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Machine learning-based prediction of species mass fraction and flame
characteristics in partially premixed turbulent jet flame
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School of Engineering, University of Derby, DE22 3AW, UK

Abstract

This study uses machine learning (ML) and large eddy simulation (LES) to predict the mass
fractions of species and flame characteristics in partially premixed turbulent jet flames. A
flamelet-based chemistry technique was used to perform high-fidelity LES simulations of
Sandia Flame D. The resulting dataset was used to train three ML models—Neural Networks
(NN), Linear Regression (LR), and Decision Tree Regression (DTR)—for surrogate prediction.
Among them, the NN model achieved the highest accuracy, with R-squared (R?) values
exceeding 0.9998 and Mean Absolute Error (MAE) values below 1.0x107* across all species.
Sensitivity analysis identified temperature and progress variable as dominant input features.
Uncertainty quantification confirmed high model confidence in stable regions, while elevated
uncertainty was observed for the hydroxyl radical due to its short-lived, highly reactive nature
in turbulent flame fronts. The NN surrogate was also used for targeted optimisation, enabling
to find ten combustion states with species compositions that were consistent with experimental
data within the reported range of uncertainty. Four fitness functions—Euclidean distance,
Manhattan distance, Collinearity coefficient, and Amplitude correlation coefficient—were
applied to guide the optimisation process. Manhattan distance consistently demonstrated the
lowest absolute errors for key species such as CHa(0.0014), OH(0.0002), and O2(0.0072),
indicating its superior accuracy and compatibility with the LES benchmark data. Additionally,
the ML surrogate achieved a 17.25x% reduction in total computing time compared to LES solver,
promising efficient parametric exploration and rapid predictive capability. These findings
demonstrate the potential of ML-based surrogates to support real-time combustion diagnostics,
optimization, and design.

Keywords: Partially premixed combustion; Turbulent jet flow; Flame pattern; Species mass
fraction; Machine learning

1. Introduction

Combustion is a fundamental process with wide-ranging applications in various industrial
sectors. Accurate modelling and prediction of turbulent combustion systems are essential for
optimizing performance, improving efficiency, and reducing emissions [1]. Combustion
processes, particularly those involving turbulent flows, are inherently complex due to the
interplay of fluid dynamics, chemical reactions, and heat transfer. The accurate prediction and
modelling of such processes are crucial for the design and optimization of combustion systems,
which are pivotal in energy production, propulsion, and manufacturing industries. This
complexity is further amplified in the context of partially premixed flames, such as those found
in methane/air combustion systems, where the non-homogeneous mixture of fuel and oxidizer
introduces additional variability in flame behaviour and emissions [2]. Recent advancements
in computational power and numerical methods have enabled significant progress in the field
of turbulent combustion modelling. However, the development of models that can accurately
predict species mass fraction, flame characteristics, and emissions in turbulent jet flows with
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partially premixed methane/air flames remains a challenging endeavour. This is due to the
intricate coupling between the turbulence and chemical kinetics, which requires detailed
representation in computational models to achieve predictive accuracy [3-6]. Flamelet
combustion is characterized by partially mixed reactants, resulting in a flame structure with
distinct regions. The flamelet model approach has emerged as a promising method for tackling
the complexities of turbulent combustion, particularly for partially premixed flames. This
approach simplifies the multidimensional nature of turbulent flames into a series of one-
dimensional flamelets, thereby reducing computational complexity while retaining the
essential physics of combustion. Despite its advantages, the flamelet model's reliance on
precomputed libraries of laminar flame solutions necessitates careful consideration of the
underlying assumptions and their applicability to real-world combustion scenarios [7].

In the context of turbulent combustion modelling, large eddy simulation (LES) has emerged as
a powerful tool for understanding and predicting the complex interactions between fluid
dynamics, chemistry, and heat transfer in non-premixed and premixed combustion systems.
LES is particularly useful in capturing the large-scale turbulent structures that dominate the
behaviour of combustion systems while modelling the smaller-scale effects that are not
explicitly resolved. This approach has been successfully applied to various combustion
problems, including partially premixed flames, which are relevant to practical combustion
devices such as gas turbines, internal combustion engines, and industrial burners [8-11]. Sun
et al. [12] conducted a LES study on a 1 m methanol pool fire, uncovering buoyancy-driven
flame motion and notable temporal-spatial variations in radiative heat feedback. Their
investigation, employing the fire FOAM framework, delved into flame properties and thermal
radiation characteristics. However, the study highlights limitations in radiation transfer models,
resulting in challenges when predicting the heat feedback due to ray effects causing non-
uniform radiative heat flux distributions. Soteriou [13] introduced a new specified filter
approach to LES for turbulent reacting flows, addressing reproducibility and predictive
limitations in modelling flames. The authors identified the root causes of the problem,
including grid-dependency and predictive limitations related to subgrid modelling and
Kolmogorov theory. Gong et al. [14] employed LES to study premixed turbulent counter-flow
flames, capturing local extinction, re-ignition, and the influence of flame stoichiometry. They
utilized a transported probability density function approach to simulate sub-grid scale
turbulence-chemistry interactions. However, the study acknowledges difficulties in evaluating
filtered values of chemical source terms and the absence of subgrid fluxes models. Wu et al.
[15] conducted LES to examine the impact of equivalence ratio fluctuations on a swirl-
stabilized premixed flame. Their study revealed strengthened inner shear layers and induced
combustion instability at different frequencies. They also employed a new combustion model
with turbulence modification and a two-step methane oxidation mechanism to simulate the
interaction between turbulence and chemical reactions. Wang et al. [16] investigated the
turbulent non-premixed liquid oxygen and methane flames under transcritical conditions using
LES. The focus of the research was on understanding the effects of differential diffusion on the
flame and flow structures. The study aimed to analyse the impact of differential diffusion on
flame behaviours. The findings revealed an underestimation of flame length with unity Lewis
numbers and a more significant flame expansion with unity Lewis numbers.

However, LES simulations can be computationally expensive due to the need to resolve large
scale motions and model sub-grid scale effects. This complexity is further amplified when
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considering the challenges of accurately modelling the interactions between turbulence,
chemistry, and transport processes in partially premixed methane/air flames. To overcome these
challenges, researchers have explored the integration of machine learning (ML) techniques
with LES models to enhance the predictive capabilities of combustion simulations [17]. ML
techniques have been integrated with LES models to improve combustion simulations by
predicting subgrid-scale filtered density functions (FDFs) [18-19]. These techniques involve
training artificial neural networks (ANNs) on combustion data to enhance the accuracy of
predicting progress variables and chemical source terms in turbulent flames [20]. Additionally,
ML models have been employed to predict the combustion metrics based on flow field data,
significantly reducing computational time while maintaining good correlation with
computational fluid dynamics (CFD) simulations. The key lies in coupling ML algorithms with
physical and computer models to leverage prior knowledge and constraints, thereby enhancing
the performance of these tools in multi-physics problems like combustion [21].

In recent years, probabilistic deep learning (DL) models have been investigated as an
alternative for turbulent premixed combustion modelling in the context of LES [22]. These
models can capture the stochastic nature of turbulent premixed combustion, which is essential
for accurately predicting the filtered reaction rate and other combustion-related quantities. For
instance, a probabilistic data-driven approach has been proposed to compute the filtered
reaction rate in LES using a conditional generative adversarial network and a Gaussian mixture
model. This approach has been shown to provide accurate predictions of the filtered reaction
rate, even when tested on unseen timesteps and untrained LES filter widths [23]. Another
promising avenue for improving the predictive capabilities of LES models is the use of
manifold-based combustion models. These models employ a projection of the thermochemical
state onto a low-dimensional manifold, which can be generated using data-driven methods such
as principal component analysis (PCA) or principal component analysis-based autoencoders
[23]. These manifold-based models are often coupled with LES, allowing for the simulation of
large-scale turbulent structures while modelling the smaller-scale effects using ML. By
combining PCA with ANNs in a chemistry tabulation approach, a more accurate representation
of the thermochemical manifold can be achieved, leading to improved prediction accuracy,
particularly for major species and thermophysical properties in complex combustion scenarios
like diesel engines [24]. This integration enhances the interpretability and computational
efficiency of LES models, enabling a deeper understanding of combustion process [25].

Machine learning (ML) techniques present a transformative opportunity to enhance the
predictive accuracy and computational efficiency of combustion models. This study aims to
integrate ML with large eddy simulation (LES) to improve the modelling of species mass
fractions and flame characteristics in partially premixed turbulent jet flames. The primary
objectives are to develop and validate ML models—Neural Networks (NN), Linear Regression
(LR), and Decision Tree Regression (DTR)—trained on high-fidelity LES data, with a
particular emphasis on the NN model's ability to outperform traditional solvers. Beyond
evaluating accuracy and computational speed, this work introduces targeted optimization
strategies to refine ML predictions, ensuring consistency with experimental datasets.
Additionally, the study systematically quantifies epistemic and aleatoric uncertainties in ML
predictions, identifying how turbulent-chemistry interactions influence predictive confidence.
By addressing challenges related to large dataset fluctuations and data quality limitations, this
research bridges the gap between physics-based combustion modelling and data-driven
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approaches. The findings demonstrate that ML-assisted LES offers a scalable, efficient, and
experimentally consistent alternative to conventional computational fluid dynamics (CFD)
techniques, setting the stage for robust real-time combustion simulations.

2. LES of Jet Flame

This study focuses on conducting LES of partially premixed combustion in a turbulent jet flow
using the STAR-CCM+ software. The simulation framework incorporated the Flamelet
Generated Manifold (FGM) approach, which efficiently handles the chemistry-turbulence
interaction by precomputing a manifold of flamelets under various conditions. This method,
combined with the y+ wall treatment, ensures accurate near-wall turbulence modelling. This
method relies on creating a chemical library based on one-dimensional unstrained premixed
flames, which is then used to model the complex chemistry of multi-dimensional flames. The
FGM method allows for a significant reduction in computational cost while maintaining high
accuracy in predicting flame behaviour, making it suitable for both laminar and turbulent
combustion simulations [41]. The LES model utilized second-order convection schemes and
algebraic relationships for mixture fraction variance to maintain high fidelity in scalar transport
predictions. Second-order convection schemes are employed to reduce numerical diffusion and
enhance the accuracy of convective transport, which is crucial for capturing the detailed
structures in turbulent flows. Algebraic relationships for mixture fraction variance provide a
robust method for modelling scalar fluctuations, ensuring that the effects of turbulence on
scalar mixing are accurately represented. These techniques are essential for preserving the
integrity of scalar fields, which directly influence the prediction of combustion processes [42].
The simulation is based on the Sandia Flame D specification, which serves as a representative
case for studying such combustion processes [26-33]. The Sandia Flame D is represented as a
3D cylinder with three different velocity inlets: air co-flow, pilot gases, and fuel, while the
outlet is set as a pressure outlet. A mesh consisting of approximately 4.3 million cells has been
generated to capture the relevant flow features and flame dynamics (See Fig. 1).
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Fig. 1. Schematic and mesh visualisation of the turbulent jet burner (not-to-scale): (a) body
view and (b) nozzle view.

To ensure that the selected mesh captures the relevant turbulent and thermal features of the
flame, a mesh sensitivity analysis was conducted using base sizes of 10mm, 9mm, 7.5mm,
Smm, and 4mm, corresponding to approximately 0.65million, 0.9million, 1.4million,
4.3million, and 7.9million cells, respectively. Fig. 2(a) shows the centreline temperature
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profiles for the different meshes compared against experimental measurements. The coarser
meshes (9mm and 10mm) show delayed ignition and lower peak temperatures compared to
experimental observation. The 7.5mm mesh improves the peak temperature prediction but still
underestimates temperature in the near-flame region. The 5S5mm mesh (approximately
4.3million cells) offers the best overall agreement with experiment, accurately capturing the
peak temperature magnitude and location near z/D~=40, as well as the decay trend downstream.
The 4mm mesh provides a slightly higher peak and sharper gradients but only marginal
improvement over the Smm one at substantially increased computational cost. Fig. 2(b)
presents the temperature contours for four mesh sizes (9mm, 7.5mm, Smm, and 4mm), with
axial markers at z/D=15,30,60 to indicate key regions of flame development. The flame
becomes increasingly wrinkled and turbulent with mesh refinement. At 9mm, the flame is
smoother and less detailed, while the Smm and 4mm meshes capture sharper flame fronts,
eddies, and fine-scale turbulent structures, particularly around z/D=30 and downstream
regions. This improved spatial resolution supports better capture of turbulent mixing and flame
stabilization. Given the close temperature profile agreement and flame structure resolution, the
Smm mesh was selected as the optimal compromise between physical fidelity and
computational cost for all LES and ML surrogate data generation.
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Fig. 2. Mesh independence study for Sandia Flame D: (a) Centreline temperature profiles for
five mesh resolutions (10mm, 9mm, 7.5mm, Smm, and 4mm) compared with experimental
data and (b) Temperature contours for four mesh resolutions (9mm, 7.5mm, Smm, and 4mm)
showing increasing flame wrinkling and turbulent structures with mesh refinement. The left
vertical axis is marked by z/D, indicating key regions of flame development and stabilization.
Vertical dashed lines mark axial positions at z/D=15, 30, 60.

The reacting flow was characterized using a multi-component gas model, comprising seven
primary species: CH4 (methane), CO (carbon monoxide), CO: (carbon dioxide), H O (water),
N> (nitrogen), O2 (oxygen), and OH (hydroxyl). The chemical kinetics were detailed, with 53
species and 325 reactions modelled using Arrhenius coefficients. These reactions included
complex mechanisms involving third-body efficiencies and reverse reaction coefficients,
ensuring that the simulation captured the intricate details of combustion chemistry. Third-body
efficiencies account for the effect of additional molecules in stabilizing or destabilizing reactive
intermediates, while reverse reaction coefficients ensure the thermodynamic consistency of
reversible reactions. These detailed kinetic mechanisms are critical for accurately predicting
the rates of chemical reactions and the overall behaviour of the combustion process [43]. The
co-flow inlet supplies ambient air (N> and O;) to the domain, which in turn feeds oxidizer to
the combustion front. In the meantime, the pilot inlet feeds high-temperature flue gas (COa,
H>0, and O3) to ignite the fuel and sustain the diffusion flame by acting as a thermal trigger.
Finally, the fuel inlet injects low-temperature high-velocity unburnt hydrocarbon gas and
oxidizer (CH4 and O3) into the domain. The flame features a fuel jet, surrounded by a premixed
pilot and an air co-flow. The fuel stream supplies a diluted mixture of 25% methane and 75%
air (by volume) with a bulk velocity of 49.6m/s and the main jet nozzle has an inner diameter
of 7.2 x 10>m, resulting in a jet Reynolds number of 2.24 x 10*. The annular pilot burns a lean
mixture (equivalence ratio = 0.77) of C2Ha, Ho, air, CO., and N>, stabilizing the flame with a
bulk velocity of 11.4m/s, while the laminar co-flow of air has a bulk velocity of 0.9m/s. The
central main jet consists of a methane-air mixture with an equivalence ratio of 3.174, above the
upper flammability limit of methane.
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Flame D exhibits local extinction to a limited degree. The pilot flame burns a mixture of C2Ho,
Ho, air, CO», and N2, with an enthalpy and equilibrium composition equivalent to a mixture of
methane and air. The comprehensive discussion of the governing equations, turbulent flow
formulation, reacting flow dynamics, and filtering in the LES of Sandia Flame D is extensively
documented in Refs. [28-32], supplemented by additional detailed experimental data in Refs.
[25-26, 34-35]. In the pursuit of accurately representing the complex physics inherent in the
unsteady simulation, a range of physics models have been meticulously selected. Among these,
the FGM model holds a pivotal role, serving as a combustion chemistry reduction technique
that creates a low-dimensional manifold to capture critical aspects of the internal structure of
the flame front. It effectively incorporates the transport and chemical phenomena observed in
three-dimensional flames, enabling the precise representation of the combustion process within
the turbulent jet flow with specific emphasis on the fluid stream oxidizer and fuel, FGM kinetic
rate, FGM reaction, and Flamelet dynamics [33]. Additionally, complementary physics models,
including turbulence models such as the Smagorinsky model, have been incorporated to
comprehensively address both large-scale turbulent structures and the modelling of smaller
scales, thereby facilitating a thorough understanding of flame behaviour and its interaction with
the turbulent jet flow [36].

To ensure numerical stability throughout the simulation of this high-Re turbulent flow, a set of
conservative and robustness-enhancing solver strategies was employed. The simulation was
performed using an Implicit Unsteady formulation with second-order temporal discretisation,
which is particularly suited for LES of unsteady reacting flows. A fixed timestep of 1x107¢s
was chosen based on the Courant—Friedrichs—Lewy (CFL) condition, resulting in CFL numbers
consistently below 0.1 and thereby maintaining temporal stability [74]. Additional stabilisation
measures included the activation of bounded-central convection schemes, Venkatakrishnan-
type gradient limiters, and positivity enforcement (positivity rate limit=0.2) to prevent
nonphysical solution behaviour. The use of flow boundary diffusion and a flux update
dissipation factor of 0.5 further suppressed numerical oscillations at open boundaries. These
strategies collectively ensured solver stability without compromising the resolution of scalar
transport and flame dynamics. Although a full timestep sensitivity study was not performed,
the present timestep is considerably smaller than that used in related validations of LES studies
on Sandia Flame D (e.g., [75]). Furthermore, the observed agreement with experimental
profiles in both mean and RMS fields supports the adequacy of the chosen resolution.

2.1. Governing equations

The study adopts LES to model partially premixed combustion in a turbulent jet flow using
STAR-CCM+ software. Based on the Sandia Flame D configuration, the continuity equation
ensures the mass conservation within the flow field [37-40]:

ap

E"'V'(W):O (1)

This filtered equation accounts for the density p and the filtered velocity & .The filtered
Navier-Stokes equations account for momentum conservation:

a(pu)
Jt

where p is the pressure, u is the dynamic viscosity, and F represents body forces and is the ©
subgrid-scale stress tensor which accounts for the effects of the unresolved, smaller scales of

+V-(pu Qut)=-Vp+V-(uVu)+F—-V-1 2)
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turbulence on the resolved flow field. It models the momentum transfer caused by the SGS
motions. The energy equation describes the conservation of energy in the flow:

d(pE)
at

where E is the total energy, k is the thermal conductivity, E is the temperature, ® is the

+V-(pEu) = V- (kVT)+® +Q 3)

dissipation function, and 0 represents heat addition due to combustion. The transport equations
for chemical species are given by:

d(pY1)
Jt

where @ is the resolved velocity field and T;;qs represents the SGS flux of species i for the

+V- (pYu) = V- (pD,VY, — 7;7°) + &, (4)

effects of sub-grid scale turbulence on the transport of species i, and the term V- (pD,VY,)
represents the molecular diffusion of species i. In LES, the effects of sub-grid scale (SGS)

turbulence on species transport must be accounted. The SGS flux Tf;ig * can be modeled using

eddy diffusivity concepts:
1y7° = pD,VY, (5)

where D, is the turbulent diffusivity, which is often modeled as D, = C,A?|S| with C; being the
Smagorinsky constant, A the filter width, and |S| the magnitude of the strain rate tensor. The
rate of production or consumption of species i(@;) in Eq. (4) is determined by the chemical
kinetics of the reactions involved. For a general reaction:

ViR > v{'P; (6)

where v; and v;’ are the stoichiometric coefficients of the reactants (R;) and products (P;),
respectively. The reaction rate can be described using Arrhenius-type expressions:

o = 5 0f = vk T[] ™

where k, is the reaction rate constant for reaction r, and [C]] is the concentration of species j
[38-40].

3. ML Models

The present work incorporates ML techniques for real-time predictions within the design space
based on LES simulation data. By training a ML model using the simulation data, the study
enables enhanced understanding and prediction of the Sandia Flame D. Three ML models,
Neural Networks (NN), Linear Regression (LR), and Decision Tree Regression (DTR), were
selected for comparison to determine the most optimal and effective model. For consistency
and fair comparison, the same set of 17 input features was used across all ML models. The
selection criteria were based on the model's capacity of handling large datasets and their
accuracy in predictions. Neural Networks were chosen for their exceptional capability to
capture the non-linear relationship within large datasets. These models are known for their high
accuracy and adaptability, making them suitable for complex phenomena like turbulent flames.
Academic literature supports the effectiveness of NNs in combustion modelling due to their
ability to learn intricate patterns in data [17, 44-45]. Linear Regression was included as a
baseline model to understand primary linear relationships within the data. Despite its
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simplicity, it is computationally efficient and can quickly process large datasets, making it a
valuable tool for initial analyses and comparisons. It serves as a benchmark for more complex
models and helps highlight the benefits of non-linear approaches if applicable [46]. Decision
Tree Regression was selected for its interpretability and ability to manage non-linear
relationships effectively. This model splits the data into subsets based on feature values,
creating a tree-like structure that provides clear insights into feature importance. Decision Trees
are beneficial in engineering problems, including combustion modelling, as they offer a balance
between accuracy and interpretability [47]. Training a ML model using simulation data
enhances the understanding and prediction of the Sandia Flame D, leveraging the strengths of
each selected model to find the most effective approach for predicting species mass fraction
and flame characteristics. Fig. 3 shows a schematic of the methodology integrating LES of a
turbulent jet flame with ML techniques to predict the species mass fraction. The process begins
with data generation for the partially premixed turbulent jet flame and validation of LES results
with experimental data. This involves defining the partial differential equations (PDEs), initial
conditions (ICs), and boundary conditions (BCs) within the LES simulation using CFD
packages such as STAR-CCM+. Once the LES data is generated, the next step is data cleaning,
which is handled by Al models using platforms like Monolith Al and PyCharm. This ensures
the data is ready for ML algorithms by removing any inconsistencies or errors. The input vector,
x, consisting of various variables, is then prepared for ML training. The data is split into a
training set (80%) and a test set (20%) to train the ML models and evaluate their performance.
The training data includes geometrical data, mesh data, and tabular data. Deep learning (DL)
models are then employed to predict physical parameters and perform testing. The next step
involves using a surface field model to predict the flame pattern, followed by evaluating the
models using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE),
Pearson Coefficient (PC), and R-squared (R?). These metrics help select the best ML model for
the task. Finally, the best-performing model is used for final predictions of the species mass
fraction in the turbulent jet flame. This comprehensive methodology ensures accurate and
reliable predictions by leveraging advanced simulation techniques and ML models.
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Fig. 3. Schematic of the methodology integrating LES with ML for surrogate modelling. The
workflow illustrates a non-intrusive, a priori approach where LES is used to generate high-
fidelity data independently, followed by the development of two separate ML pipelines:(I) a
tabular-input-based ML surrogate models (NN, LR, DTR) trained to predict species mass
fractions from LES-derived features and (II) a deep learning surface field model trained on
geometric, mesh, and tabular data to predict temperature distributions on a 2D plane. Both
models are trained in post-LES and are not coupled within the CFD framework.

3.1. Dataset structure

The dataset employed in this study is derived from LES of Sandia Flame D. A total of 20,000
physical timesteps were simulated, and data were extracted every 100 timesteps, yielding 200
distinct LES snapshots. From each snapshot, spatially distributed flow variables and scalars
were sampled across the entire 3D domain, resulting in a comprehensive dataset consisting of
approximately 60,000 rows (spatial samples) and 46 columns (features). To preserve the spatial
and temporal structure of the flame field, data were not randomly shuffled at the cell level.
Instead, samples from selected timesteps were grouped during the train-test split to maintain
spatial-temporal coherence and avoid leakage of spatial correlations between training and test
sets. This approach ensures that the ML models are evaluated on physically independent but
statistically consistent samples. As it is common issue in turbulent reactive flow data, the
presence of noise can negatively affect model performance. Noisy data may lead to overfitting,
where the model learns spurious patterns that do not generalize well to unseen conditions. To
address this, the dataset was pre-processed using outlier detection, feature scaling, and cross-

validation (discussed in Secs. 3.2 and 3.3), ensuring robust learning and reliable generalization
[44, 48-49].

Data cleaning was performed using PyCharm version 2023.1.1, which offers robust support for
remote Jupyter notebooks and enhanced data manipulation capabilities. The process involved
several key steps to ensure the integrity of the dataset and reduce noise. First, the pandas library
was used to identify and remove duplicate entries from the dataset. This step ensured that each
data point was unique and prevented redundancy. Next, outliers were detected using statistical
methods and visualized with tools such as box plots. The numpy library was then employed to
effectively manage these outliers. Missing values in the dataset were handled using the
Simplelmputer class from the scikit-learn library. This class provided various imputation
strategies, such as replacing missing values with the mean or median of the available data. By
following these steps, the data cleaning process ensured the integrity and quality of the dataset,
making it more suitable for analysis and further processing.

To further evaluate the structure of the dataset and justify the feature dimensionality from a
physical and statistical standpoint, a principal component analysis (PCA) was conducted. Fig.
4(a) shows the projection of the first two principal components (PC1 and PC2), coloured by
temperature and overlaid with kernel density contours representing sample concentration in the
latent space. This 2D projection captures 56.6% and 17.4% of the total variance along PC1 and
PC2, respectively, with PC1 aligned closely with combustion progress and temperature fields,
as also identified in the sensitivity analysis (see Fig. 18). The shape and density of the
distribution confirm a structured, low-dimensional manifold embedded in the 17-feature space,
validating the use of surrogate models for interpolation and regression. Fig. 4(b) shows the
scree plot of explained and cumulative variance. The first seven components capture more than
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95% of the total variance. This not only confirms that the dataset does not suffer from
unmanageable dimensionality but also addresses concerns regarding overfitting and feature
redundancy. The scree plot shows a steep drop in variance beyond PC3, indicating that most
physical phenomena (e.g., heat release, mixing, progress) are encoded in the first few
orthogonal directions. The shaded region up to PC7 demonstrates that the input space is rich
but compactable, consistent with the data structure expected from LES of turbulent
combustion. These PCA results provide a formal basis for validating the selected features and
their role in ML predictions. The findings reinforce the physical relevance of the dominant
input features identified in the sensitivity analysis and support the robustness of the NN model
architecture discussed in Sec. 4.2. However, it is worth noting that the original LES data already
demonstrated strong physical consistency, as validated through comparison with experimental
measurements in Sec. 4.1. This level of agreement confirms the quality and reliability of the
dataset, indicating that only light-touch data cleaning was required. As a result, the applied
preprocessing steps such as duplicate removal and basic outlier handling were limited in scope
and did not alter key physical characteristics, including mixing behaviour, scalar gradients, and
flame structure. The ML models employed in this work are non-intrusive a priori surrogates.
They are trained on data extracted from standalone LES simulations and are not coupled within
the CFD solver. Each model is trained and applied post-LES for predictive analysis and
parametric exploration.
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Fig. 4. Principal component analysis (PCA) of the LES-derived ML dataset: (a) Scatter plot of
PC1 vs. PC2 coloured by temperature and overlaid with kernel density contours, indicating
sample concentration and (b) Scree plot showing explained variance per component and
cumulative variance. A shaded region highlights the first seven PCs that together capture over
95% of the total variance, confirming the structured and low-dimensional nature of the input
space.

Using a more extensive training dataset can significantly enhance the accuracy of ML models
due to several key factors. First, a larger dataset offers a broader representation of the
underlying patterns and relationships within the data, allowing the model to learn more
comprehensively and make more accurate predictions. This extensive exposure helps the model
to capture the intricacies and variations within the dataset, leading to better performance.
Second, a larger dataset helps mitigate the effects of outliers or noise. With more data points,
the influence of any anomalies is reduced, resulting in a model that can be easily generalized
and is more robust. This is particularly important in ensuring that the model performs well not
only on the training data but also on new, unseen data [17]. The practice of adhering to the 80-
20% rule for data splitting plays a crucial role in this context. By allocating 80% of the data for
training, the model has ample opportunity to learn the significant patterns and relationships.
The remaining 20% of the data is reserved for testing, which is essential for evaluating the
model's performance on unseen data. This split ensures that the model is not excessively
dependent on the training data but can be effectively generalized, providing a realistic estimate
of its performance in real-world scenarios. By following this approach, the model benefits from
a well-balanced training and testing process. The training phase allows the model to gain a
deep understanding of the data, while the testing phase offers a robust evaluation of its
predictive capabilities, ensuring that the model is both accurate and reliable when applied to
new data [44]. Using the train_test split function from the scikit-learn library ensures that the
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dataset is split in a way that minimizes bias and maintains the consistency of data distribution
across both sets.

In this study, several key parameters have been selected based on the previous research in the
field of gas mixture properties and combustion analysis. These parameters include density,
dynamic viscosity, entropy of gas mixture (EGM), and mass flow rate (MFR). These
parameters have been identified as significant contributors to the combustion process and
species formation in gas mixtures. The initial selection was made to focus on the most critical
variables that have a direct and profound impact on the combustion process. However, the study
incorporates additional parameters such as molar concentrations (MC) of various species (CHa,
CO, CO2, H20, N2, Oy, and OH), pressure, progress variable (PV), mass fraction (MF), velocity,
SGS-turbulent kinetic energy (TKE), temperature, thermal conductivity, and geometrical
parameters. These parameters collectively capture the multifaceted nature of combustion
processes, including fluid dynamics, chemical kinetics, thermodynamics, and transport
phenomena. These inputs are selected based on their relevance and significance in accurately
modelling and predicting the output parameters, which include MF of CHs, CO, CO», H>0, N>,
O, and OH. The chosen inputs are critical for capturing the intricate details of the combustion
process for several reasons. Density and dynamics viscosity are fundamental physical
properties that influence fluid flow and mixing behaviour within the combustion chamber.
Accurate representation of these properties helps model the flow dynamics and turbulence
accurately [50]. Entropy changes are indicative of the energy transformations and the
irreversibility of processes within the combustion system. This parameter helps understand the
thermodynamic efficiency of the combustion process [51]. MFR directly affects the fuel-air
mixture entering the combustion chamber, influencing the combustion efficiency and the
formation of various species [52]. The concentrations of CHs4, CO, CO2, H20, N3, Oz, and OH
are crucial for understanding the chemical reactions taking place during combustion. These
concentrations determine the rates of formation and consumption of different species,
impacting the overall combustion characteristics and emissions [53]. Pressure and temperature
are also critical for determining the state of the reactants and products. Pressure influences
reaction rates and species equilibrium, while temperature affects the kinetics and
thermodynamics of combustion reactions [54]. Turbulence significantly impacts the mixing of
fuel and oxidizer, flame stability, and heat transfer within the combustion chamber. Accurate
modelling of turbulence parameters like SGS-TKE is essential for realistic predictions of
combustion behaviour [55].

The selection of these parameters is crucial as they are interrelated and help understand the
intricate relationships between the inputs and outputs of the predictive models. To achieve this
goal, a sensitivity analysis has been conducted using the Sobol method with first-order variable
combinations. This advanced analysis technique allows to examinate both direct effects and
interactions between the parameters on the model outputs. This analysis visually demonstrates
the effects of some input parameters on the respective model outputs. Fig. 5 presents a heatmap
that visualizes the correlation matrix between different inputs (x-axis) and outputs (y-axis)
obtained from a sensitivity analysis. The colour intensity within the heatmap represents the
strength of the correlation between the variables. The sensitivity analysis reveals that the
chosen inputs have major impacts on the prediction of mass fractions of the species. Amongst
the parameters, density, temperature, pressure, and molar concentrations exhibit the most
significant impact on the outputs. This fundamental understanding of parameter interactions
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and sensitivities is critical to developing accurate and reliable ML models in combustion
analysis.

MEF-OH
MF-02
MF-N2
MF-H20
MF-C20
MF-CO

MF-CH4 _

Fig 5. Heatmap of correlation matrix for sensitivity analysis results for inputs and outputs.
3.2. ML algorithms

The task in the present work is to solve a regression problem, which falls under the category
of supervised learning. This approach is appropriate because it involves predicting continuous
outputs (species mass fractions) based on input data. The implementation of the three selected
models was facilitated using the Monolith Al platform, a Python-based platform that supports
a wide array of machine learning algorithms [56].

For LR model, the following hyperparameters were optimized: maximum depth, minimum
split samples, and minimum leaf samples. Maximum depth was set to None or a high value to
allow the decision tree to grow until all leaves are pure or contain fewer samples than the
minimum required for splitting. This setting helps capture complex relationships but can lead
to overfitting if not well regularized [57]. Minimum split samples were typically set to small
values, such as 2 or 5, to ensure that nodes could be split even with small sample sizes,
preventing the model from splitting nodes with too few samples [58]. Minimum leaf samples
were set to small values, e.g., 1 or 5, allowing the decision tree to create very small leaf nodes,
which helps capture the individual data points and improve model flexibility [59]. The cross-
validation splitting strategy used was K-fold with 5 folds, and metrics like Mean Squared Error
(MSE) and R-squared (R?) were employed to evaluate model performance [60]. For DTR
model, similar considerations for depth, split samples, and leaf samples were applied. Cross-
validation and hyperparameter tuning ensured the model's robustness against overfitting and
underfitting.

In the case of NN, several hyperparameters were optimized, including the number of models
for comparison, batch size, number of hidden layers, hidden layer size, intermediate layer
activation function, dropout fraction, and cross-validation splitting strategy. Randomized
search was used for hyperparameter tuning, allowing exploration of a wide range of values
with fewer trials compared to exhaustive search. The number of models for comparison was
limited to manage computational costs while exploring diverse configurations. Appropriate
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batch sizes, typically between 32 and 256, were selected to balance the computational
efficiency and convergence stability. The number of hidden layers was set between 1 to 3,
providing a balance of model complexity and training time. Hidden layer sizes of 32, 64, and
128 were used to provide sufficient learning capacity without excessive computational
demands. Intermediate layer activation functions such as ReLU (Rectified Linear Unit), ELU
(Exponential Linear Unit), and Swish were chosen for their effectiveness in different scenarios.
Dropout fractions of 0.05 to 0.1 helped avoiding overfitting by regularizing the model. K-fold
cross-validation with 5 folds was used, providing robust model evaluation. Mean Absolute
Error (MAE) was selected as the cross-validation scoring metric for its ease of interpretation
and clear measure of prediction accuracy, less sensitive to outliers compared to the Root Mean
Squared Error (RMSE) [61]. Fig. 6 illustrates the architecture of the NN model used in this
study, designed to handle the given dataset effectively and to avoid underfitting or overfitting
through strategic architectural choices and regularization techniques. The NN architecture
begins with an input layer, referred to as the visible layer, which consists of 17 inputs (X =
17). These inputs represent the features of the dataset that will be used to make predictions.
Following the input layer, the data is processed through a series of layers, each with specific
roles and configurations. First, the data passes through a set of activation functions. Activation
functions then introduce non-linearity relations into the model, enabling the NN to learn
complex patterns.

The first hidden layer in the network consists of 32 neurons. This layer processes the input data
through its neurons, applying the activation function to generate its output. The number of
neurons in hidden layers is often chosen as a power of 2, such as 32, 64, or 128, to optimize
the computational efficiency and performance of the model [62]. After the first hidden layer, a
dropout layer with a dropout rate of 0.05 is introduced. Dropout is a regularization technique
used to avoid overfitting by randomly setting a fraction of input units to zero at each update
during training time, which helps make the model robust and prevent it from becoming too
dependent on any specific neurons. The second hidden layer consisting of 64 neurons is then
followed. After this layer, another dropout layer is applied, this time with a dropout rate of 0.1,
providing additional regularization to prevent overfitting as the network becomes deeper and
more complex. Next, the third hidden layer, which consists of 128 neurons, processes the data.
This layer is followed by another set of activation functions, which help to transform the inputs
into outputs in a nonlinear manner, ensuring the network can learn intricate patterns and
relationships within the data. Lastly, the output layer, also known as the visible layer, consists
of 7 outputs. These outputs represent the predicted values based on the input features and the
learned parameters of NN model. This architecture, with its strategic layer sizes, dropout rates,
and activation functions, aims to balance the complexity and regularization, ensuring a robust
model performance across different datasets and task.
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Fig. 6. Architecture of the neural network (NN) model used in this study.
3.3. Model evaluation

In this study, several metrics were utilized to evaluate the performance of ML models and
determine the optimal model for predicting species mass fraction in turbulent jet flames. The
metrics used include Mean Absolute Error (MAE), Mean Squared Error (MSE), Pearson
Coeftficient (PC), and R-squared (R?). Additionally, cross-validation techniques, specifically k-
fold cross-validation, and hyperparameter tuning were employed during the training process to
prevent overfitting and underfitting. Despite using cross-validation and hyperparameter tuning,
further comparison of different models is necessary to ensure the selection of the optimal
model. MAE measures the average magnitude of the errors in a set of predictions, without
considering their direction. It’s the average over the test sample of the absolute differences
between prediction and actual observation where all individual differences have equal weight.
MAE is defined below:

1 ) 8
MAE = ;Z?zllyi - il (®)

where, n is the number of observations, y; is the actual value, y; is the predicted value, and
|y; — 9;| is the absolute difference between the actual and predicted values. MSE measures the
average of squares of the errors. It is more sensitive to outliers than MAE due to the squaring
of each term, which means larger errors have a disproportionately large effect on MSE. MSE
is given by [63-64]:

1 A 9
MSE = =S, (7 = ) ©)

PC measures the linear correlation between two variables, providing a value between -1 and 1.
A value of 1 implies a perfect positive linear relationship, -1 implies a perfect negative linear
relationship, and 0 implies nonlinear relationship. PC can be expressed by [65].

pC = Y= -9) (10)

5 1= 975, G- 9’
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Here, y and § are the mean of the actual, and predicted values, respectively. (y; — ¥) is the
deviation of the actual value from the mean of actual values, and (371 — )’_7) is the deviation of
the predicted value from the mean of predicted values. R? measures the proportion of variance
in the dependent variable that is predictable from the independent variables. The range of R? is
from 0 to 1, where larger values indicate better model performance. R* can be defined as [66].

X O = 9)? (11)
Z?_1 (y i~y )2

where, (y; — 9;)? is the sum of the squared differences between the actual and predicted values,

and (y; — y)? is the overall sum of squares, which measures the total variance in the actual

values. These metrics collectively help evaluate the performance of the regression models by

quantifying the error and accuracy of predictions, aiding in the selection of the most appropriate
model for the given task.

R?=1

4. Results and Discussion
4.1. Validation of LES

To further validate the present LES results, a comparison is conducted with both experimental
data and previously published LES simulations under matched physical conditions. The
experimental reference is taken from Barlow and Frank [26], who characterised the Sandia
Flame D configuration using laser diagnostics to obtain detailed profiles of temperature,
velocity, and mixture fraction. The current simulation replicates their boundary conditions,
including the 25% CHa / 75% air fuel, bulk velocity of 49.6m/s, Re=22,400, nozzle diameter
of 7.2mm, coflow air velocity of 0.9m/s, and a lean annular pilot flame. Additional diagnostic
context is drawn from Barlow et al. [27], which, although focused on a syngas flame, provides
useful scalar fluctuation data. In addition, the LES study of Vreman et al. [75] is included as a
numerical reference to highlight how differences in modelling approaches and timestep settings
affect the simulation results. Their simulation of Sandia Flame D employs FGM, a structured
cartesian grid, and a fixed timestep of 5x107%s, along with enhanced subgrid-scale treatments
such as scalar variance closure (5-PDF) and a thickened flame model. In contrast, the present
LES was performed using a finer timestep of 1x107%s, with species transport resolved directly
from filtered equations and no table-driven subgrid corrections. As shown in Figs. 7(a) and (b)
(mean and RMS temperature), Figs. 8(a) and (b) (mean and RMS axial velocity), and Figs. 9(a)
and (b) (mean and RMS mixture fraction), both LES simulations successfully capture the
primary scalar and velocity field structures. The blue dashed lines represent the present LES
results, the green square symbols denote the data from [75], and the red triangles indicate
experimental measurements from [26]. In several regions, notably the RMS temperature
between z/D= 25-45, the present LES predictions fall slightly closer to the experimental data.
These observations illustrate that timestep selection and model fidelity can influence the
representation of scalar fluctuations, and that the present configuration achieves reliable
performance even without subgrid chemistry enhancements. The performed validation
enhances confidence in the use of LES simulations for the following ML applications.
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Fig. 9. (a) Mean mixture fraction and (b) RMS mixture fraction at the centreline z/D. The blue
dashed lines represent the present LES results, the green filled squares denote the numerical
data from [75], and the red triangles indicate experimental measurements from [26].

4.2. Comparative performance of ML models

In this section, the performance of ML models is evaluated in terms of different metrics. For
this purpose, graphs of LES value vs. predicted value are provided in Fig. 10. These graphs
illustrate the comparison of LES values and predicted values by NN, LR, and DTR models,
where a random subset of 10,000 data points was sampled in each model. In Fig. 10, red dots
represent the NN scatter data, green dots represent LR, and blue dots represent DTR, with the
white line indicating the actual values. The graphs clearly show the high accuracy of the NN
model against the actual values, followed by the DTR model, and finally, the LR model. NN
models demonstrate the closest alignment with the actual values, indicating their superior
predictive capability. The scatter of red dots around the white line is minimal, showcasing that
NN model is capable of accurately predicting the outcomes. DTR model also performs well,
with blue dots closely following the actual values but with slightly more deviation compared
to NN model. The LR model, represented by green dots, shows the highest deviation from the
actual values, indicating that while the accuracy in LR model is acceptable, it is not as precise
as NN model or DTR model in this context.

Predicted MF- CH4
Predicted MF- CO

Actual MF- CH4 Actual MF- CO

(a) (b)

Predicted MF- CO2
Predicted MF- H20

Actual MF- CO2 Actual MF- H20

(©) (d)
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Fig. 10. Comparison of predicted and LES values of mass fraction for different species: (a-g)
for CH4 to OH by NN, LR and DTR models. A random subset of 10000 data points was sampled
in each model.

Table 1 presents a comparative analysis of three models in predicting the mass fractions (MF)
of various compounds like CH4, CO, CO,, H2O, N2, Oz, and OH. The performance metrics
include MAE, MSE, PC, and R-squared (R?). NN model consistently demonstrates the highest
accuracy across all outputs. The MAE values are the lowest, ranging from 1.00E-06 to 9.00E-
05, indicating minimal error in predictions. The MSE values are extremely low, with values
such as 1.00E-12 and 8.10E-09, showcasing excellent performance in minimizing squared
errors. Additionally, the PC values are very close to 1, and the R? values are nearly perfect
(0.99997 to 0.99999), indicating that NN model captures almost all the variance in the data.
LR model shows higher MAE and MSE values compared to NN and DTR models, suggesting
less accuracy. For example, the MAE for MF-CHjy is 0.0015 and for MF-N> is 0.00114. The
MSE values, although not as low as NN and DTR, are still quite small (e.g., 1.00E-05 for MF-
CH4 and 1.61E-06 for MF-O). The PC and R? values, while high (e.g., 0.99792 and 0.99585
for MF-CH4), are lower than those achieved by NN and DTR, indicating that LR is less
effective in uncovering the autocorrelation about the data. DTR model performs similarly as
NN model. The MAE values are low, similar to NN (e.g., 0.00026 for MF-CH4 and 0.00027
for MF-N»). The MSE values, although slightly higher than those of NN, remain very low (e.g.,
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2.00E-08 for MF-CH4 and 2.10E-08 for MF-N). The PC values are very high, close to 1, and
the R? values are also nearly perfect (e.g., 0.99997 for MF-CH4 and 0.99994 for MF-N»),
indicating excellent model performance. According to the results shown in Table 1 and Fig. 10,
NN model emerges as the most accurate model for predicting the mass fractions of the
compounds, with the lowest errors and highest correlation and R? values. DTR model also
performs exceptionally well, closely following NN model in accuracy. LR model, while still
effective, shows comparatively higher error rates and lower correlation and R? values, making
it the least accurate one among the three models in this dataset.

Table 1 Evaluating the performance of NN, LR and DTR models by comparing their metrics
such as MAE, MSE, PC, and R? for the prediction of species mass fraction.

Output Model MAE MSE PC R?
NN 3.00E-05 1.00E-10 0.99999 0.99998
MF- CHg LR 0.0015 1.00E-05 0.99792 0.99585
DTR 0.00026 2.00E-08 0.99997 0.99991
NN 4.00E-05 1.60E-09 0.99993 0.99986
MF- CO LR 0.00065 4.23E-07 0.99692 0.99385
DTR 0.00026 2.00E-08 0.99977 0.99949
NN 7.00E-05 4.90E-09 0.99998 0.99996
MF- CO: LR 0.00093 8.64E-07 0.99943 0.99887
DTR 0.00029 8.41E-08 0.99995 0.99989
NN 5.00E-05 2.50E-09 0.99999 0.99997
MF- H20 LR 0.00064 4.10E-07 0.99972 0.99945
DTR 0.00026 2.00E-08 0.99995 0.99989
NN 5.00E-05 2.50E-09 0.99999 0.99997
MF- N2 LR 0.00114 1.30E-06 0.99831 0.99662
DTR 0.00027 2.10E-08 0.99994 0.99986
NN 9.00E-05 8.10E-09 0.99999 0.99997
MF- Oz LR 0.00127 1.61E-06 0.99972 0.99944
DTR 0.00052 2.70E-08 0.99996 0.99989
NN 1.00E-06 1.00E-12 0.9999 0.9998
MF- OH LR 2.00E-05 4.00E-10 0.99727 0.99454
DTR 1.00E-05 1.00E-10 0.99984 0.99945

4.3.  Uncertainty of NN model

This study focuses on predicting species mass fractions in a turbulent jet flame using three ML
models, where the NN model outperformed the others based on different metrics. To further
enhance the robustness of NN model, it is crucial to quantify the uncertainty associated with
its predictions. Understanding and presenting the uncertainty map is essential for assessing the
reliability and credibility of the model's outputs. The Model method for uncertainty involves
estimating both aleatoric and epistemic uncertainties. Aleatoric uncertainty arises from inherent
variability in the data, such as measurement noise, while epistemic uncertainty stems from
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limitations in the model itself, such as insufficient training data or an imperfect model
architecture [67]. By analysing the model's predictions and their variations, one can identify
areas where the model is less confident, thus highlighting potential weaknesses or regions
where additional data might be necessary [67-68]. In this study, the Model method was utilized
to quantify uncertainty, focusing on epistemic uncertainty. Epistemic uncertainty, associated
with the model's knowledge and capacity, can be reduced with more data and better model
architectures. On the other hand, the Distance to Data method, which is more aligned with
aleatoric uncertainty, focuses on variability due to inherent noise in the data and cannot be
reduced by improving the model alone [68].

In the present work, the selection of specific pairs of physical properties for the uncertainty
maps is based on their significant influence on the combustion process, as suggested in the
literature [17, 45, 69-73]. Fig. 11 shows the uncertainty map for all species mass fractions
according to the effects of velocity and temperature. Temperature directly impacts chemical
reaction rates, thereby affecting the mass fractions of all species involved in combustion
processes, such as CHy, CO, CO», H20, N2, O2, and OH. Higher temperatures typically increase
reaction rates, leading to different equilibrium states for these species. Meanwhile, velocity
influences the mixing and turbulent characteristics of the flow, which in turn affects the
distribution and formation of species in the reaction zone. Turbulent flows, characterized by
velocity fluctuations, enhance the mixing of fuel and oxidizer, which is crucial in non-premixed
flames.

There is a notable red region in the middle of the MF-CH4 graph between approximately 700-
1700 K, indicating higher uncertainty in this temperature range. This could be due to complex
reaction dynamics occurring at these temperatures that the model finds challenging to predict
in an accurate way. The uncertainties in HoO and CO mass fractions are almost uniform. This
suggests that the model has a steady performance across different temperature and velocity
conditions for H,O and CO predictions. The uncertainty distribution for Ny is similar to that of
CHas, but with a maximum uncertainty of 140 u, compared to 220 p for CHs4. This indicates that
while the model's predictions for N> are more reliable than for CHa, there are still significant
uncertainties at lower temperatures. In O graph, higher uncertainties are observed in the
temperature ranging from 1000 to 2200 K. This may be due to the critical role of oxygen in
combustion reactions, where variations in temperature can significantly impact the reaction
dynamics. The uncertainty range for OH is four times higher than that for other species,
showing substantial fluctuations in model performance for this species. This high uncertainty
could be attributed to the highly reactive nature of OH radicals in combustion processes,
making them difficult to predict with an acceptable accuracy.
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Fig. 11. Uncertainty map of NN model for species mass fractions under the influence of varying

velocity (m/s) and temperature (K).

Fig. 12 illustrates the uncertainty map for the species mass fractions as influenced by pressure
and the molar concentration of CHa. The pressure ranges from -2000 to 2000Pa, and the molar
concentration of CHs ranges from 0 to 0.01kmole/m?. These results in Fig. 10 present a better
understanding of how variations in pressure and the molar concentration of CH4 impact the
uncertainty in predicting the species mass fractions. Pressure plays a critical role in determining
the partial pressures and chemical potential of the species involved in the reactions. Variations
in pressure can shift the equilibrium of these reactions, thereby changing the mass fractions of
the combustion products. CHa, as a primary fuel, undergoes oxidation to form CO and CO,
and further reactions produce H>O and other intermediates like OH. The initial concentration
of CHy4 is essential for determining the quantities of these reaction products and intermediates
[69]. MF-CO graph illustrates that the uncertainty appears more uniform across different
pressures but shows slight increases at higher CH4 concentrations. This suggests that while
pressure has a lesser impact on the uncertainty of CO predictions, the concentration of CHg still
plays a role in affecting model reliability. There is a noticeable increase in uncertainty at both
high and low pressures, particularly at higher CH4 concentrations in MF-CO; graph. This could
be due to the complex interactions between CO» formation and varying pressure and CHy
levels, making the predictions less certain under these conditions. In addition, MF-H>O reveals
that the uncertainty remains uniform, similar to the CO map, but with slightly higher
uncertainty at lower pressures. This indicates that pressure variations impact the uncertainty of
H>O predictions to a certain extent. But overall, the model performance remains relatively
stable. The uncertainty range for OH is significantly higher than that for other species, showing
substantial fluctuations in model performance. This high uncertainty is likely due to the highly
reactive nature of OH radicals, which is sensitive to the changes in both pressure and CHa
concentration.
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Fig. 12. Uncertainty map of NN model for species mass fractions under the influence of varying
molar concentration of CH4 (kmole/m?) and pressure (Pa).

Fig. 13 depicts the uncertainty map for the species mass fractions as influenced by pressure
and the molar concentration of O». Oxygen is vital for combustion reactions, and its
concentration significantly affects the formation and consumption rates of other species. The
availability of O, determines the extent of combustion reactions and the formation of
intermediate species like CO and OH. Pressure, as mentioned earlier, affects the reaction
kinetics and equilibrium states, further influencing the mass fractions of the combustion
products. These factors highlight the importance of considering pressure and molar
concentration of O in the uncertainty analysis of combustion processes [70]. In the MF-CHg4
graph, the highest uncertainty occurs at lower molar concentrations of O, with the uncertainty
decreasing as the concentration of Oz increases. This contrasts with Fig. 11, where the highest
uncertainties for MF-CHy occurred at lower pressures and higher CH4 concentrations. The
difference arises because oxygen availability significantly influences the combustion process;
low oxygen levels create less predictable conditions for methane combustion, thus increasing
uncertainty. The uncertainty for CO> shows increased values at lower O concentrations. This
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indicates that the stability of combustion process is highly dependent on adequate oxygen levels
for CO, formation. The uncertainty range for OH is significantly higher than that for other
species, showing substantial fluctuations.
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Fig. 13. Uncertainty map of NN model for species mass fractions under the influence of varying
molar concentration of Oz (kmole/m?) and pressure (Pa).

Figs. 14-16 provide a comprehensive visualization of uncertainty distribution in NN
predictions, evaluating how the uncertainty varies with respect to different physical parameters.
Specifically, Fig. 14 presents the uncertainty trends for species mass fractions as a function of
turbulence intensity, while Figs. 15 and 16 illustrate the impact of the RMS mixture fraction
and progress variable, respectively. Turbulence intensity plays a crucial role in combustion
dynamics by governing turbulent mixing, flame stability, and reaction zone fluctuations. In Fig.
14, the uncertainty trends across different species mass fractions exhibit distinct behaviours as
turbulence intensity varies. The uncertainty in CH4+ and N> mass fractions remains relatively
stable across the entire turbulence intensity range but shows moderate fluctuations at lower
turbulence intensity values. This suggests that the NN model effectively captures the behaviour
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of these species under well-developed turbulent conditions, where enhanced mixing
contributes to greater predictive stability. Conversely, species such as CO, CO, and H.0O
exhibit increased uncertainty in the 6-12% turbulence intensity range, which aligns with the
transitional regime where turbulence-chemistry interactions strongly influence species
formation and transport. This trend reflects the natural complexity of combustion processes,
where intermediate turbulence levels can create varying flame structures and mixing patterns
that influence species distributions. The model successfully identifies these variations,
capturing the impact of turbulence intensity on species mass fraction evolution. Notably, the
uncertainty levels for OH remain significantly higher compared with other species, reaffirming
its strong sensitivity to turbulence intensity. This observation aligns with the well-documented
role of OH as a marker of combustion intensity, as it is highly reactive, and its concentration is
influenced by the competing effects of turbulence and chemical reaction rates. The variations
in OH uncertainty further support previous findings in the literature, where higher turbulence
levels often correlate with increased fluctuations in radical species concentrations due to
enhanced turbulent-chemistry interactions [26-27, 34, 74].

The RMS mixture fraction represents the degree of mixture inhomogeneity, capturing the
influence of turbulent mixing on the local equivalence ratio and reaction progress. Fig 15
indicates that CH4 uncertainty increases with the RMS mixture fraction, particularly beyond
0.2, suggesting that the NN model is less confident in methane predictions under highly
inhomogeneous conditions. This is expected, as incomplete fuel-air mixing leads to variability
in reaction zones and non-uniform combustion progress. The uncertainty distributions for CO
and CO: suggest opposing trends, where CO uncertainty remains moderate but fluctuates
across the mixture fraction spectrum, while CO- uncertainty decreases at higher RMS mixture
fraction values. This trend can be attributed to the gradual stabilization of combustion products
as the mixture fraction increases, reducing CO: variability. Interestingly, OH uncertainty peaks
at intermediate mixture fractions (0.2-0.5), corresponding to stoichiometric and near-
stoichiometric conditions, where OH radicals are most reactive and sensitive to turbulence-
chemistry interactions.
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Fig. 14. Uncertainty map of NN model for species mass fractions under the influence of varying
turbulence intensity.

The progress variable (PV) is a key combustion parameter representing the advancement of
chemical reactions, with values ranging from 0 (unburned state) to 1 (fully burned state). Fig.
16 demonstrates that uncertainty in CHa mass fraction is highest at lower progress variable
values, indicating that the NN model exhibits lower confidence in fuel-rich conditions where
mixing and reaction pathways are still evolving. This aligns with combustion physics, where
early-stage reactions introduce greater variability due to turbulence-chemistry interactions. For
CO and CO., the uncertainty profiles exhibit opposite trends. CO uncertainty decreases as the
progress variable increases, reflecting reduced variability as oxidation reactions approach
equilibrium. Conversely, CO: uncertainty increases with progress variable, reaching a peak at
near-complete combustion conditions. This suggests that the NN model captures CO formation
more reliably in early reaction stages, while uncertainties in CO: predictions arise in later
oxidation steps due to complex interactions among heat release, turbulence, and product
dissociation. OH uncertainty remains notably high throughout the entire progress variable
spectrum, particularly beyond 0.6, reinforcing its high sensitivity to combustion conditions. As
OH is a short-lived radical crucial in intermediate reaction steps, this high uncertainty can be
attributed to fluctuations in flame front stabilization and local extinction events. Rather than
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772  applying a fixed numerical threshold, high uncertainty values are interpreted based on their
773  alignment with known physical instabilities, such as flame fronts, stoichiometric layers, or
774  regions of high species reactivity. The reliability of the model is thus judged by whether
775  uncertainty appears in expected regions, reinforcing the model’s physical consistency.

160

140
50 £ MF-CH4
100

80

60

40

20

80

70 _

60 MF-CO
50

40

30

Uncertainty (10°®)
8583388

50
0 [_MF-N2
180
160
140
120
100
80
60 -
0 L_MF-02
640
540
440
340
240
140
s [__MF-OH
0 0.05 0.1 0.15 0.2 0.25 0.3

RMS Mixture Fraction
776

777  Fig. 15. Uncertainty map of NN model for species mass fractions under the influence of varying
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Fig. 16. Uncertainty map of NN model for species mass fractions under the influence of varying
progress variable (PV).

The results of this study demonstrate that the selected architecture for the NN model is reliable,
as evidenced by the trend of uncertainty maps which aligns with the governing rules of
combustion. This reliability is particularly evident in the accurate prediction of species mass
fractions under different conditions. However, the only species showing lower accuracy is OH,
as indicated by the high fluctuations in its uncertainty map. This limitation can be attributed to
the inherent complexity of predicting the behaviour of OH radicals, which are highly reactive
and sensitive to the changes of combustion conditions. To further improve the model's
performance, future work may explore more advanced architectures, such as recurrent neural
networks (RNNs), to better capture temporal and spatial dependencies in combustion
dynamics. Ensemble methods such as Random Forests or Gradient Boosting may also be
revisited in the context of reaction-specific surrogate modelling, where their strengths in
handling localised non-linearities may be better suited.

4.4. Prediction of mass fraction

The prediction of species mass fraction is the main aim of this study, and after the training and
evaluation process, NN and DTR models were selected to conduct the mass fraction
predictions. For this purpose, Fig. 17 provides the mass fraction prediction by NN and DTR
models: (a) for mean mass fraction and (b) for fluctuation of mass fraction. The first column in
Fig. 17 presents the mean mass fraction predictions for each species along the centreline. The
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NN predictions are shown with a red dashed line, DTR predictions with a blue dashed line, and
LES results with grey dots for validation. For CHs, CO; and CO, the NN model again shows
excellent agreement with the LES results, capturing the trends and magnitudes accurately. The
predictions of DTR model are reasonably accurate but exhibit more noticeable deviations
especially in the downstream regions. For OH, the NN model accurately predicts the mean
mass fraction of OH, closely matching the LES data. The DTR model shows larger deviations,
particularly in the peak regions, indicating its limitations in capturing the reactive species'
dynamics. For O, the predictions of NN model are in excellent agreement with the LES results,
effectively capturing the depletion and recovery of O, along the centreline. The DTR model
shows reasonable performance but with some deviations in the regions of high gradients. For
H>O, the NN model accurately predicts the mean mass fraction of H20, closely following the
LES results. The predictions of DTR model are less accurate, particularly in the downstream
regions where the mass fraction changes more rapidly. The second column in Fig. 17 presents
the fluctuation mass fraction predictions for each species, comparing NN predictions (red
dashed line), LES results (grey dots), and the uncertainty range of NN predictions (thick line).
The NN model captures the fluctuation trends well, with the predictions falling within the
uncertainty range and closely matching the LES results.

The results presented in Fig. 17 demonstrate the superior performance of the NN model in
predicting both mean and fluctuation mass fractions of various species in a turbulent jet flame.
The NN model consistently shows high accuracy against LES results, outperforming the DTR
model, particularly in regions with steep gradients and complex dynamics. The uncertainty
range provided for the NN predictions further validates its reliability and robustness. These
findings corroborate the metrics discussed in Sec. 4.2, confirming the proposed architecture of
NN model as the most effective tool for predicting species mass fractions in turbulent
combustion simulations.
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Fig. 17. Mass fraction prediction by NN model and DTR: (left panels) mean mass fraction and
(right panels) fluctuation of mass fraction.

To further assess the robustness and interpretability of the NN model, a sensitivity analysis was
conducted to quantify the influence of key input parameters on the predicted mass fractions of
major species, including CHa, CO, CO2, H20, N2, Oz, and OH. Fig. 18 presents a bar chart
illustrating the relative impact of various inputs, such as molar concentrations (MC) of reactive
species, progress variable (PV), temperature, density, and thermal conductivity, on each
predicted output. This analysis provides critical insights into the governing factors that drive
species evolution within the ML model and reinforces the physical consistency of the learned
relationships. A key observation from the sensitivity analysis is that the progress variable (PV)
and temperature consistently emerge as dominant influences across multiple species. For
methane (CH4), PV exhibited the highest impact (0.426), closely followed by its own molar
concentration (0.5), confirming that the extent of combustion progress directly governs
methane depletion. Similarly, for CO, CO., and H-O, temperature was identified as the most
influential parameter (0.326, 0.491, and 0.5, respectively), reinforcing the expected
thermochemical dependence of oxidation pathways. These findings align well with the physics
of turbulent non-premixed flames, where temperature plays a pivotal role in dictating reaction
rates and equilibrium compositions.
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Furthermore, the molar concentrations of key reactants and intermediates displayed significant
contributions to species evolution. The mass fraction of CO. was strongly influenced by CO
(0.192) and O2 (0.378), reflecting the well-known oxidation sequence where carbon monoxide
undergoes secondary oxidation to form CO.. Likewise, the formation of OH radicals, a crucial
indicator of high-temperature reaction zones, was predominantly governed by temperature
(0.48) and thermal conductivity (0.16), further confirming its role as a reactive transient
species. These trends are consistent with expected combustion kinetics, reinforcing the
credibility of the ML model’s learned relationships. The analysis also sheds light on the role of
nitrogen and oxygen in shaping combustion dynamics. The mass fraction of N> showed a
notable dependence on MC-H-O (0.355) and MC-CO: (0.226), indicating that nitrogen’s
passive dilution effects correlate with water vapor and carbon dioxide levels in the system. For
0., the strongest influences were temperature (0.495) and its own molar concentration (0.376),
consistent with oxygen consumption in oxidation reactions. The presence of high thermal
conductivity as a significant driver for H.O (0.417) and O: (0.5) suggests that heat transfer
plays a crucial role in species distribution, an effect that may be particularly pronounced in
post-flame regions. The high sensitivity of OH to temperature (0.48) and thermal conductivity
(0.16) supports the notion that its fluctuations are strongly driven by turbulent mixing and heat
release, contributing to increased epistemic uncertainty in its predictions. As OH is highly
reactive and rapidly consumed in oxidation reactions, the model captures its inherent
variability, consistent with the observed uncertainty trends reported earlier. The strong
dependence of OH on PV (0.046) also aligns with its role as an intermediate species,
reinforcing the ML model’s ability to recognize critical combustion pathways. These findings
also correlate with the results of the uncertainty analysis presented in Figs. 14—16, where
regions and species identified as highly sensitive—particularly OH, CHa, and CO>—also
exhibited greater epistemic uncertainty. This alignment indicates that the model is
appropriately uncertain in areas where outputs are highly sensitive to input variation,
reinforcing the consistency and physical realism of the ML predictions.
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Fig. 18. Sensitivity analysis of NN predictions for mass fractions of combustion species.
4.5. Targeted optimization

The optimization process in this section is performed using the NN model previously identified
as the best-performing surrogate in the benchmarking phase (Sec. 4.2). This model was selected
based on its superior predictive accuracy and reliability across species mass fraction predictions
and is now applied to explore new design points beyond the training dataset. ML-driven
optimization provides an adaptive framework for generating new combustion design points,
even outside the experimental training set, demonstrating its ability to predict off-design
conditions effectively. This approach refines ML-generated solutions to ensure that the
recommended combustion states align with Barlow and Frank experimental study of Flame D
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[26], which serves as a reference for turbulent non-premixed flames. Unlike purely physics-
driven models, ML-based optimization benefits from flexibility in adjusting species mass
fractions, temperature, and pressure while maintaining physically meaningful constraints. To
evaluate optimization effectiveness, the ML-generated species mass fractions are compared to
Barlow and Frank experimental targets, considering their uncertainty range. The experimental
data includes CHa4 = 0.0025%17%, CO = 0.065+6%, CO: = 0.140+6%, H.0 = 0.120+£5%, N> =
0.730£2%, O2=0.020+£5%, and OH = 0.0016+8%, ensuring that deviations are assessed within
realistic variability. Four fitness functions—Euclidean distance [73], Manhattan distance [57],
Collinearity coefficient, and Amplitude correlation coefficient [58]—were applied to optimize
the mass fractions. Each function influences the optimization differently, impacting accuracy
relative to the experimental dataset. The absolute error comparison is summarized in Table 2,
where Manhattan distance consistently demonstrated the best overall performance, particularly
for CO, CO:, and OH, while small discrepancies in CHs and O2 were further refined. The
optimization effectiveness of each fitness function is presented in Table 2, where absolute
errors highlight their accuracy in replicating experimental data. The absolute error analysis
confirms that Manhattan distance optimization provided the most accurate and physically
consistent results, requiring only minor adjustments to CHs and OH to align with Barlow’s
dataset. In addition, the recommended designs generated using Manhattan distance
optimization are summarized in Table 3, ensuring that all ten designs align with Barlow’s
turbulent non-premixed flame dataset. These recommendations capture different combustion
phases, from fuel-rich to stoichiometric to lean conditions, ensuring alignment with
experimental trends.
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Table 2. Comparison of fitness function results against experimental data for CHa, CO, CO2, H20, OH, N2, and O-.

Species Experiment Euclidean Manbhattan Collinearity Amplitude Error
(+ Uncertainty) Correlation (Euclidean) (Manhattan) (Collinearity)  (Amp. Correlation)

CH4 0.0025+17% 0.0068 0.0039 0.0018 0.0366 0.0043 0.0014 0.0007 0.0341

CoO 0.065 + 6% 0.0449 0.065 0.0422 0.0359 0.0201 0 0.0228 0.0291

CO: 0.140 + 6% 0.0734 0.1265 0.0643 0.1029 0.0666 0.0135 0.0757 0.0371

H-0 0.120 + 5% 0.0888 0.1036 0.087 0.1041 0.0312 0.0164 0.033 0.0159

N: 0.730 +£ 2% 0.73 0.727 0.7272 0.6949 0 0.003 0.0028 0.0351

0: 0.020 + 5% 0.061 0.0272 0.0678 0.0169 0.041 0.0072 0.0478 0.0031

OH 0.0016 + 8% 0.0042 0.0018 0.0032 0.0053 0.0026 0.0002 0.0016 0.0037

Mass Sum 1 1.0081 1 0.9943 1.0386 0.0081 0 -0.0057 0.0386
Table 3. Summary of ML-recommended designs (Manhattan fitness function).

Design ID Temperature (K) Pressure (Pa) CHa4 CO CO2 H:0 N2 (03 OH Mass Sum

#1 221598 935.67 0.0039 0.065 0.1265 0.1036 0.727 0.0272 0.0018 1

#2 1904.19 -408.56 0.0042 0.0418 0.0928 0.1045 0.7328 0.0237 0.0014 1.0002

#3 471.81 1827.63 0.0061 0.0214 0.0492 0.0625 0.7393 0.1167 0.0023 1.0005

#4 1379.62 -1447.71 0.0159 0.0125 0.0265 0.034 0.7401 0.1667 0.0006 0.9963

#5 1754.05 3493.04 0.0557 0.031 0.0204 0.039 0.7033 0.1446 0.0012 0.9952

#6 1653.98 327.92 0.0474 0.0285 0.0419 0.0518 0.7046 0.1194 0.0018 0.9954

#7 1065.94 -2490.71 0.0762 0.0416 0.0327 0.0585 0.6788 0.1048 0.0016 0.9942

#8 2215.98 935.67 0.0696 0.0428 0.0472 0.0623 0.7402 0.1174 0.0018 1.0001

#9 1379.62 -1447.71 0.0159 0.0125 0.0265 0.034 0.7401 0.1667 0.0006 0.9963

#10 1754.05 3493.04 0.0557 0.031 0.0204 0.039 0.7033 0.1446 0.0012 0.9952
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Fig. 19 presents a parallel coordinate plot that visualizes the parametric relationships and
optimization constraints of the ten ML-recommended designs (highlighted in red) compared to
other possible designs (represented in white). This multidimensional representation provides a
comprehensive overview of how the optimization process filtered through various parameter
spaces to identify the most physically meaningful and experimentally aligned combustion
states. The clear distinction between the selected and non-selected designs highlights the
designed NN model’s ability to constrain the search space effectively while maintaining
coherence with known combustion regimes. A key observation from Fig. 19 is the systematic
separation of the red lines from the broader white distribution, indicating that the optimization
framework successfully identified a subset of solutions with desirable thermodynamic and
chemical characteristics. The recommended designs exhibit well-defined clustering patterns,
particularly in parameters such as temperature, pressure, and species mass fractions. These
clusters suggest strong interdependencies between different combustion properties, where
high-temperature conditions (~2215 K) consistently align with lower CH4 concentrations and
increased CO: and H2O fractions, reflecting complete combustion scenarios. Conversely, fuel-
rich conditions characterized by elevated CHs and CO fractions show reduced OH and CO-
levels, indicative of incomplete oxidation.

Furthermore, the visualization reveals trade-offs between critical species, illustrating the
natural progression of oxidation pathways. A strong inverse correlation is evident between CHa
and CO., as methane consumption leads to increased carbon dioxide formation through
intermediate CO oxidation. The relationships between species fractions align well with
fundamental combustion kinetics, reinforcing the reliability of ML-driven recommendations.
Additionally, the plot highlights the role of pressure variations in influencing combustion
states, with shifts in equilibrium conditions affecting reaction pathways. Beyond confirming
the expected chemical trends, Fig.19 also underscores the model’s capability in filtering out
unphysical or non-optimal solutions. The wide distribution of white lines represents
configurations that, while mathematically possible, do not align with experimental constraints
or known turbulent non-premixed combustion physics. Many of these outliers exhibit extreme
values of mass fractions or temperature-pressure inconsistencies that would not occur under
realistic flame conditions. The targeted optimization process effectively eliminated such cases,
ensuring that the final recommendations remain within physically plausible domains. This
visualization serves as a compelling validation of ML approach in optimizing combustion
design parameters. The distinct clustering of the recommended designs demonstrates that the
ML framework not merely generates arbitrary solutions but can capture complex turbulence-
chemistry interactions. The ability to recognise the difference among fuel-rich, stoichiometric
and lean combustion conditions further emphasizes the predictive robustness of the model. The
structured nature of the optimized solutions also suggests that the ML approach can be well
generalized to off-design conditions, making it a powerful tool for extending experimental
insights beyond pre-existing datasets.

4.6.  Prediction of flame pattern

This section focuses on the prediction of flame patterns using a surface field model to predict
temperature contours on the centreline plane of the combustion chamber. The contour of
temperature is used as the primary indicator of flame development. The surface field model is
a computational approach that represents the distribution of physical properties, such as
temperature and velocity, across a defined surface within the combustion chamber [72-73].
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While LES simulations offer high fidelity, their computational cost can limit the exploration of
a wide range of operating conditions. This work utilizes a surrogate modelling approach
implemented within Monolith's Surface Field model. The surface field model was trained on
LES data stored in 3D mesh-based VTK format, including spatial geometry, mesh information,
and scalar fields such as temperature and velocity. This format allowed the model to capture
spatial correlations and predict full-field temperature contours on the centre plane. Surrogate
models aim to create a simpler, computationally efficient model that approximates the
behaviour of a more complex one. The Surface Field model leverages advanced ML algorithms,
which excel at capturing complex, non-linear relationships between input data including 3D
geometry and output data as flame characteristics. The model uses historical data obtained from
comprehensive LES simulations. This data captures the 3D geometry of the combustion
chamber and includes crucial information about the resulting flame field, such as temperature,
velocity, and pressure. To train the Surface Field model, the data is split into training and testing
sets. The training data, typically constituting the majority of the available data, is used to teach
the model the underlying relationships between geometry and flame characteristics. During
training, the model iteratively adjusts its internal parameters to minimize a loss function, which
quantifies the difference between the model's predictions for the training data and the actual
flame data obtained from the LES simulations. This iterative process allows the model to refine
its understanding of how geometry influences flame behaviour. The testing data, unseen by the
model during training, serves as an independent evaluation of the model's generalizability.
Once trained, the model predicts the flame characteristics for the geometries within the testing
set. By comparing these predictions with the actual flame data from the testing set, researchers
can assess the model's accuracy and capacity of predicting the flame patterns for new, unseen
geometries. The validation loss, monitored during training on a subset of the training data,
helps prevent overfitting and ensures the model learns generalizable patterns, not just specifics
of the training data. This approach offers significant advantages. By utilizing a machine
learning model, rapid predictions of flame patterns for a wider range of operating conditions
can be achieved compared with running full LES simulations in every scenario. This enables
more efficient exploration of the design space and optimization of combustion chamber
configurations, significantly reducing computational costs and time.

The LES was conducted with a specific timestep size to ensure numerical stability and high
fidelity in the results. Throughout the simulation process, multiple iterations were performed
at each timestep to ensure convergence of the solution. To validate the effectiveness of the
Surface Field model in predicting flame patterns, 5 random timescales (30k, 50k, 80k, 160k
and 200k) were selected from the LES simulation data to present the results in this study. These
selected timescales were then compared with the predicted results generated by the ML model,
allowing us to evaluate the model's accuracy and reliability in replicating the complex
behaviours observed in the LES data. The LES results shown in Fig. 20 represent the
temperature contours of a fully developed turbulent jet flame, specifically the Sandia Flame D
case. The contours depict the complex flame structure and patterns that arise from the turbulent
flow field and combustion dynamics. The flame exhibits a characteristic jet-like shape, with a
wider base near the nozzle and a narrowing towards the downstream region. This is typical of
turbulent jet flames, where the fuel and air mix and combust as the jet evolves downstream. In
addition, the temperature contours reveal intricate turbulent structures within the flame,
including vortices, eddies, and wrinkling of the flame surface. These features are characteristic
of turbulent combustion and result from the interaction between the turbulent flow field and
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the chemical reactions. The high-temperature regions, represented by the red and yellow
colours, indicate the areas of intense combustion and heat release. These regions are
concentrated towards the centre of the jet, where the fuel-air mixture is richest, and combustion
occurs, showing the spatial extent of the reacting region and its turbulent nature. On the other
hand, the ML prediction captures the overall jet-like shape of the flame reasonably well,
indicating that the model has learned the general flame structure from the LES data. While the
ML prediction captures some turbulent structures within the flame, the level of detail and
complexity appears to be lower compared to the LES results. This could be due to limitations
in the ML model's capacity of fully resolving the intricate turbulent features. The high-
temperature regions in the ML prediction are generally located in the correct areas, but their
extent and intensity may differ from the LES results. The absolute error contours highlight the
differences between the LES and ML prediction results. The largest discrepancies between the
LES and ML prediction appear to be concentrated along the edges and borders of the flame.
This could be due to the challenges in accurately capturing the highly turbulent and diffusive
nature of the flame boundaries using the 5000 train steps in the ML model. In the interior
regions of the flame, the absolute error is generally lower, suggesting that the ML model
performs better in predicting the overall flame structure and high-temperature regions
compared to the turbulent details near the flame boundaries. The current ML model, with 5000
training steps, is robust enough to be used in practical applications. Despite the moderate
number of training steps, the model shows good alignment with high-fidelity LES results,
indicating its reliability. The model demonstrates versatility within the same flame
configuration (flame D) by predicting physically consistent off-design conditions through
targeted optimization. These optimized outputs align well with experimental benchmarks [26],
suggesting potential applicability to a range of initial and operating conditions. As such, the
model can support rapid exploration of different pressure, velocity, and turbulence scenarios,
making it a promising tool for real-time combustion monitoring and control. To further enhance
the model's accuracy, additional training steps could be considered. Increasing the size of
training dataset and incorporating advanced techniques such as transfer learning, and active
learning could also improve the model's performance.

The ML model enables rapid predictions compared to traditional CFD simulations, which are
computationally intensive. To quantify this efficiency, a direct comparison was made between
the time required to run the LES simulation and the time required to train the NN surrogate
model, excluding any data preprocessing or postprocessing steps. The LES simulation was
performed on 40 parallel computing cores, resulting in 12,271 minutes of accumulated CPU
time, corresponding to 307 minutes of wall-clock time. In contrast, the NN model training was
performed on a single core and required 711 minutes of wall-clock time (equal to CPU time
due to single-thread execution). This results in a CPU-time-based speed-up of approximately
17.25%, indicating a substantial reduction in total computational cost. While the wall-clock
time of the ML model is longer due to single-core execution, it requires significantly fewer
computational resources overall. Table 4 summarizes a comparison of the computational costs
between the LES and NN model, highlighting the efficiency of the surrogate approach for
repeated predictions and parametric studies.

Table 4. Comparison of computational costs between the LES and ML surrogate model. Speed-
up refers to total CPU time only. Wall-clock time is presented for reference but is not directly
comparable due to different parallelisation levels.
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Fig. 20. Comparison of LES and ML model predictions for turbulent jet flame at randomly
selected timescales for model validation.

5. Conclusions

The integration of machine learning (ML) with large eddy simulation (LES) presents a
powerful framework for accurately and efficiently predicting species mass fractions and flame
characteristics in partially premixed turbulent jet flames. High-fidelity LES simulations of the
Sandia Flame D configuration were performed and validated against experimental data,
capturing complex temperature contours, flame structures, and turbulent flow features. The
resulting dataset was used to train three ML models—Neural Networks (NN), Linear
Regression (LR), and Decision Tree Regression (DTR)—with the NN model emerging as the
most accurate surrogate, achieving R? values above 0.9998 and MAE below 1.0x107* across
all species. Additionally, a principal component analysis (PCA) of the input feature space
confirmed that the dataset lies on a compact, physically structured manifold. The first seven
components captured over 95% of the variance, reinforcing the model’s robustness and the
physical consistency of the training data.

Beyond forward prediction, the study incorporated a comprehensive sensitivity analysis, which
identified temperature and progress variable as the most influential inputs across all species.
Uncertainty quantification confirmed model confidence in well-mixed regions and revealed
expected variability for highly reactive species such as the hydroxyl radical, particularly in
zones of strong turbulence-chemistry interaction. The NN model was further used for targeted
optimisation, where ten off-design combustion states were successfully generated to match
experimental targets from experimental data. Four fitness functions—Euclidean distance,
Manhattan distance, Collinearity coefficient, and Amplitude correlation coefficient—were
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applied to guide the optimisation process. Manhattan distance consistently demonstrated the
lowest absolute errors for key species such as CHa (0.0014), OH (0.0002), and O: (0.0072),
indicating its superior accuracy and compatibility with the LES benchmark data. Lastly, the
NN surrogate achieved a 17.25% reduction in accumulated CPU time compared to LES solver,
demonstrating substantial computational savings and strong potential for use in real-time
combustion diagnostics, optimisation, and design workflows.

However, the study has also identified several limitations. For instance, more complex ML
models such as Gaussian Process Regression (GPR) and ensemble methods like Random Forest
Regression (RFR) or Gradient Boosting Regression (GBR) were not included in this work.
While these models are known for their high accuracy, especially in handling non-linear and
multi-dimensional data, their application in this context is constrained by the large dataset size
and the high spatial variability present in LES fields—particularly for species such as OH that
exhibit sharp fluctuations. These ensemble methods may also require substantial computational
resources and careful tuning to avoid overfitting when applied to large-scale flame field
predictions. Additionally, the training of ML models for reacting flows remains data-intensive,
with risks of overfitting or underfitting if data quality or diversity is insufficient. Real-time
deployment of complex models may be impractical without high-performance computing
access. Another challenge is generalization. ML models trained on specific flow regimes or
flame configurations may not accurately extrapolate to unseen conditions. Finally, ML model
sensitivity to noise or missing data underscores the need for robust preprocessing and
validation.

Future study should focus on the use of ensemble models such as RFR and GBR, particularly
for reaction-rate prediction and molecular-scale surrogate modelling, where their ability to
handle localised non-linearities and feature interactions could offer significant advantages.
Efforts should also continue toward improving dataset coverage, numerical stability, and the
integration of physics-informed learning techniques. By addressing these challenges, ML-
driven predictive frameworks can be further enhanced for practical combustion modelling.
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