent reacting flows, addressing reproducibility and predictive 68 
limitations in modelling flames. The authors identified the root causes of the problem, 69 
including grid-dependency and predictive limitations related to subgrid modelling and 70 
Kolmogorov theory. Gong et al. [14] employed LES to study premixed turbulent counter-flow 71 
flames, capturing local extinction, re-ignition, and the influence of flame stoichiometry. They 72 
utilized a transported probability density function approach to simulate sub-grid scale 73 
turbulence-chemistry interactions. However, the study acknowledges difficulties in evaluating 74 
filtered values of chemical source terms and the absence of subgrid fluxes models. Wu et al. 75 
[15] conducted LES to examine the impact of equivalence ratio fluctuations on a swirl-76 
stabilized premixed flame. Their study revealed strengthened inner shear layers and induced 77 
combustion instability at different frequencies. They also employed a new combustion model 78 
with turbulence modification and a two-step methane oxidation mechanism to simulate the 79 
interaction between turbulence and chemical reactions. Wang et al. [16] investigated the 80 
turbulent non-premixed liquid oxygen and methane flames under transcritical conditions using 81 
LES. The focus of the research was on understanding the effects of differential diffusion on the 82 
flame and flow structures. The study aimed to analyse the impact of differential diffusion on 83 
flame behaviours. The findings revealed an underestimation of flame length with unity Lewis 84 
numbers and a more significant flame expansion with unity Lewis numbers. 85 

However, LES simulations can be computationally expensive due to the need to resolve large 86 
scale motions   and model sub-grid scale effects. This complexity is further amplified when 87 
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considering the challenges of accurately modelling the interactions between turbulence, 88 
chemistry, and transport processes in partially premixed methane/air flames. To overcome these 89 
challenges, researchers have explored the integration of machine learning (ML) techniques 90 
with LES models to enhance the predictive capabilities of combustion simulations [17]. ML 91 
techniques have been integrated with LES models to improve combustion simulations by 92 
predicting subgrid-scale filtered density functions (FDFs) [18-19]. These techniques involve 93 
training artificial neural networks (ANNs) on combustion data to enhance the accuracy of 94 
predicting progress variables and chemical source terms in turbulent flames [20]. Additionally, 95 
ML models have been employed to predict the combustion metrics based on flow field data, 96 
significantly reducing computational time while maintaining good correlation with 97 
computational fluid dynamics (CFD) simulations. The key lies in coupling ML algorithms with 98 
physical and computer models to leverage prior knowledge and constraints, thereby enhancing 99 
the performance of these tools in multi-physics problems like combustion [21]. 100 

In recent years, probabilistic deep learning (DL) models have been investigated as an 101 
alternative for turbulent premixed combustion modelling in the context of LES [22]. These 102 
models can capture the stochastic nature of turbulent premixed combustion, which is essential 103 
for accurately predicting the filtered reaction rate and other combustion-related quantities. For 104 
instance, a probabilistic data-driven approach has been proposed to compute the filtered 105 
reaction rate in LES using a conditional generative adversarial network and a Gaussian mixture 106 
model. This approach has been shown to provide accurate predictions of the filtered reaction 107 
rate, even when tested on unseen timesteps and untrained LES filter widths [23]. Another 108 
promising avenue for improving the predictive capabilities of LES models is the use of 109 
manifold-based combustion models. These models employ a projection of the thermochemical 110 
state onto a low-dimensional manifold, which can be generated using data-driven methods such 111 
as principal component analysis (PCA) or principal component analysis-based autoencoders 112 
[23]. These manifold-based models are often coupled with LES, allowing for the simulation of 113 
large-scale turbulent structures while modelling the smaller-scale effects using ML. By 114 
combining PCA with ANNs in a chemistry tabulation approach, a more accurate representation 115 
of the thermochemical manifold can be achieved, leading to improved prediction accuracy, 116 
particularly for major species and thermophysical properties in complex combustion scenarios 117 
like diesel engines [24]. This integration enhances the interpretability and computational 118 
efficiency of LES models, enabling a deeper understanding of combustion process [25]. 119 

Machine learning (ML) techniques present a transformative opportunity to enhance the 120 
predictive accuracy and computational efficiency of combustion models. This study aims to 121 
integrate ML with large eddy simulation (LES) to improve the modelling of species mass 122 
fractions and flame characteristics in partially premixed turbulent jet flames. The primary 123 
objectives are to develop and validate ML models—Neural Networks (NN), Linear Regression 124 
(LR), and Decision Tree Regression (DTR)—trained on high-fidelity LES data, with a 125 
particular emphasis on the NN model's ability to outperform traditional solvers. Beyond 126 
evaluating accuracy and computational speed, this work introduces targeted optimization 127 
strategies to refine ML predictions, ensuring consistency with experimental datasets. 128 
Additionally, the study systematically quantifies epistemic and aleatoric uncertainties in ML 129 
predictions, identifying how turbulent-chemistry interactions influence predictive confidence. 130 
By addressing challenges related to large dataset fluctuations and data quality limitations, this 131 
research bridges the gap between physics-based combustion modelling and data-driven 132 
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approaches. The findings demonstrate that ML-assisted LES offers a scalable, efficient, and 133 
experimentally consistent alternative to conventional computational fluid dynamics (CFD) 134 
techniques, setting the stage for robust real-time combustion simulations. 135 

2. LES of Jet Flame 136 

This study focuses on conducting LES of partially premixed combustion in a turbulent jet flow 137 
using the STAR-CCM+ software. The simulation framework incorporated the Flamelet 138 
Generated Manifold (FGM) approach, which efficiently handles the chemistry-turbulence 139 
interaction by precomputing a manifold of flamelets under various conditions. This method, 140 
combined with the y+ wall treatment, ensures accurate near-wall turbulence modelling. This 141 
method relies on creating a chemical library based on one-dimensional unstrained premixed 142 
flames, which is then used to model the complex chemistry of multi-dimensional flames. The 143 
FGM method allows for a significant reduction in computational cost while maintaining high 144 
accuracy in predicting flame behaviour, making it suitable for both laminar and turbulent 145 
combustion simulations [41]. The LES model utilized second-order convection schemes and 146 
algebraic relationships for mixture fraction variance to maintain high fidelity in scalar transport 147 
predictions. Second-order convection schemes are employed to reduce numerical diffusion and 148 
enhance the accuracy of convective transport, which is crucial for capturing the detailed 149 
structures in turbulent flows. Algebraic relationships for mixture fraction variance provide a 150 
robust method for modelling scalar fluctuations, ensuring that the effects of turbulence on 151 
scalar mixing are accurately represented. These techniques are essential for preserving the 152 
integrity of scalar fields, which directly influence the prediction of combustion processes [42]. 153 
The simulation is based on the Sandia Flame D specification, which serves as a representative 154 
case for studying such combustion processes [26-33]. The Sandia Flame D is represented as a 155 
3D cylinder with three different velocity inlets: air co-flow, pilot gases, and fuel, while the 156 
outlet is set as a pressure outlet. A mesh consisting of approximately 4.3 million cells has been 157 
generated to capture the relevant flow features and flame dynamics (See Fig. 1).  158 

 159 
Fig. 1. Schematic and mesh visualisation of the turbulent jet burner (not-to-scale): (a) body 160 
view and (b) nozzle view.  161 
To ensure that the selected mesh captures the relevant turbulent and thermal features of the 162 
flame, a mesh sensitivity analysis was conducted using base sizes of 10mm, 9mm, 7.5mm, 163 
5mm, and 4mm, corresponding to approximately 0.65million, 0.9million, 1.4million, 164 
4.3million, and 7.9million cells, respectively. Fig. 2(a) shows the centreline temperature 165 
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profiles for the different meshes compared against experimental measurements. The coarser 166 
meshes (9mm and 10mm) show delayed ignition and lower peak temperatures compared to 167 
experimental observation. The 7.5mm mesh improves the peak temperature prediction but still 168 
underestimates temperature in the near-flame region. The 5mm mesh (approximately 169 
4.3million cells) offers the best overall agreement with experiment, accurately capturing the 170 
peak temperature magnitude and location near z/D≈40, as well as the decay trend downstream. 171 
The 4mm mesh provides a slightly higher peak and sharper gradients but only marginal 172 
improvement over the 5mm one at substantially increased computational cost. Fig. 2(b) 173 
presents the temperature contours for four mesh sizes (9mm, 7.5mm, 5mm, and 4mm), with 174 
axial markers at z/D=15,30,60 to indicate key regions of flame development. The flame 175 
becomes increasingly wrinkled and turbulent with mesh refinement. At 9mm, the flame is 176 
smoother and less detailed, while the 5mm and 4mm meshes capture sharper flame fronts, 177 
eddies, and fine-scale turbulent structures, particularly around z/D=30 and downstream 178 
regions. This improved spatial resolution supports better capture of turbulent mixing and flame 179 
stabilization. Given the close temperature profile agreement and flame structure resolution, the 180 
5mm mesh was selected as the optimal compromise between physical fidelity and 181 
computational cost for all LES and ML surrogate data generation. 182 
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(b) 

Fig. 2. Mesh independence study for Sandia Flame D: (a) Centreline temperature profiles for 183 
five mesh resolutions (10mm, 9mm, 7.5mm, 5mm, and 4mm) compared with experimental 184 
data and (b) Temperature contours for four mesh resolutions (9mm, 7.5mm, 5mm, and 4mm) 185 
showing increasing flame wrinkling and turbulent structures with mesh refinement. The left 186 
vertical axis is marked by z/D, indicating key regions of flame development and stabilization. 187 
Vertical dashed lines mark axial positions at z/D=15, 30, 60. 188 

The reacting flow was characterized using a multi-component gas model, comprising seven 189 
primary species: CH4 (methane), CO (carbon monoxide), CO2 (carbon dioxide), H2O (water), 190 
N2 (nitrogen), O2 (oxygen), and OH (hydroxyl). The chemical kinetics were detailed, with 53 191 
species and 325 reactions modelled using Arrhenius coefficients. These reactions included 192 
complex mechanisms involving third-body efficiencies and reverse reaction coefficients, 193 
ensuring that the simulation captured the intricate details of combustion chemistry. Third-body 194 
efficiencies account for the effect of additional molecules in stabilizing or destabilizing reactive 195 
intermediates, while reverse reaction coefficients ensure the thermodynamic consistency of 196 
reversible reactions. These detailed kinetic mechanisms are critical for accurately predicting 197 
the rates of chemical reactions and the overall behaviour of the combustion process [43]. The 198 
co-flow inlet supplies ambient air (N2 and O2) to the domain, which in turn feeds oxidizer to 199 
the combustion front. In the meantime, the pilot inlet feeds high-temperature flue gas (CO2, 200 
H2O, and O2) to ignite the fuel and sustain the diffusion flame by acting as a thermal trigger. 201 
Finally, the fuel inlet injects low-temperature high-velocity unburnt hydrocarbon gas and 202 
oxidizer (CH4 and O2) into the domain. The flame features a fuel jet, surrounded by a premixed 203 
pilot and an air co-flow. The fuel stream supplies a diluted mixture of 25% methane and 75% 204 
air (by volume) with a bulk velocity of 49.6m/s and the main jet nozzle has an inner diameter 205 
of 7.2 × 10−3m, resulting in a jet Reynolds number of 2.24 × 104. The annular pilot burns a lean 206 
mixture (equivalence ratio = 0.77) of C2H2, H2, air, CO2, and N2, stabilizing the flame with a 207 
bulk velocity of 11.4m/s, while the laminar co-flow of air has a bulk velocity of 0.9m/s. The 208 
central main jet consists of a methane-air mixture with an equivalence ratio of 3.174, above the 209 
upper flammability limit of methane.  210 

Z/D = 15

Z/D = 30

Z/D = 60

9 mm 7.5 mm 5 mm 4 mm
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Flame D exhibits local extinction to a limited degree. The pilot flame burns a mixture of C2H2, 211 
H2, air, CO2, and N2, with an enthalpy and equilibrium composition equivalent to a mixture of 212 
methane and air. The comprehensive discussion of the governing equations, turbulent flow 213 
formulation, reacting flow dynamics, and filtering in the LES of Sandia Flame D is extensively 214 
documented in Refs. [28-32], supplemented by additional detailed experimental data in Refs. 215 
[25-26, 34-35]. In the pursuit of accurately representing the complex physics inherent in the 216 
unsteady simulation, a range of physics models have been meticulously selected. Among these, 217 
the FGM model holds a pivotal role, serving as a combustion chemistry reduction technique 218 
that creates a low-dimensional manifold to capture critical aspects of the internal structure of 219 
the flame front. It effectively incorporates the transport and chemical phenomena observed in 220 
three-dimensional flames, enabling the precise representation of the combustion process within 221 
the turbulent jet flow with specific emphasis on the fluid stream oxidizer and fuel, FGM kinetic 222 
rate, FGM reaction, and Flamelet dynamics [33]. Additionally, complementary physics models, 223 
including turbulence models such as the Smagorinsky model, have been incorporated to 224 
comprehensively address both large-scale turbulent structures and the modelling of smaller 225 
scales, thereby facilitating a thorough understanding of flame behaviour and its interaction with 226 
the turbulent jet flow [36]. 227 

To ensure numerical stability throughout the simulation of this high-Re turbulent flow, a set of 228 
conservative and robustness-enhancing solver strategies was employed. The simulation was 229 
performed using an Implicit Unsteady formulation with second-order temporal discretisation, 230 
which is particularly suited for LES of unsteady reacting flows. A fixed timestep of 1×10⁻⁶s 231 
was chosen based on the Courant–Friedrichs–Lewy (CFL) condition, resulting in CFL numbers 232 
consistently below 0.1 and thereby maintaining temporal stability [74]. Additional stabilisation 233 
measures included the activation of bounded-central convection schemes, Venkatakrishnan-234 
type gradient limiters, and positivity enforcement (positivity rate limit=0.2) to prevent 235 
nonphysical solution behaviour. The use of flow boundary diffusion and a flux update 236 
dissipation factor of 0.5 further suppressed numerical oscillations at open boundaries. These 237 
strategies collectively ensured solver stability without compromising the resolution of scalar 238 
transport and flame dynamics. Although a full timestep sensitivity study was not performed, 239 
the present timestep is considerably smaller than that used in related validations of LES studies 240 
on Sandia Flame D (e.g., [75]). Furthermore, the observed agreement with experimental 241 
profiles in both mean and RMS fields supports the adequacy of the chosen resolution. 242 

2.1. Governing equations 243 

The study adopts LES to model partially premixed combustion in a turbulent jet flow using 244 
STAR-CCM+ software. Based on the Sandia Flame D configuration, the continuity equation 245 
ensures the mass conservation within the flow field [37-40]: 246 

∂𝜌𝜌 �
∂𝑡𝑡

+ ∇ ⋅ (𝜌𝜌𝜌𝜌 ����) = 0 (1) 

This filtered equation accounts for the density 𝜌𝜌 �  and the filtered velocity 𝑢𝑢 �  .The filtered 247 
Navier-Stokes equations account for momentum conservation: 248 

∂(𝜌𝜌𝜌𝜌 ����)
∂𝑡𝑡

+ ∇ ⋅ (𝜌𝜌𝜌𝜌 ����⊗ 𝑢𝑢 �) = −∇𝑝𝑝 � + ∇ ⋅ (𝜇𝜇∇𝑢𝑢 �) + 𝐹𝐹 � − ∇ ⋅ 𝜏𝜏 (2) 

where 𝑝𝑝 � is the pressure, 𝜇𝜇 is the dynamic viscosity, and 𝐹𝐹 � represents body forces and is the 𝜏𝜏 249 
subgrid-scale stress tensor which accounts for the effects of the unresolved, smaller scales of 250 
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turbulence on the resolved flow field. It models the momentum transfer caused by the SGS 251 
motions. The energy equation describes the conservation of energy in the flow: 252 

∂(𝜌𝜌𝜌𝜌 ����)
∂𝑡𝑡

+ ∇ ⋅ (𝜌𝜌𝜌𝜌𝜌𝜌 ������) = ∇ ⋅ (𝑘𝑘∇T �) +Φ ��� + 𝑄̇𝑄 
�  (3) 

where 𝐸𝐸 �  is the total energy, 𝑘𝑘 is the thermal conductivity, 𝐸𝐸 �  is the temperature, Φ ��� is the 253 
dissipation function, and 𝑄̇𝑄 

�  represents heat addition due to combustion. The transport equations 254 
for chemical species are given by: 255 

∂(𝜌𝜌𝑌𝑌1�����)
∂𝑡𝑡

+ ∇ ⋅ (𝜌𝜌𝑌𝑌𝚤𝚤𝑢𝑢������) = ∇ ⋅ �𝜌𝜌𝐷𝐷𝚤𝚤∇𝑌𝑌𝚤𝚤��������� − 𝜏𝜏𝑌𝑌𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠� + 𝜔̇𝜔𝚤𝚤��� (4) 

where 𝑢𝑢 �  is the resolved velocity field and 𝜏𝜏𝑌𝑌𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 represents the SGS flux of species 𝑖𝑖 for the 256 

effects of sub-grid scale turbulence on the transport of species 𝑖𝑖, and the term ∇ ⋅ (𝜌𝜌𝐷𝐷𝚤𝚤∇𝑌𝑌𝚤𝚤���������) 257 
represents the molecular diffusion of species i. In LES, the effects of sub-grid scale (SGS) 258 
turbulence on species transport must be accounted. The SGS flux 𝜏𝜏𝑌𝑌𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠 can be modeled using 259 

eddy diffusivity concepts:  260 

𝜏𝜏𝑌𝑌𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜌𝜌𝐷𝐷𝑡𝑡∇𝑌𝑌𝚤𝚤��������� (5) 

where 𝐷𝐷𝑡𝑡 is the turbulent diffusivity, which is often modeled as 𝐷𝐷𝑡𝑡 = 𝐶𝐶𝑠𝑠Δ2|𝑆̃𝑆| with 𝐶𝐶𝑠𝑠 being the 261 
Smagorinsky constant, Δ the filter width, and |𝑆̃𝑆| the magnitude of the strain rate tensor. The 262 
rate of production or consumption of species 𝑖𝑖(𝜔̇𝜔𝑖𝑖� ) in Eq. (4) is determined by the chemical 263 
kinetics of the reactions involved. For a general reaction: 264 

𝜈𝜈𝑖𝑖′𝑅𝑅𝑖𝑖 → 𝜈𝜈𝑖𝑖′′𝑃𝑃𝑖𝑖 (6) 
where 𝜈𝜈𝑖𝑖′ and 𝜈𝜈𝑖𝑖′′ are the stoichiometric coefficients of the reactants (𝑅𝑅𝑖𝑖) and products (𝑃𝑃𝑖𝑖), 265 
respectively. The reaction rate can be described using Arrhenius-type expressions: 266 

𝜔̇𝜔𝑖𝑖 = ∑𝑟𝑟 (𝜈𝜈𝑖𝑖′′ − 𝜈𝜈𝑖𝑖′)𝑘𝑘𝑟𝑟∏𝑗𝑗 �𝐶𝐶𝑗𝑗�𝑗𝑗
𝜈𝜈𝑗𝑗
′

 (7) 

where 𝑘𝑘𝑟𝑟 is the reaction rate constant for reaction 𝑟𝑟, and �𝐶𝐶𝑗𝑗� is the concentration of species 𝑗𝑗 267 
[38-40]. 268 

3. ML Models 269 

The present work incorporates ML techniques for real-time predictions within the design space 270 
based on LES simulation data. By training a ML model using the simulation data, the study 271 
enables enhanced understanding and prediction of the Sandia Flame D. Three ML models, 272 
Neural Networks (NN), Linear Regression (LR), and Decision Tree Regression (DTR), were 273 
selected for comparison to determine the most optimal and effective model. For consistency 274 
and fair comparison, the same set of 17 input features was used across all ML models. The 275 
selection criteria were based on the model's capacity of handling large datasets and their 276 
accuracy in predictions. Neural Networks were chosen for their exceptional capability to 277 
capture the non-linear relationship within large datasets. These models are known for their high 278 
accuracy and adaptability, making them suitable for complex phenomena like turbulent flames. 279 
Academic literature supports the effectiveness of NNs in combustion modelling due to their 280 
ability to learn intricate patterns in data [17, 44-45]. Linear Regression was included as a 281 
baseline model to understand primary linear relationships within the data. Despite its 282 
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simplicity, it is computationally efficient and can quickly process large datasets, making it a 283 
valuable tool for initial analyses and comparisons. It serves as a benchmark for more complex 284 
models and helps highlight the benefits of non-linear approaches if applicable [46]. Decision 285 
Tree Regression was selected for its interpretability and ability to manage non-linear 286 
relationships effectively. This model splits the data into subsets based on feature values, 287 
creating a tree-like structure that provides clear insights into feature importance. Decision Trees 288 
are beneficial in engineering problems, including combustion modelling, as they offer a balance 289 
between accuracy and interpretability [47]. Training a ML model using simulation data 290 
enhances the understanding and prediction of the Sandia Flame D, leveraging the strengths of 291 
each selected model to find the most effective approach for predicting species mass fraction 292 
and flame characteristics. Fig. 3 shows a schematic of the methodology integrating LES of a 293 
turbulent jet flame with ML techniques to predict the species mass fraction. The process begins 294 
with data generation for the partially premixed turbulent jet flame and validation of LES results 295 
with experimental data. This involves defining the partial differential equations (PDEs), initial 296 
conditions (ICs), and boundary conditions (BCs) within the LES simulation using CFD 297 
packages such as STAR-CCM+. Once the LES data is generated, the next step is data cleaning, 298 
which is handled by AI models using platforms like Monolith AI and PyCharm. This ensures 299 
the data is ready for ML algorithms by removing any inconsistencies or errors. The input vector, 300 
x, consisting of various variables, is then prepared for ML training. The data is split into a 301 
training set (80%) and a test set (20%) to train the ML models and evaluate their performance. 302 
The training data includes geometrical data, mesh data, and tabular data. Deep learning (DL) 303 
models are then employed to predict physical parameters and perform testing. The next step 304 
involves using a surface field model to predict the flame pattern, followed by evaluating the 305 
models using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), 306 
Pearson Coefficient (PC), and R-squared (R²). These metrics help select the best ML model for 307 
the task. Finally, the best-performing model is used for final predictions of the species mass 308 
fraction in the turbulent jet flame. This comprehensive methodology ensures accurate and 309 
reliable predictions by leveraging advanced simulation techniques and ML models. 310 

 311 
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Fig. 3. Schematic of the methodology integrating LES with ML for surrogate modelling. The 312 
workflow illustrates a non-intrusive, a priori approach where LES is used to generate high-313 
fidelity data independently, followed by the development of two separate ML pipelines:(I) a 314 
tabular-input-based ML surrogate models (NN, LR, DTR) trained to predict species mass 315 
fractions from LES-derived features and (II) a deep learning surface field model trained on 316 
geometric, mesh, and tabular data to predict temperature distributions on a 2D plane. Both 317 
models are trained in post-LES and are not coupled within the CFD framework. 318 

3.1. Dataset structure 319 

The dataset employed in this study is derived from LES of Sandia Flame D. A total of 20,000 320 
physical timesteps were simulated, and data were extracted every 100 timesteps, yielding 200 321 
distinct LES snapshots. From each snapshot, spatially distributed flow variables and scalars 322 
were sampled across the entire 3D domain, resulting in a comprehensive dataset consisting of 323 
approximately 60,000 rows (spatial samples) and 46 columns (features). To preserve the spatial 324 
and temporal structure of the flame field, data were not randomly shuffled at the cell level. 325 
Instead, samples from selected timesteps were grouped during the train-test split to maintain 326 
spatial-temporal coherence and avoid leakage of spatial correlations between training and test 327 
sets. This approach ensures that the ML models are evaluated on physically independent but 328 
statistically consistent samples. As it is common issue in turbulent reactive flow data, the 329 
presence of noise can negatively affect model performance. Noisy data may lead to overfitting, 330 
where the model learns spurious patterns that do not generalize well to unseen conditions. To 331 
address this, the dataset was pre-processed using outlier detection, feature scaling, and cross-332 
validation (discussed in Secs. 3.2 and 3.3), ensuring robust learning and reliable generalization 333 
[44, 48–49]. 334 

Data cleaning was performed using PyCharm version 2023.1.1, which offers robust support for 335 
remote Jupyter notebooks and enhanced data manipulation capabilities. The process involved 336 
several key steps to ensure the integrity of the dataset and reduce noise. First, the pandas library 337 
was used to identify and remove duplicate entries from the dataset. This step ensured that each 338 
data point was unique and prevented redundancy. Next, outliers were detected using statistical 339 
methods and visualized with tools such as box plots. The numpy library was then employed to 340 
effectively manage these outliers. Missing values in the dataset were handled using the 341 
SimpleImputer class from the scikit-learn library. This class provided various imputation 342 
strategies, such as replacing missing values with the mean or median of the available data. By 343 
following these steps, the data cleaning process ensured the integrity and quality of the dataset, 344 
making it more suitable for analysis and further processing.  345 

To further evaluate the structure of the dataset and justify the feature dimensionality from a 346 
physical and statistical standpoint, a principal component analysis (PCA) was conducted. Fig. 347 
4(a) shows the projection of the first two principal components (PC1 and PC2), coloured by 348 
temperature and overlaid with kernel density contours representing sample concentration in the 349 
latent space. This 2D projection captures 56.6% and 17.4% of the total variance along PC1 and 350 
PC2, respectively, with PC1 aligned closely with combustion progress and temperature fields, 351 
as also identified in the sensitivity analysis (see Fig. 18). The shape and density of the 352 
distribution confirm a structured, low-dimensional manifold embedded in the 17-feature space, 353 
validating the use of surrogate models for interpolation and regression. Fig. 4(b) shows the 354 
scree plot of explained and cumulative variance. The first seven components capture more than 355 
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95% of the total variance. This not only confirms that the dataset does not suffer from 356 
unmanageable dimensionality but also addresses concerns regarding overfitting and feature 357 
redundancy. The scree plot shows a steep drop in variance beyond PC3, indicating that most 358 
physical phenomena (e.g., heat release, mixing, progress) are encoded in the first few 359 
orthogonal directions. The shaded region up to PC7 demonstrates that the input space is rich 360 
but compactable, consistent with the data structure expected from LES of turbulent 361 
combustion. These PCA results provide a formal basis for validating the selected features and 362 
their role in ML predictions. The findings reinforce the physical relevance of the dominant 363 
input features identified in the sensitivity analysis and support the robustness of the NN model 364 
architecture discussed in Sec. 4.2. However, it is worth noting that the original LES data already 365 
demonstrated strong physical consistency, as validated through comparison with experimental 366 
measurements in Sec. 4.1. This level of agreement confirms the quality and reliability of the 367 
dataset, indicating that only light-touch data cleaning was required. As a result, the applied 368 
preprocessing steps such as duplicate removal and basic outlier handling were limited in scope 369 
and did not alter key physical characteristics, including mixing behaviour, scalar gradients, and 370 
flame structure. The ML models employed in this work are non-intrusive a priori surrogates. 371 
They are trained on data extracted from standalone LES simulations and are not coupled within 372 
the CFD solver. Each model is trained and applied post-LES for predictive analysis and 373 
parametric exploration. 374 

 
(a) 
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(b) 

Fig. 4. Principal component analysis (PCA) of the LES-derived ML dataset: (a) Scatter plot of 375 
PC1 vs. PC2 coloured by temperature and overlaid with kernel density contours, indicating 376 
sample concentration and (b) Scree plot showing explained variance per component and 377 
cumulative variance. A shaded region highlights the first seven PCs that together capture over 378 
95% of the total variance, confirming the structured and low-dimensional nature of the input 379 
space. 380 

Using a more extensive training dataset can significantly enhance the accuracy of ML models 381 
due to several key factors. First, a larger dataset offers a broader representation of the 382 
underlying patterns and relationships within the data, allowing the model to learn more 383 
comprehensively and make more accurate predictions. This extensive exposure helps the model 384 
to capture the intricacies and variations within the dataset, leading to better performance. 385 
Second, a larger dataset helps mitigate the effects of outliers or noise. With more data points, 386 
the influence of any anomalies is reduced, resulting in a model that can be easily generalized 387 
and is more robust. This is particularly important in ensuring that the model performs well not 388 
only on the training data but also on new, unseen data [17]. The practice of adhering to the 80-389 
20% rule for data splitting plays a crucial role in this context. By allocating 80% of the data for 390 
training, the model has ample opportunity to learn the significant patterns and relationships. 391 
The remaining 20% of the data is reserved for testing, which is essential for evaluating the 392 
model's performance on unseen data. This split ensures that the model is not excessively 393 
dependent on the training data but can be effectively generalized, providing a realistic estimate 394 
of its performance in real-world scenarios. By following this approach, the model benefits from 395 
a well-balanced training and testing process. The training phase allows the model to gain a 396 
deep understanding of the data, while the testing phase offers a robust evaluation of its 397 
predictive capabilities, ensuring that the model is both accurate and reliable when applied to 398 
new data [44]. Using the train_test_split function from the scikit-learn library ensures that the 399 
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dataset is split in a way that minimizes bias and maintains the consistency of data distribution 400 
across both sets. 401 

In this study, several key parameters have been selected based on the previous research in the 402 
field of gas mixture properties and combustion analysis. These parameters include density, 403 
dynamic viscosity, entropy of gas mixture (EGM), and mass flow rate (MFR). These 404 
parameters have been identified as significant contributors to the combustion process and 405 
species formation in gas mixtures. The initial selection was made to focus on the most critical 406 
variables that have a direct and profound impact on the combustion process. However, the study 407 
incorporates additional parameters such as molar concentrations (MC) of various species (CH4, 408 
CO, CO2, H2O, N2, O2, and OH), pressure, progress variable (PV), mass fraction (MF), velocity, 409 
SGS-turbulent kinetic energy (TKE), temperature, thermal conductivity, and geometrical 410 
parameters. These parameters collectively capture the multifaceted nature of combustion 411 
processes, including fluid dynamics, chemical kinetics, thermodynamics, and transport 412 
phenomena. These inputs are selected based on their relevance and significance in accurately 413 
modelling and predicting the output parameters, which include MF of CH4, CO, CO2, H2O, N2, 414 
O2, and OH. The chosen inputs are critical for capturing the intricate details of the combustion 415 
process for several reasons. Density and dynamics viscosity are fundamental physical 416 
properties that influence fluid flow and mixing behaviour within the combustion chamber. 417 
Accurate representation of these properties helps model the flow dynamics and turbulence 418 
accurately [50]. Entropy changes are indicative of the energy transformations and the 419 
irreversibility of processes within the combustion system. This parameter helps understand the 420 
thermodynamic efficiency of the combustion process [51]. MFR directly affects the fuel-air 421 
mixture entering the combustion chamber, influencing the combustion efficiency and the 422 
formation of various species [52]. The concentrations of CH4, CO, CO2, H2O, N2, O2, and OH 423 
are crucial for understanding the chemical reactions taking place during combustion. These 424 
concentrations determine the rates of formation and consumption of different species, 425 
impacting the overall combustion characteristics and emissions [53]. Pressure and temperature 426 
are also critical for determining the state of the reactants and products. Pressure influences 427 
reaction rates and species equilibrium, while temperature affects the kinetics and 428 
thermodynamics of combustion reactions [54]. Turbulence significantly impacts the mixing of 429 
fuel and oxidizer, flame stability, and heat transfer within the combustion chamber. Accurate 430 
modelling of turbulence parameters like SGS-TKE is essential for realistic predictions of 431 
combustion behaviour [55]. 432 

The selection of these parameters is crucial as they are interrelated and help understand the 433 
intricate relationships between the inputs and outputs of the predictive models. To achieve this 434 
goal, a sensitivity analysis has been conducted using the Sobol method with first-order variable 435 
combinations. This advanced analysis technique allows to examinate both direct effects and 436 
interactions between the parameters on the model outputs. This analysis visually demonstrates 437 
the effects of some input parameters on the respective model outputs. Fig. 5 presents a heatmap 438 
that visualizes the correlation matrix between different inputs (x-axis) and outputs (y-axis) 439 
obtained from a sensitivity analysis. The colour intensity within the heatmap represents the 440 
strength of the correlation between the variables. The sensitivity analysis reveals that the 441 
chosen inputs have major impacts on the prediction of mass fractions of the species. Amongst 442 
the parameters, density, temperature, pressure, and molar concentrations exhibit the most 443 
significant impact on the outputs. This fundamental understanding of parameter interactions 444 
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and sensitivities is critical to developing accurate and reliable ML models in combustion 445 
analysis. 446 

 447 

Fig 5. Heatmap of correlation matrix for sensitivity analysis results for inputs and outputs. 448 

3.2. ML algorithms 449 

The task in the present work is to solve a regression problem, which falls under the category 450 
of supervised learning. This approach is appropriate because it involves predicting continuous 451 
outputs (species mass fractions) based on input data. The implementation of the three selected 452 
models was facilitated using the Monolith AI platform, a Python-based platform that supports 453 
a wide array of machine learning algorithms [56]. 454 

For LR model, the following hyperparameters were optimized: maximum depth, minimum 455 
split samples, and minimum leaf samples. Maximum depth was set to None or a high value to 456 
allow the decision tree to grow until all leaves are pure or contain fewer samples than the 457 
minimum required for splitting. This setting helps capture complex relationships but can lead 458 
to overfitting if not well regularized [57]. Minimum split samples were typically set to small 459 
values, such as 2 or 5, to ensure that nodes could be split even with small sample sizes, 460 
preventing the model from splitting nodes with too few samples [58]. Minimum leaf samples 461 
were set to small values, e.g., 1 or 5, allowing the decision tree to create very small leaf nodes, 462 
which helps capture the individual data points and improve model flexibility [59]. The cross-463 
validation splitting strategy used was K-fold with 5 folds, and metrics like Mean Squared Error 464 
(MSE) and R-squared (R²) were employed to evaluate model performance [60]. For DTR 465 
model, similar considerations for depth, split samples, and leaf samples were applied. Cross-466 
validation and hyperparameter tuning ensured the model's robustness against overfitting and 467 
underfitting. 468 

In the case of NN, several hyperparameters were optimized, including the number of models 469 
for comparison, batch size, number of hidden layers, hidden layer size, intermediate layer 470 
activation function, dropout fraction, and cross-validation splitting strategy. Randomized 471 
search was used for hyperparameter tuning, allowing exploration of a wide range of values 472 
with fewer trials compared to exhaustive search. The number of models for comparison was 473 
limited to manage computational costs while exploring diverse configurations. Appropriate 474 
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batch sizes, typically between 32 and 256, were selected to balance the computational 475 
efficiency and convergence stability. The number of hidden layers was set between 1 to 3, 476 
providing a balance of model complexity and training time. Hidden layer sizes of 32, 64, and 477 
128 were used to provide sufficient learning capacity without excessive computational 478 
demands. Intermediate layer activation functions such as ReLU (Rectified Linear Unit), ELU 479 
(Exponential Linear Unit), and Swish were chosen for their effectiveness in different scenarios. 480 
Dropout fractions of 0.05 to 0.1 helped avoiding overfitting by regularizing the model. K-fold 481 
cross-validation with 5 folds was used, providing robust model evaluation. Mean Absolute 482 
Error (MAE) was selected as the cross-validation scoring metric for its ease of interpretation 483 
and clear measure of prediction accuracy, less sensitive to outliers compared to the Root Mean 484 
Squared Error (RMSE) [61]. Fig. 6 illustrates the architecture of the NN model used in this 485 
study, designed to handle the given dataset effectively and to avoid underfitting or overfitting 486 
through strategic architectural choices and regularization techniques. The NN architecture 487 
begins with an input layer, referred to as the visible layer, which consists of 17 inputs (𝑋𝑋 =488 
17). These inputs represent the features of the dataset that will be used to make predictions. 489 
Following the input layer, the data is processed through a series of layers, each with specific 490 
roles and configurations. First, the data passes through a set of activation functions. Activation 491 
functions then introduce non-linearity relations into the model, enabling the NN to learn 492 
complex patterns.  493 

The first hidden layer in the network consists of 32 neurons. This layer processes the input data 494 
through its neurons, applying the activation function to generate its output. The number of 495 
neurons in hidden layers is often chosen as a power of 2, such as 32, 64, or 128, to optimize 496 
the computational efficiency and performance of the model [62]. After the first hidden layer, a 497 
dropout layer with a dropout rate of 0.05 is introduced. Dropout is a regularization technique 498 
used to avoid overfitting by randomly setting a fraction of input units to zero at each update 499 
during training time, which helps make the model robust and prevent it from becoming too 500 
dependent on any specific neurons. The second hidden layer consisting of 64 neurons is then 501 
followed. After this layer, another dropout layer is applied, this time with a dropout rate of 0.1, 502 
providing additional regularization to prevent overfitting as the network becomes deeper and 503 
more complex. Next, the third hidden layer, which consists of 128 neurons, processes the data. 504 
This layer is followed by another set of activation functions, which help to transform the inputs 505 
into outputs in a nonlinear manner, ensuring the network can learn intricate patterns and 506 
relationships within the data. Lastly, the output layer, also known as the visible layer, consists 507 
of 7 outputs. These outputs represent the predicted values based on the input features and the 508 
learned parameters of NN model. This architecture, with its strategic layer sizes, dropout rates, 509 
and activation functions, aims to balance the complexity and regularization, ensuring a robust 510 
model performance across different datasets and task. 511 
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 512 

Fig. 6. Architecture of the neural network (NN) model used in this study. 513 

3.3. Model evaluation 514 

In this study, several metrics were utilized to evaluate the performance of ML models and 515 
determine the optimal model for predicting species mass fraction in turbulent jet flames. The 516 
metrics used include Mean Absolute Error (MAE), Mean Squared Error (MSE), Pearson 517 
Coefficient (PC), and R-squared (R²). Additionally, cross-validation techniques, specifically k-518 
fold cross-validation, and hyperparameter tuning were employed during the training process to 519 
prevent overfitting and underfitting. Despite using cross-validation and hyperparameter tuning, 520 
further comparison of different models is necessary to ensure the selection of the optimal 521 
model. MAE measures the average magnitude of the errors in a set of predictions, without 522 
considering their direction. It’s the average over the test sample of the absolute differences 523 
between prediction and actual observation where all individual differences have equal weight. 524 
MAE is defined below: 525 

MAE =
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛  |𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖| 

(8) 

where, n is the number of observations, yi is the actual value, 𝑦̂𝑦𝑖𝑖 is the predicted value, and 526 
|𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖| is the absolute difference between the actual and predicted values. MSE measures the 527 
average of squares of the errors. It is more sensitive to outliers than MAE due to the squaring 528 
of each term, which means larger errors have a disproportionately large effect on MSE. MSE 529 
is given by [63-64]: 530 

MSE =
1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛  (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2 (9) 

PC measures the linear correlation between two variables, providing a value between -1 and 1. 531 
A value of 1 implies a perfect positive linear relationship, -1 implies a perfect negative linear 532 
relationship, and 0 implies nonlinear relationship. PC can be expressed by [65]. 533 

PC =
∑𝑖𝑖−1𝑛𝑛  (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)�𝑦𝑦𝚤̂𝚤 − 𝑦𝑦�‾�

�∑𝑖𝑖−1𝑛𝑛  (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)2∑𝑖𝑖=1𝑛𝑛  �𝑦𝑦𝚤̂𝚤 − 𝑦𝑦�‾�2
 

(10) 
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Here, 𝑦𝑦‾ and 𝑦𝑦�‾ are the mean of the actual, and predicted values, respectively.  (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾) is the 534 
deviation of the actual value from the mean of actual values, and �𝑦𝑦𝚤̂𝚤 − 𝑦𝑦�‾� is the deviation of 535 
the predicted value from the mean of predicted values. 𝑅𝑅² measures the proportion of variance 536 
in the dependent variable that is predictable from the independent variables. The range of 𝑅𝑅² is 537 
from 0 to 1, where larger values indicate better model performance. 𝑅𝑅² can be defined as [66]. 538 

𝑅𝑅2 = 1 −
∑𝑖𝑖=1
𝑛𝑛  (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2

∑𝑖𝑖−1
𝑛𝑛  (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)2

 
(11) 

where, (𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖)2 is the sum of the squared differences between the actual and predicted values, 539 
and (𝑦𝑦𝑖𝑖 − 𝑦𝑦‾)2 is the overall sum of squares, which measures the total variance in the actual 540 
values. These metrics collectively help evaluate the performance of the regression models by 541 
quantifying the error and accuracy of predictions, aiding in the selection of the most appropriate 542 
model for the given task. 543 

4. Results and Discussion 544 
4.1. Validation of LES 545 

To further validate the present LES results, a comparison is conducted with both experimental 546 
data and previously published LES simulations under matched physical conditions. The 547 
experimental reference is taken from Barlow and Frank [26], who characterised the Sandia 548 
Flame D configuration using laser diagnostics to obtain detailed profiles of temperature, 549 
velocity, and mixture fraction. The current simulation replicates their boundary conditions, 550 
including the 25% CH₄ / 75% air fuel, bulk velocity of 49.6m/s, Re=22,400, nozzle diameter 551 
of 7.2mm, coflow air velocity of 0.9m/s, and a lean annular pilot flame. Additional diagnostic 552 
context is drawn from Barlow et al. [27], which, although focused on a syngas flame, provides 553 
useful scalar fluctuation data. In addition, the LES study of Vreman et al. [75] is included as a 554 
numerical reference to highlight how differences in modelling approaches and timestep settings 555 
affect the simulation results. Their simulation of Sandia Flame D employs FGM, a structured 556 
cartesian grid, and a fixed timestep of 5×10⁻⁶s, along with enhanced subgrid-scale treatments 557 
such as scalar variance closure (β-PDF) and a thickened flame model. In contrast, the present 558 
LES was performed using a finer timestep of 1×10⁻⁶s, with species transport resolved directly 559 
from filtered equations and no table-driven subgrid corrections. As shown in Figs. 7(a) and (b) 560 
(mean and RMS temperature), Figs. 8(a) and (b) (mean and RMS axial velocity), and Figs. 9(a) 561 
and (b) (mean and RMS mixture fraction), both LES simulations successfully capture the 562 
primary scalar and velocity field structures. The blue dashed lines represent the present LES 563 
results, the green square symbols denote the data from [75], and the red triangles indicate 564 
experimental measurements from [26]. In several regions, notably the RMS temperature 565 
between z/D= 25–45, the present LES predictions fall slightly closer to the experimental data. 566 
These observations illustrate that timestep selection and model fidelity can influence the 567 
representation of scalar fluctuations, and that the present configuration achieves reliable 568 
performance even without subgrid chemistry enhancements. The performed validation 569 
enhances confidence in the use of LES simulations for the following ML applications. 570 
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(a) (b) 

Fig. 7. (a) Fluctuation temperature and (b) RMS temperature at the centreline z/D. The blue 571 
dashed lines represent the present LES results, the green filled squares denote the numerical 572 
data from [75], and the red triangles indicate experimental measurements from [26]. 573 

  
(a) (b) 

Fig. 8. (a) Axial velocity and (b) RMS axial velocity at the centreline z/D. The blue dashed 574 
lines represent the present LES results, the green filled squares denote the numerical data from 575 
[75], and the red triangles indicate experimental measurements from [26]. 576 
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Fig. 9. (a) Mean mixture fraction and (b) RMS mixture fraction at the centreline z/D. The blue 577 
dashed lines represent the present LES results, the green filled squares denote the numerical 578 
data from [75], and the red triangles indicate experimental measurements from [26]. 579 

4.2. Comparative performance of ML models 580 

In this section, the performance of ML models is evaluated in terms of different metrics. For 581 
this purpose, graphs of LES value vs. predicted value are provided in Fig. 10. These graphs 582 
illustrate the comparison of LES values and predicted values by NN, LR, and DTR models, 583 
where a random subset of 10,000 data points was sampled in each model. In Fig. 10, red dots 584 
represent the NN scatter data, green dots represent LR, and blue dots represent DTR, with the 585 
white line indicating the actual values. The graphs clearly show the high accuracy of the NN 586 
model against the actual values, followed by the DTR model, and finally, the LR model. NN 587 
models demonstrate the closest alignment with the actual values, indicating their superior 588 
predictive capability. The scatter of red dots around the white line is minimal, showcasing that 589 
NN model is capable of accurately predicting the outcomes. DTR model also performs well, 590 
with blue dots closely following the actual values but with slightly more deviation compared 591 
to NN model. The LR model, represented by green dots, shows the highest deviation from the 592 
actual values, indicating that while the accuracy in LR model is acceptable, it is not as precise 593 
as NN model or DTR model in this context. 594 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

 
(g) 

Fig. 10. Comparison of predicted and LES values of mass fraction for different species: (a-g) 595 
for CH4 to OH by NN, LR and DTR models. A random subset of 10000 data points was sampled 596 
in each model.  597 

Table 1 presents a comparative analysis of three models in predicting the mass fractions (MF) 598 
of various compounds like CH4, CO, CO2, H2O, N2, O2, and OH. The performance metrics 599 
include MAE, MSE, PC, and R-squared (R²). NN model consistently demonstrates the highest 600 
accuracy across all outputs. The MAE values are the lowest, ranging from 1.00E-06 to 9.00E-601 
05, indicating minimal error in predictions. The MSE values are extremely low, with values 602 
such as 1.00E-12 and 8.10E-09, showcasing excellent performance in minimizing squared 603 
errors. Additionally, the PC values are very close to 1, and the R² values are nearly perfect 604 
(0.99997 to 0.99999), indicating that NN model captures almost all the variance in the data. 605 
LR model shows higher MAE and MSE values compared to NN and DTR models, suggesting 606 
less accuracy. For example, the MAE for MF-CH4 is 0.0015 and for MF-N2 is 0.00114. The 607 
MSE values, although not as low as NN and DTR, are still quite small (e.g., 1.00E-05 for MF-608 
CH4 and 1.61E-06 for MF-O2). The PC and R² values, while high (e.g., 0.99792 and 0.99585 609 
for MF-CH4), are lower than those achieved by NN and DTR, indicating that LR is less 610 
effective in uncovering the autocorrelation about the data. DTR model performs similarly as 611 
NN model. The MAE values are low, similar to NN (e.g., 0.00026 for MF-CH4 and 0.00027 612 
for MF-N2). The MSE values, although slightly higher than those of NN, remain very low (e.g., 613 
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2.00E-08 for MF-CH4 and 2.10E-08 for MF-N2). The PC values are very high, close to 1, and 614 
the R² values are also nearly perfect (e.g., 0.99997 for MF-CH4 and 0.99994 for MF-N2), 615 
indicating excellent model performance. According to the results shown in Table 1 and Fig. 10, 616 
NN model emerges as the most accurate model for predicting the mass fractions of the 617 
compounds, with the lowest errors and highest correlation and R² values. DTR model also 618 
performs exceptionally well, closely following NN model in accuracy. LR model, while still 619 
effective, shows comparatively higher error rates and lower correlation and R² values, making 620 
it the least accurate one among the three models in this dataset. 621 

Table 1 Evaluating the performance of NN, LR and DTR models by comparing their metrics 622 
such as MAE, MSE, PC, and R2 for the prediction of species mass fraction. 623 

Output Model MAE MSE PC R2 

MF- CH4 

NN 3.00E-05 1.00E-10 0.99999 0.99998 

LR 0.0015 1.00E-05 0.99792 0.99585 

DTR 0.00026 2.00E-08 0.99997 0.99991 

MF- CO 

NN 4.00E-05 1.60E-09 0.99993 0.99986 

LR 0.00065 4.23E-07 0.99692 0.99385 

DTR 0.00026 2.00E-08 0.99977 0.99949 

MF- CO2 

NN 7.00E-05 4.90E-09 0.99998 0.99996 

LR 0.00093 8.64E-07 0.99943 0.99887 

DTR 0.00029 8.41E-08 0.99995 0.99989 

MF- H2O 

NN 5.00E-05 2.50E-09 0.99999 0.99997 

LR 0.00064 4.10E-07 0.99972 0.99945 

DTR 0.00026 2.00E-08 0.99995 0.99989 

MF- N2 

NN 5.00E-05 2.50E-09 0.99999 0.99997 

LR 0.00114 1.30E-06 0.99831 0.99662 

DTR 0.00027 2.10E-08 0.99994 0.99986 

MF- O2 

NN 9.00E-05 8.10E-09 0.99999 0.99997 

LR 0.00127 1.61E-06 0.99972 0.99944 

DTR 0.00052 2.70E-08 0.99996 0.99989 

MF- OH 

NN 1.00E-06 1.00E-12 0.9999 0.9998 

LR 2.00E-05 4.00E-10 0.99727 0.99454 

DTR 1.00E-05 1.00E-10 0.99984 0.99945 

 624 
4.3. Uncertainty of NN model 625 

This study focuses on predicting species mass fractions in a turbulent jet flame using three ML 626 
models, where the NN model outperformed the others based on different metrics. To further 627 
enhance the robustness of NN model, it is crucial to quantify the uncertainty associated with 628 
its predictions. Understanding and presenting the uncertainty map is essential for assessing the 629 
reliability and credibility of the model's outputs. The Model method for uncertainty involves 630 
estimating both aleatoric and epistemic uncertainties. Aleatoric uncertainty arises from inherent 631 
variability in the data, such as measurement noise, while epistemic uncertainty stems from 632 
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limitations in the model itself, such as insufficient training data or an imperfect model 633 
architecture [67]. By analysing the model's predictions and their variations, one can identify 634 
areas where the model is less confident, thus highlighting potential weaknesses or regions 635 
where additional data might be necessary [67-68]. In this study, the Model method was utilized 636 
to quantify uncertainty, focusing on epistemic uncertainty. Epistemic uncertainty, associated 637 
with the model's knowledge and capacity, can be reduced with more data and better model 638 
architectures. On the other hand, the Distance to Data method, which is more aligned with 639 
aleatoric uncertainty, focuses on variability due to inherent noise in the data and cannot be 640 
reduced by improving the model alone [68].  641 

In the present work, the selection of specific pairs of physical properties for the uncertainty 642 
maps is based on their significant influence on the combustion process, as suggested in the 643 
literature [17, 45, 69-73]. Fig. 11 shows the uncertainty map for all species mass fractions 644 
according to the effects of velocity and temperature. Temperature directly impacts chemical 645 
reaction rates, thereby affecting the mass fractions of all species involved in combustion 646 
processes, such as CH4, CO, CO2, H2O, N2, O2, and OH. Higher temperatures typically increase 647 
reaction rates, leading to different equilibrium states for these species. Meanwhile, velocity 648 
influences the mixing and turbulent characteristics of the flow, which in turn affects the 649 
distribution and formation of species in the reaction zone. Turbulent flows, characterized by 650 
velocity fluctuations, enhance the mixing of fuel and oxidizer, which is crucial in non-premixed 651 
flames.  652 

There is a notable red region in the middle of the MF-CH4 graph between approximately 700-653 
1700 K, indicating higher uncertainty in this temperature range. This could be due to complex 654 
reaction dynamics occurring at these temperatures that the model finds challenging to predict 655 
in an accurate way. The uncertainties in H2O and CO mass fractions are almost uniform. This 656 
suggests that the model has a steady performance across different temperature and velocity 657 
conditions for H2O and CO predictions. The uncertainty distribution for N2 is similar to that of 658 
CH4, but with a maximum uncertainty of 140 µ, compared to 220 µ for CH4. This indicates that 659 
while the model's predictions for N2 are more reliable than for CH4, there are still significant 660 
uncertainties at lower temperatures. In O2 graph, higher uncertainties are observed in the 661 
temperature ranging from 1000 to 2200 K. This may be due to the critical role of oxygen in 662 
combustion reactions, where variations in temperature can significantly impact the reaction 663 
dynamics. The uncertainty range for OH is four times higher than that for other species, 664 
showing substantial fluctuations in model performance for this species. This high uncertainty 665 
could be attributed to the highly reactive nature of OH radicals in combustion processes, 666 
making them difficult to predict with an acceptable accuracy. 667 
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Fig. 11. Uncertainty map of NN model for species mass fractions under the influence of varying 668 
velocity (m/s) and temperature (K). 669 

Fig. 12 illustrates the uncertainty map for the species mass fractions as influenced by pressure 670 
and the molar concentration of CH4. The pressure ranges from -2000 to 2000Pa, and the molar 671 
concentration of CH4 ranges from 0 to 0.01kmole/m³. These results in Fig. 10 present a better 672 
understanding of how variations in pressure and the molar concentration of CH4 impact the 673 
uncertainty in predicting the species mass fractions. Pressure plays a critical role in determining 674 
the partial pressures and chemical potential of the species involved in the reactions. Variations 675 
in pressure can shift the equilibrium of these reactions, thereby changing the mass fractions of 676 
the combustion products. CH4, as a primary fuel, undergoes oxidation to form CO and CO2, 677 
and further reactions produce H2O and other intermediates like OH. The initial concentration 678 
of CH4 is essential for determining the quantities of these reaction products and intermediates 679 
[69]. MF-CO graph illustrates that the uncertainty appears more uniform across different 680 
pressures but shows slight increases at higher CH4 concentrations. This suggests that while 681 
pressure has a lesser impact on the uncertainty of CO predictions, the concentration of CH4 still 682 
plays a role in affecting model reliability. There is a noticeable increase in uncertainty at both 683 
high and low pressures, particularly at higher CH4 concentrations in MF-CO2 graph. This could 684 
be due to the complex interactions between CO2 formation and varying pressure and CH4 685 
levels, making the predictions less certain under these conditions. In addition, MF-H2O reveals 686 
that the uncertainty remains uniform, similar to the CO map, but with slightly higher 687 
uncertainty at lower pressures. This indicates that pressure variations impact the uncertainty of 688 
H2O predictions to a certain extent. But overall, the model performance remains relatively 689 
stable. The uncertainty range for OH is significantly higher than that for other species, showing 690 
substantial fluctuations in model performance. This high uncertainty is likely due to the highly 691 
reactive nature of OH radicals, which is sensitive to the changes in both pressure and CH4 692 
concentration. 693 
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Fig. 12. Uncertainty map of NN model for species mass fractions under the influence of varying 694 
molar concentration of CH4 (kmole/m3) and pressure (Pa). 695 

Fig. 13 depicts the uncertainty map for the species mass fractions as influenced by pressure 696 
and the molar concentration of O2. Oxygen is vital for combustion reactions, and its 697 
concentration significantly affects the formation and consumption rates of other species. The 698 
availability of O2 determines the extent of combustion reactions and the formation of 699 
intermediate species like CO and OH. Pressure, as mentioned earlier, affects the reaction 700 
kinetics and equilibrium states, further influencing the mass fractions of the combustion 701 
products. These factors highlight the importance of considering pressure and molar 702 
concentration of O2 in the uncertainty analysis of combustion processes [70]. In the MF-CH4 703 
graph, the highest uncertainty occurs at lower molar concentrations of O2, with the uncertainty 704 
decreasing as the concentration of O2 increases. This contrasts with Fig. 11, where the highest 705 
uncertainties for MF-CH4 occurred at lower pressures and higher CH4 concentrations. The 706 
difference arises because oxygen availability significantly influences the combustion process; 707 
low oxygen levels create less predictable conditions for methane combustion, thus increasing 708 
uncertainty. The uncertainty for CO2 shows increased values at lower O2 concentrations. This 709 
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indicates that the stability of combustion process is highly dependent on adequate oxygen levels 710 
for CO2 formation. The uncertainty range for OH is significantly higher than that for other 711 
species, showing substantial fluctuations. 712 

   

   

 

  

Fig. 13. Uncertainty map of NN model for species mass fractions under the influence of varying 713 
molar concentration of O2 (kmole/m3) and pressure (Pa). 714 

Figs. 14-16 provide a comprehensive visualization of uncertainty distribution in NN 715 
predictions, evaluating how the uncertainty varies with respect to different physical parameters. 716 
Specifically, Fig. 14 presents the uncertainty trends for species mass fractions as a function of 717 
turbulence intensity, while Figs. 15 and 16 illustrate the impact of the RMS mixture fraction 718 
and progress variable, respectively. Turbulence intensity plays a crucial role in combustion 719 
dynamics by governing turbulent mixing, flame stability, and reaction zone fluctuations. In Fig. 720 
14, the uncertainty trends across different species mass fractions exhibit distinct behaviours as 721 
turbulence intensity varies. The uncertainty in CH₄ and N₂ mass fractions remains relatively 722 
stable across the entire turbulence intensity range but shows moderate fluctuations at lower 723 
turbulence intensity values. This suggests that the NN model effectively captures the behaviour 724 
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of these species under well-developed turbulent conditions, where enhanced mixing 725 
contributes to greater predictive stability. Conversely, species such as CO, CO₂, and H₂O 726 
exhibit increased uncertainty in the 6-12% turbulence intensity range, which aligns with the 727 
transitional regime where turbulence-chemistry interactions strongly influence species 728 
formation and transport. This trend reflects the natural complexity of combustion processes, 729 
where intermediate turbulence levels can create varying flame structures and mixing patterns 730 
that influence species distributions. The model successfully identifies these variations, 731 
capturing the impact of turbulence intensity on species mass fraction evolution. Notably, the 732 
uncertainty levels for OH remain significantly higher compared with other species, reaffirming 733 
its strong sensitivity to turbulence intensity. This observation aligns with the well-documented 734 
role of OH as a marker of combustion intensity, as it is highly reactive, and its concentration is 735 
influenced by the competing effects of turbulence and chemical reaction rates. The variations 736 
in OH uncertainty further support previous findings in the literature, where higher turbulence 737 
levels often correlate with increased fluctuations in radical species concentrations due to 738 
enhanced turbulent-chemistry interactions [26-27, 34, 74]. 739 

The RMS mixture fraction represents the degree of mixture inhomogeneity, capturing the 740 
influence of turbulent mixing on the local equivalence ratio and reaction progress. Fig 15 741 
indicates that CH₄ uncertainty increases with the RMS mixture fraction, particularly beyond 742 
0.2, suggesting that the NN model is less confident in methane predictions under highly 743 
inhomogeneous conditions. This is expected, as incomplete fuel-air mixing leads to variability 744 
in reaction zones and non-uniform combustion progress. The uncertainty distributions for CO 745 
and CO₂ suggest opposing trends, where CO uncertainty remains moderate but fluctuates 746 
across the mixture fraction spectrum, while CO₂ uncertainty decreases at higher RMS mixture 747 
fraction values. This trend can be attributed to the gradual stabilization of combustion products 748 
as the mixture fraction increases, reducing CO₂ variability. Interestingly, OH uncertainty peaks 749 
at intermediate mixture fractions (0.2-0.5), corresponding to stoichiometric and near-750 
stoichiometric conditions, where OH radicals are most reactive and sensitive to turbulence-751 
chemistry interactions. 752 



27 
 

 753 
Fig. 14. Uncertainty map of NN model for species mass fractions under the influence of varying 754 
turbulence intensity. 755 

The progress variable (PV) is a key combustion parameter representing the advancement of 756 
chemical reactions, with values ranging from 0 (unburned state) to 1 (fully burned state). Fig. 757 
16 demonstrates that uncertainty in CH₄ mass fraction is highest at lower progress variable 758 
values, indicating that the NN model exhibits lower confidence in fuel-rich conditions where 759 
mixing and reaction pathways are still evolving. This aligns with combustion physics, where 760 
early-stage reactions introduce greater variability due to turbulence-chemistry interactions. For 761 
CO and CO₂, the uncertainty profiles exhibit opposite trends. CO uncertainty decreases as the 762 
progress variable increases, reflecting reduced variability as oxidation reactions approach 763 
equilibrium. Conversely, CO₂ uncertainty increases with progress variable, reaching a peak at 764 
near-complete combustion conditions. This suggests that the NN model captures CO formation 765 
more reliably in early reaction stages, while uncertainties in CO₂ predictions arise in later 766 
oxidation steps due to complex interactions among heat release, turbulence, and product 767 
dissociation. OH uncertainty remains notably high throughout the entire progress variable 768 
spectrum, particularly beyond 0.6, reinforcing its high sensitivity to combustion conditions. As 769 
OH is a short-lived radical crucial in intermediate reaction steps, this high uncertainty can be 770 
attributed to fluctuations in flame front stabilization and local extinction events. Rather than 771 
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applying a fixed numerical threshold, high uncertainty values are interpreted based on their 772 
alignment with known physical instabilities, such as flame fronts, stoichiometric layers, or 773 
regions of high species reactivity. The reliability of the model is thus judged by whether 774 
uncertainty appears in expected regions, reinforcing the model’s physical consistency. 775 

 776 
Fig. 15. Uncertainty map of NN model for species mass fractions under the influence of varying 777 
RMS mixture fraction. 778 
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 779 
Fig. 16. Uncertainty map of NN model for species mass fractions under the influence of varying 780 
progress variable (PV). 781 

The results of this study demonstrate that the selected architecture for the NN model is reliable, 782 
as evidenced by the trend of uncertainty maps which aligns with the governing rules of 783 
combustion. This reliability is particularly evident in the accurate prediction of species mass 784 
fractions under different conditions. However, the only species showing lower accuracy is OH, 785 
as indicated by the high fluctuations in its uncertainty map. This limitation can be attributed to 786 
the inherent complexity of predicting the behaviour of OH radicals, which are highly reactive 787 
and sensitive to the changes of combustion conditions. To further improve the model's 788 
performance, future work may explore more advanced architectures, such as recurrent neural 789 
networks (RNNs), to better capture temporal and spatial dependencies in combustion 790 
dynamics. Ensemble methods such as Random Forests or Gradient Boosting may also be 791 
revisited in the context of reaction-specific surrogate modelling, where their strengths in 792 
handling localised non-linearities may be better suited. 793 

4.4. Prediction of mass fraction 794 

The prediction of species mass fraction is the main aim of this study, and after the training and 795 
evaluation process, NN and DTR models were selected to conduct the mass fraction 796 
predictions. For this purpose, Fig. 17 provides the mass fraction prediction by NN and DTR 797 
models: (a) for mean mass fraction and (b) for fluctuation of mass fraction. The first column in 798 
Fig. 17 presents the mean mass fraction predictions for each species along the centreline. The 799 
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NN predictions are shown with a red dashed line, DTR predictions with a blue dashed line, and 800 
LES results with grey dots for validation. For CH4, CO2 and CO, the NN model again shows 801 
excellent agreement with the LES results, capturing the trends and magnitudes accurately. The 802 
predictions of DTR model are reasonably accurate but exhibit more noticeable deviations 803 
especially in the downstream regions. For OH, the NN model accurately predicts the mean 804 
mass fraction of OH, closely matching the LES data. The DTR model shows larger deviations, 805 
particularly in the peak regions, indicating its limitations in capturing the reactive species' 806 
dynamics. For O2, the predictions of NN model are in excellent agreement with the LES results, 807 
effectively capturing the depletion and recovery of O2 along the centreline. The DTR model 808 
shows reasonable performance but with some deviations in the regions of high gradients. For 809 
H2O, the NN model accurately predicts the mean mass fraction of H2O, closely following the 810 
LES results. The predictions of DTR model are less accurate, particularly in the downstream 811 
regions where the mass fraction changes more rapidly. The second column in Fig. 17 presents 812 
the fluctuation mass fraction predictions for each species, comparing NN predictions (red 813 
dashed line), LES results (grey dots), and the uncertainty range of NN predictions (thick line). 814 
The NN model captures the fluctuation trends well, with the predictions falling within the 815 
uncertainty range and closely matching the LES results. 816 

The results presented in Fig. 17 demonstrate the superior performance of the NN model in 817 
predicting both mean and fluctuation mass fractions of various species in a turbulent jet flame. 818 
The NN model consistently shows high accuracy against LES results, outperforming the DTR 819 
model, particularly in regions with steep gradients and complex dynamics. The uncertainty 820 
range provided for the NN predictions further validates its reliability and robustness. These 821 
findings corroborate the metrics discussed in Sec. 4.2, confirming the proposed architecture of 822 
NN model as the most effective tool for predicting species mass fractions in turbulent 823 
combustion simulations. 824 
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Fig. 17. Mass fraction prediction by NN model and DTR: (left panels) mean mass fraction and 825 
(right panels) fluctuation of mass fraction. 826 

To further assess the robustness and interpretability of the NN model, a sensitivity analysis was 827 
conducted to quantify the influence of key input parameters on the predicted mass fractions of 828 
major species, including CH₄, CO, CO₂, H₂O, N₂, O₂, and OH. Fig. 18 presents a bar chart 829 
illustrating the relative impact of various inputs, such as molar concentrations (MC) of reactive 830 
species, progress variable (PV), temperature, density, and thermal conductivity, on each 831 
predicted output. This analysis provides critical insights into the governing factors that drive 832 
species evolution within the ML model and reinforces the physical consistency of the learned 833 
relationships. A key observation from the sensitivity analysis is that the progress variable (PV) 834 
and temperature consistently emerge as dominant influences across multiple species. For 835 
methane (CH₄), PV exhibited the highest impact (0.426), closely followed by its own molar 836 
concentration (0.5), confirming that the extent of combustion progress directly governs 837 
methane depletion. Similarly, for CO, CO₂, and H₂O, temperature was identified as the most 838 
influential parameter (0.326, 0.491, and 0.5, respectively), reinforcing the expected 839 
thermochemical dependence of oxidation pathways. These findings align well with the physics 840 
of turbulent non-premixed flames, where temperature plays a pivotal role in dictating reaction 841 
rates and equilibrium compositions. 842 
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Furthermore, the molar concentrations of key reactants and intermediates displayed significant 843 
contributions to species evolution. The mass fraction of CO₂ was strongly influenced by CO 844 
(0.192) and O₂ (0.378), reflecting the well-known oxidation sequence where carbon monoxide 845 
undergoes secondary oxidation to form CO₂. Likewise, the formation of OH radicals, a crucial 846 
indicator of high-temperature reaction zones, was predominantly governed by temperature 847 
(0.48) and thermal conductivity (0.16), further confirming its role as a reactive transient 848 
species. These trends are consistent with expected combustion kinetics, reinforcing the 849 
credibility of the ML model’s learned relationships. The analysis also sheds light on the role of 850 
nitrogen and oxygen in shaping combustion dynamics. The mass fraction of N₂ showed a 851 
notable dependence on MC-H₂O (0.355) and MC-CO₂ (0.226), indicating that nitrogen’s 852 
passive dilution effects correlate with water vapor and carbon dioxide levels in the system. For 853 
O₂, the strongest influences were temperature (0.495) and its own molar concentration (0.376), 854 
consistent with oxygen consumption in oxidation reactions. The presence of high thermal 855 
conductivity as a significant driver for H₂O (0.417) and O₂ (0.5) suggests that heat transfer 856 
plays a crucial role in species distribution, an effect that may be particularly pronounced in 857 
post-flame regions. The high sensitivity of OH to temperature (0.48) and thermal conductivity 858 
(0.16) supports the notion that its fluctuations are strongly driven by turbulent mixing and heat 859 
release, contributing to increased epistemic uncertainty in its predictions. As OH is highly 860 
reactive and rapidly consumed in oxidation reactions, the model captures its inherent 861 
variability, consistent with the observed uncertainty trends reported earlier. The strong 862 
dependence of OH on PV (0.046) also aligns with its role as an intermediate species, 863 
reinforcing the ML model’s ability to recognize critical combustion pathways. These findings 864 
also correlate with the results of the uncertainty analysis presented in Figs. 14–16, where 865 
regions and species identified as highly sensitive—particularly OH, CH₄, and CO₂—also 866 
exhibited greater epistemic uncertainty. This alignment indicates that the model is 867 
appropriately uncertain in areas where outputs are highly sensitive to input variation, 868 
reinforcing the consistency and physical realism of the ML predictions. 869 
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Fig. 18. Sensitivity analysis of NN predictions for mass fractions of combustion species. 870 

4.5. Targeted optimization 871 

The optimization process in this section is performed using the NN model previously identified 872 
as the best-performing surrogate in the benchmarking phase (Sec. 4.2). This model was selected 873 
based on its superior predictive accuracy and reliability across species mass fraction predictions 874 
and is now applied to explore new design points beyond the training dataset. ML-driven 875 
optimization provides an adaptive framework for generating new combustion design points, 876 
even outside the experimental training set, demonstrating its ability to predict off-design 877 
conditions effectively. This approach refines ML-generated solutions to ensure that the 878 
recommended combustion states align with Barlow and Frank experimental study of Flame D 879 
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[26], which serves as a reference for turbulent non-premixed flames. Unlike purely physics-880 
driven models, ML-based optimization benefits from flexibility in adjusting species mass 881 
fractions, temperature, and pressure while maintaining physically meaningful constraints. To 882 
evaluate optimization effectiveness, the ML-generated species mass fractions are compared to 883 
Barlow and Frank experimental targets, considering their uncertainty range. The experimental 884 
data includes CH₄ = 0.0025±17%, CO = 0.065±6%, CO₂ = 0.140±6%, H₂O = 0.120±5%, N₂ = 885 
0.730±2%, O₂ = 0.020±5%, and OH = 0.0016±8%, ensuring that deviations are assessed within 886 
realistic variability. Four fitness functions—Euclidean distance [73], Manhattan distance [57], 887 
Collinearity coefficient, and Amplitude correlation coefficient [58]—were applied to optimize 888 
the mass fractions. Each function influences the optimization differently, impacting accuracy 889 
relative to the experimental dataset. The absolute error comparison is summarized in Table 2, 890 
where Manhattan distance consistently demonstrated the best overall performance, particularly 891 
for CO, CO₂, and OH, while small discrepancies in CH₄ and O₂ were further refined. The 892 
optimization effectiveness of each fitness function is presented in Table 2, where absolute 893 
errors highlight their accuracy in replicating experimental data. The absolute error analysis 894 
confirms that Manhattan distance optimization provided the most accurate and physically 895 
consistent results, requiring only minor adjustments to CH₄ and OH to align with Barlow’s 896 
dataset. In addition, the recommended designs generated using Manhattan distance 897 
optimization are summarized in Table 3, ensuring that all ten designs align with Barlow’s 898 
turbulent non-premixed flame dataset. These recommendations capture different combustion 899 
phases, from fuel-rich to stoichiometric to lean conditions, ensuring alignment with 900 
experimental trends.901 
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Table 2. Comparison of fitness function results against experimental data for CH₄, CO, CO₂, H₂O, OH, N₂, and O₂. 902 

Species Experiment  
(± Uncertainty) 

Euclidean Manhattan  Collinearity Amplitude 
Correlation 

Error 
(Euclidean) (Manhattan) (Collinearity) (Amp. Correlation) 

CH₄ 0.0025 ± 17% 0.0068 0.0039 0.0018 0.0366 0.0043 0.0014 0.0007 0.0341 
CO 0.065 ± 6% 0.0449 0.065  0.0422 0.0359 0.0201 0 0.0228 0.0291 
CO₂ 0.140 ± 6% 0.0734 0.1265 0.0643 0.1029 0.0666 0.0135 0.0757 0.0371 
H₂O 0.120 ± 5% 0.0888 0.1036 0.087 0.1041 0.0312 0.0164 0.033 0.0159 
N₂ 0.730 ± 2% 0.73 0.727 0.7272 0.6949 0 0.003 0.0028 0.0351 
O₂ 0.020 ± 5% 0.061 0.0272 0.0678 0.0169 0.041 0.0072 0.0478 0.0031 
OH 0.0016 ± 8% 0.0042 0.0018  0.0032 0.0053 0.0026 0.0002 0.0016 0.0037 
Mass Sum 1 1.0081 1 0.9943 1.0386 0.0081 0 -0.0057 0.0386 

 903 

Table 3. Summary of ML-recommended designs (Manhattan fitness function). 904 

Design ID Temperature (K) Pressure (Pa) CH₄ CO CO₂ H₂O N₂ O₂ OH Mass Sum 

# 1 2215.98 935.67 0.0039 0.065 0.1265 0.1036 0.727 0.0272 0.0018 1 

# 2 1904.19 -408.56 0.0042 0.0418 0.0928 0.1045 0.7328 0.0237 0.0014 1.0002 

# 3 471.81 1827.63 0.0061 0.0214 0.0492 0.0625 0.7393 0.1167 0.0023 1.0005 

# 4 1379.62 -1447.71 0.0159 0.0125 0.0265 0.034 0.7401 0.1667 0.0006 0.9963 

# 5 1754.05 3493.04 0.0557 0.031 0.0204 0.039 0.7033 0.1446 0.0012 0.9952 

# 6 1653.98 327.92 0.0474 0.0285 0.0419 0.0518 0.7046 0.1194 0.0018 0.9954 

# 7 1065.94 -2490.71 0.0762 0.0416 0.0327 0.0585 0.6788 0.1048 0.0016 0.9942 

# 8 2215.98 935.67 0.0696 0.0428 0.0472 0.0623 0.7402 0.1174 0.0018 1.0001 

# 9 1379.62 -1447.71 0.0159 0.0125 0.0265 0.034 0.7401 0.1667 0.0006 0.9963 

# 10 1754.05 3493.04 0.0557 0.031 0.0204 0.039 0.7033 0.1446 0.0012 0.9952 

 905 

 906 

 907 
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 908 

 909 

Fig. 19. Parallel coordinates graph for recommended designs (red lines) and other designs (grey lines) using NN model. 910 

 911 

 912 
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Fig. 19 presents a parallel coordinate plot that visualizes the parametric relationships and 913 
optimization constraints of the ten ML-recommended designs (highlighted in red) compared to 914 
other possible designs (represented in white). This multidimensional representation provides a 915 
comprehensive overview of how the optimization process filtered through various parameter 916 
spaces to identify the most physically meaningful and experimentally aligned combustion 917 
states. The clear distinction between the selected and non-selected designs highlights the 918 
designed NN model’s ability to constrain the search space effectively while maintaining 919 
coherence with known combustion regimes. A key observation from Fig. 19 is the systematic 920 
separation of the red lines from the broader white distribution, indicating that the optimization 921 
framework successfully identified a subset of solutions with desirable thermodynamic and 922 
chemical characteristics. The recommended designs exhibit well-defined clustering patterns, 923 
particularly in parameters such as temperature, pressure, and species mass fractions. These 924 
clusters suggest strong interdependencies between different combustion properties, where 925 
high-temperature conditions (~2215 K) consistently align with lower CH₄ concentrations and 926 
increased CO₂ and H₂O fractions, reflecting complete combustion scenarios. Conversely, fuel-927 
rich conditions characterized by elevated CH₄ and CO fractions show reduced OH and CO₂ 928 
levels, indicative of incomplete oxidation. 929 

Furthermore, the visualization reveals trade-offs between critical species, illustrating the 930 
natural progression of oxidation pathways. A strong inverse correlation is evident between CH₄ 931 
and CO₂, as methane consumption leads to increased carbon dioxide formation through 932 
intermediate CO oxidation. The relationships between species fractions align well with 933 
fundamental combustion kinetics, reinforcing the reliability of ML-driven recommendations. 934 
Additionally, the plot highlights the role of pressure variations in influencing combustion 935 
states, with shifts in equilibrium conditions affecting reaction pathways. Beyond confirming 936 
the expected chemical trends, Fig.19 also underscores the model’s capability in filtering out 937 
unphysical or non-optimal solutions. The wide distribution of white lines represents 938 
configurations that, while mathematically possible, do not align with experimental constraints 939 
or known turbulent non-premixed combustion physics. Many of these outliers exhibit extreme 940 
values of mass fractions or temperature-pressure inconsistencies that would not occur under 941 
realistic flame conditions. The targeted optimization process effectively eliminated such cases, 942 
ensuring that the final recommendations remain within physically plausible domains. This 943 
visualization serves as a compelling validation of ML approach in optimizing combustion 944 
design parameters. The distinct clustering of the recommended designs demonstrates that the 945 
ML framework not merely generates arbitrary solutions but can capture complex turbulence-946 
chemistry interactions. The ability to recognise the difference among fuel-rich, stoichiometric 947 
and lean combustion conditions further emphasizes the predictive robustness of the model. The 948 
structured nature of the optimized solutions also suggests that the ML approach can be well 949 
generalized to off-design conditions, making it a powerful tool for extending experimental 950 
insights beyond pre-existing datasets. 951 

4.6. Prediction of flame pattern 952 

This section focuses on the prediction of flame patterns using a surface field model to predict 953 
temperature contours on the centreline plane of the combustion chamber. The contour of 954 
temperature is used as the primary indicator of flame development. The surface field model is 955 
a computational approach that represents the distribution of physical properties, such as 956 
temperature and velocity, across a defined surface within the combustion chamber [72-73]. 957 
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While LES simulations offer high fidelity, their computational cost can limit the exploration of 958 
a wide range of operating conditions. This work utilizes a surrogate modelling approach 959 
implemented within Monolith's Surface Field model. The surface field model was trained on 960 
LES data stored in 3D mesh-based VTK format, including spatial geometry, mesh information, 961 
and scalar fields such as temperature and velocity. This format allowed the model to capture 962 
spatial correlations and predict full-field temperature contours on the centre plane. Surrogate 963 
models aim to create a simpler, computationally efficient model that approximates the 964 
behaviour of a more complex one. The Surface Field model leverages advanced ML algorithms, 965 
which excel at capturing complex, non-linear relationships between input data including 3D 966 
geometry and output data as flame characteristics. The model uses historical data obtained from 967 
comprehensive LES simulations. This data captures the 3D geometry of the combustion 968 
chamber and includes crucial information about the resulting flame field, such as temperature, 969 
velocity, and pressure. To train the Surface Field model, the data is split into training and testing 970 
sets. The training data, typically constituting the majority of the available data, is used to teach 971 
the model the underlying relationships between geometry and flame characteristics. During 972 
training, the model iteratively adjusts its internal parameters to minimize a loss function, which 973 
quantifies the difference between the model's predictions for the training data and the actual 974 
flame data obtained from the LES simulations. This iterative process allows the model to refine 975 
its understanding of how geometry influences flame behaviour. The testing data, unseen by the 976 
model during training, serves as an independent evaluation of the model's generalizability. 977 
Once trained, the model predicts the flame characteristics for the geometries within the testing 978 
set. By comparing these predictions with the actual flame data from the testing set, researchers 979 
can assess the model's accuracy and capacity of predicting the flame patterns for new, unseen 980 
geometries. The validation loss, monitored during training on a subset of the training data, 981 
helps prevent overfitting and ensures the model learns generalizable patterns, not just specifics 982 
of the training data. This approach offers significant advantages. By utilizing a machine 983 
learning model, rapid predictions of flame patterns for a wider range of operating conditions 984 
can be achieved compared with running full LES simulations in every scenario. This enables 985 
more efficient exploration of the design space and optimization of combustion chamber 986 
configurations, significantly reducing computational costs and time. 987 

The LES was conducted with a specific timestep size to ensure numerical stability and high 988 
fidelity in the results. Throughout the simulation process, multiple iterations were performed 989 
at each timestep to ensure convergence of the solution. To validate the effectiveness of the 990 
Surface Field model in predicting flame patterns, 5 random timescales (30k, 50k, 80k, 160k 991 
and 200k) were selected from the LES simulation data to present the results in this study. These 992 
selected timescales were then compared with the predicted results generated by the ML model, 993 
allowing us to evaluate the model's accuracy and reliability in replicating the complex 994 
behaviours observed in the LES data. The LES results shown in Fig. 20 represent the 995 
temperature contours of a fully developed turbulent jet flame, specifically the Sandia Flame D 996 
case. The contours depict the complex flame structure and patterns that arise from the turbulent 997 
flow field and combustion dynamics. The flame exhibits a characteristic jet-like shape, with a 998 
wider base near the nozzle and a narrowing towards the downstream region. This is typical of 999 
turbulent jet flames, where the fuel and air mix and combust as the jet evolves downstream. In 1000 
addition, the temperature contours reveal intricate turbulent structures within the flame, 1001 
including vortices, eddies, and wrinkling of the flame surface. These features are characteristic 1002 
of turbulent combustion and result from the interaction between the turbulent flow field and 1003 
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the chemical reactions. The high-temperature regions, represented by the red and yellow 1004 
colours, indicate the areas of intense combustion and heat release. These regions are 1005 
concentrated towards the centre of the jet, where the fuel-air mixture is richest, and combustion 1006 
occurs, showing the spatial extent of the reacting region and its turbulent nature. On the other 1007 
hand, the ML prediction captures the overall jet-like shape of the flame reasonably well, 1008 
indicating that the model has learned the general flame structure from the LES data. While the 1009 
ML prediction captures some turbulent structures within the flame, the level of detail and 1010 
complexity appears to be lower compared to the LES results. This could be due to limitations 1011 
in the ML model's capacity of fully resolving the intricate turbulent features. The high-1012 
temperature regions in the ML prediction are generally located in the correct areas, but their 1013 
extent and intensity may differ from the LES results. The absolute error contours highlight the 1014 
differences between the LES and ML prediction results. The largest discrepancies between the 1015 
LES and ML prediction appear to be concentrated along the edges and borders of the flame. 1016 
This could be due to the challenges in accurately capturing the highly turbulent and diffusive 1017 
nature of the flame boundaries using the 5000 train steps in the ML model. In the interior 1018 
regions of the flame, the absolute error is generally lower, suggesting that the ML model 1019 
performs better in predicting the overall flame structure and high-temperature regions 1020 
compared to the turbulent details near the flame boundaries. The current ML model, with 5000 1021 
training steps, is robust enough to be used in practical applications. Despite the moderate 1022 
number of training steps, the model shows good alignment with high-fidelity LES results, 1023 
indicating its reliability. The model demonstrates versatility within the same flame 1024 
configuration (flame D) by predicting physically consistent off-design conditions through 1025 
targeted optimization. These optimized outputs align well with experimental benchmarks [26], 1026 
suggesting potential applicability to a range of initial and operating conditions. As such, the 1027 
model can support rapid exploration of different pressure, velocity, and turbulence scenarios, 1028 
making it a promising tool for real-time combustion monitoring and control. To further enhance 1029 
the model's accuracy, additional training steps could be considered. Increasing the size of 1030 
training dataset and incorporating advanced techniques such as transfer learning, and active 1031 
learning could also improve the model's performance. 1032 

The ML model enables rapid predictions compared to traditional CFD simulations, which are 1033 
computationally intensive. To quantify this efficiency, a direct comparison was made between 1034 
the time required to run the LES simulation and the time required to train the NN surrogate 1035 
model, excluding any data preprocessing or postprocessing steps. The LES simulation was 1036 
performed on 40 parallel computing cores, resulting in 12,271 minutes of accumulated CPU 1037 
time, corresponding to 307 minutes of wall-clock time. In contrast, the NN model training was 1038 
performed on a single core and required 711 minutes of wall-clock time (equal to CPU time 1039 
due to single-thread execution). This results in a CPU-time-based speed-up of approximately 1040 
17.25×, indicating a substantial reduction in total computational cost. While the wall-clock 1041 
time of the ML model is longer due to single-core execution, it requires significantly fewer 1042 
computational resources overall. Table 4 summarizes a comparison of the computational costs 1043 
between the LES and NN model, highlighting the efficiency of the surrogate approach for 1044 
repeated predictions and parametric studies. 1045 

Table 4. Comparison of computational costs between the LES and ML surrogate model. Speed-1046 
up refers to total CPU time only. Wall-clock time is presented for reference but is not directly 1047 
comparable due to different parallelisation levels. 1048 
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Module LES ML Speed-up 
Accumulated CPU time (min) 12,271 711 17.25  
Wall-clock time (min) 307 (40 cores) 711 (1 core) – (non-parallel) 

 1049 

 1050 

LES ML Abs. Error 

   
(timestep: 30,000) 

   
(timestep: 50,000) 

   
(timestep: 80,000) 
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(timestep: 160,000) 

   
(timestep: 200,000) 

 1051 

Fig. 20. Comparison of LES and ML model predictions for turbulent jet flame at randomly 1052 
selected timescales for model validation. 1053 

5. Conclusions 1054 

The integration of machine learning (ML) with large eddy simulation (LES) presents a 1055 
powerful framework for accurately and efficiently predicting species mass fractions and flame 1056 
characteristics in partially premixed turbulent jet flames. High-fidelity LES simulations of the 1057 
Sandia Flame D configuration were performed and validated against experimental data, 1058 
capturing complex temperature contours, flame structures, and turbulent flow features. The 1059 
resulting dataset was used to train three ML models—Neural Networks (NN), Linear 1060 
Regression (LR), and Decision Tree Regression (DTR)—with the NN model emerging as the 1061 
most accurate surrogate, achieving R² values above 0.9998 and MAE below 1.0×10⁻⁴ across 1062 
all species. Additionally, a principal component analysis (PCA) of the input feature space 1063 
confirmed that the dataset lies on a compact, physically structured manifold. The first seven 1064 
components captured over 95% of the variance, reinforcing the model’s robustness and the 1065 
physical consistency of the training data. 1066 

Beyond forward prediction, the study incorporated a comprehensive sensitivity analysis, which 1067 
identified temperature and progress variable as the most influential inputs across all species. 1068 
Uncertainty quantification confirmed model confidence in well-mixed regions and revealed 1069 
expected variability for highly reactive species such as the hydroxyl radical, particularly in 1070 
zones of strong turbulence-chemistry interaction. The NN model was further used for targeted 1071 
optimisation, where ten off-design combustion states were successfully generated to match 1072 
experimental targets from experimental data. Four fitness functions—Euclidean distance, 1073 
Manhattan distance, Collinearity coefficient, and Amplitude correlation coefficient—were 1074 
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applied to guide the optimisation process. Manhattan distance consistently demonstrated the 1075 
lowest absolute errors for key species such as CH₄ (0.0014), OH (0.0002), and O₂ (0.0072), 1076 
indicating its superior accuracy and compatibility with the LES benchmark data. Lastly, the 1077 
NN surrogate achieved a 17.25× reduction in accumulated CPU time compared to LES solver, 1078 
demonstrating substantial computational savings and strong potential for use in real-time 1079 
combustion diagnostics, optimisation, and design workflows.  1080 

However, the study has also identified several limitations. For instance, more complex ML 1081 
models such as Gaussian Process Regression (GPR) and ensemble methods like Random Forest 1082 
Regression (RFR) or Gradient Boosting Regression (GBR) were not included in this work. 1083 
While these models are known for their high accuracy, especially in handling non-linear and 1084 
multi-dimensional data, their application in this context is constrained by the large dataset size 1085 
and the high spatial variability present in LES fields—particularly for species such as OH that 1086 
exhibit sharp fluctuations. These ensemble methods may also require substantial computational 1087 
resources and careful tuning to avoid overfitting when applied to large-scale flame field 1088 
predictions. Additionally, the training of ML models for reacting flows remains data-intensive, 1089 
with risks of overfitting or underfitting if data quality or diversity is insufficient. Real-time 1090 
deployment of complex models may be impractical without high-performance computing 1091 
access. Another challenge is generalization. ML models trained on specific flow regimes or 1092 
flame configurations may not accurately extrapolate to unseen conditions. Finally, ML model 1093 
sensitivity to noise or missing data underscores the need for robust preprocessing and 1094 
validation. 1095 

Future study should focus on the use of ensemble models such as RFR and GBR, particularly 1096 
for reaction-rate prediction and molecular-scale surrogate modelling, where their ability to 1097 
handle localised non-linearities and feature interactions could offer significant advantages. 1098 
Efforts should also continue toward improving dataset coverage, numerical stability, and the 1099 
integration of physics-informed learning techniques. By addressing these challenges, ML-1100 
driven predictive frameworks can be further enhanced for practical combustion modelling. 1101 
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