[bookmark: _Hlk508924328]
A HARDWARE IMPLEMENTATION OF 6DOF QUADCOPTER MATLAB/SIMULINK CONTROLLER ALGORITHM TO AN AUTOPILOT
Mr Abdelkader Fareha1, Dr. Amar Bousbaine1, Mr Ajay K Josaph1
1College of Engineering and Technology,
Departement of Electronics, Computing and Mathematics
University of Derby Derby, Derbyshire, DE22 3AW
a.bousbaine.derby.ac.uk

Keywords: QUADCOPTER, KALMAN FILTER, PIXHAWK, MATLAB/SIMULINK, PID
Abstract
This paper presents a hardware implementation of Control algorithm for 6DOF Quadcopter developed on MATLAB/SIMULINK to an autopilot Microcontroller (PIXHAWK) using MATLAB/SIMULINK Embedded Coder. After the validation of the SIMULINK model controller results through the software simulation, the designed controller is converted into C\C++ and uploaded into the Pixhawk autopilot by creating SIMULINK application in the autopilot firmware. This paper presents a rapid and real test solution for quadcopter control system using Pixhawk autopilot which will provide further real adjustment for the control parameters. This feature is used in this research is to deploy the SIMULINK codes into the Pixhawk autopilot board through the Embedded Coder Tool.

Introduction

Sensitivity: Internal

In recent years, drone technology has been rapidly evolving as new innovations are bringing more advanced drones to the industry every few months. Drone is a broad term used to describe any kind of Unmanned Aerial Vehicle (UAV). Drones come in different types, shapes, sizes and have different configurations such as bicopter, tricopter, quadcopter, hexacopter, octocopter etc. Quadcopters have generated considerable interest in both the control community due to their complex dynamics and a lot of potentials in outdoor applications because of their advantages over regular aerial vehicles. A quadcopter is a more specific term used to refer to a UAV that is controlled by four rotors, which falls under vertical take-off and landing (VTOL) category in drones[1-6].

[image:]Despite the diversity of UAVs, a robust closed loop control system must be designed for the stability and maneuverability of the quadcopter. The control system must be able to achieve, the necessary maneuvers through a control commands system generated from the combination of software and hardware using different control mechanisms Today, some of the widely simulation software used to develop high computing algorithm with multiple input and multiple output (MIMO) is MATLAB/SIMULINK. However; to integrate the designed algorithm into a hardware board which incorporates the necessary sensors such as IMU (inertial measurement unit) and altitude measurement (barometer). The Board is selected from various MATLAB support package for robotic system integration, this paper aims to present a rapid and real test solution for quadcopter control system using Pixhawk autopilot which will provide further real adjustment for control parameters [1].
Description of the Autopilot

The PIXHAWK is an autopilot-on-module see Fig.1 with high-performance suitable for all different type of Unmanned Ariel Vehicle (UAV), Unmanned Ground Vehicle, boats and any other Kinetic robotic platform. It is used by a large number of platforms targeted towards high-end research, amateur and industry due to its combined functionality of the (Autopilot / Flight Management Unit) PX4IO (Airplane/Rover Servo and I/O Module) in the same board. The autopilot is an inbuilt board which includes an ARM Cortex M4 central processing unit (CPU) and ST Microelectronics® sensor technology, all running in the NuttX Real Time Operating System (RTOS) that allows to multi-task and programming in a Linux platform. In addition, it allows building and uploading of applications onto the Pixhawk using C/C++ codes.
Figure1 PIXHAWK Flight Controller Connector Description [1]
[bookmark: _Ref515893143][bookmark: _Toc516576734]The complete specification of the PIXHAWK controller is described in Table .1

Table.1 Pixhawk Flight Controller Characteristic [1].

	Core Part
	Characteristics

	Processor
	· 32bit STM32F427 CortexM4 core with FPU;
· 168 MHz, 256 KB RAM, and 2 MB Flash;
· 32-bit STM32F103 failsafe co-processor;

	Sensors
	· ST Micro L3GD20H 16 bit gyroscope;
· ST Micro LSM303D 14 bit accelerometer / magnetometer;
· Invensense MPU 6000 3-axis accelerometer/gyroscope;
· MEAS MS5611 barometer;

	Interface
	· 5x UART (serial ports), one high-power capable, 2x with HW flow control;
· 2x CAN (one with internal 3.3V transceiver, one on expansion connector);
· Spektrum DSM / DSM2 / DSM-X® Satellite compatible input;
· Futaba S.BUS® compatible input and output;
· PPM sum signal input and RSSI (PWM or voltage) input;
· I2C and SPI serial communication;
· 3.3 and 6.6V ADC inputs ;
· Internal microUSB port and external microUSB port extension ;

Software Implementation

This section provides an overview of the software which has been developed to interface with the Pixhawk autopilot hardware, so it can used to build the code into the autopilot using Matlab/Simulink. This operation requires two main environments, MATLAB/Simulink where the quadcopter controller has been modelled, and the Pixhawk Support Package software which help to implement the full model into the hardware PX4. In addition, the software requires certain software dependencies and criteria which uses the Linux platform than Windows operating system. Therefore, the software part in this application has been established in four main part, install MATLAB R2016b version, operational system dependencies in this work Ubuntu 16.04 LTS, the Pixhawk Support Package (PSP) released by MathWorks and compatible with the MATLAB version used, and then build the PX4 Firmware through compilation [2].

[bookmark: _Toc516576609]3.1 Matlab/SIMULINK Environment
The SIMULINK environment is used to design the 6-DOF dynamic model of a quadrotor and test the linear dynamic inverse controller. It can, also, be used to simulate and interface to the hardware which allows the user to have a better analysis of the controller’s performance and adjust its control parameters. In addition, due to its high mathematical computation operation, SIMULINK can offer an accurate simulation of the dynamic vehicle including 3D animations to visualise the manoeuvres [2].
To realise all these operations the Following MATLAB/SIMULINK toolboxes are used (required) and the version is dictated by the Pixhawk FMUv2 requirements: MATLAB R2016b,Simulink Coder; Embedded Coder; Aerospace Blockset.

[bookmark: _Toc516576610]3.2 Operational system dependencies
The operational system chosen for this study is Ubuntu Linux16.04 LTS recommended by the PX4 supplier as this platform help to build all the Pixhawk Target NuttX based hardware, Qualcomm Snapdragon Flight hardware, Linux-based hardware, Simulation and ROS. The dependencies have been install using the open terminal of the platform and the instructions set in the Support Package for Pixhawk official document release [2]. The software requirements are: Git, GCC ARM compiler version 4.8,arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 4.8.4 , Python 2.7.12 with the Additional Package, and CMake version 3.5.1.

[bookmark: _Toc516576611]3.3 Pixhawk Support Package (PSP).
The PSP helps to incorporate the SIMULINK model into a complete firmware (the px4fmu Version 2) which is used from the Simulink models as code generation target for the Pixhawk FMUv2 (Flight Management Unit).
This operation is realisable due to the Pixhawk Simulink blockset add into the Library, Fig.2. It also permits to interact with inertial measurements, GPS, a light emitting diode (LED), PWM output and serial Rx/Tx for communication purposes embedded inside this board [2].

[image:]
[bookmark: _Ref516570333][bookmark: _Ref516570329][bookmark: _Toc516576678]
Figure 2 Block toolset of the Pixhawk in MATLAB/SIMULINK.

The Flight Management Unit, FMU, Firmware is built by cloning the fork version from the Pixhawk Website developper into the defined directory using the Ubuntu open terminal command. After this operation, the Firmware is built according to the version chosen in this study px4fmu-v2_default recommended by the MathWorks developers as it expresses the default configuration.
Quadcopter 6DOF Analytical Control Model Matlab/Simulink

To develop a control philosophy several steps have been presented according to [1, 5, 6]. The aim was to develop the mathematical models to build a linearized control model, composed of Kalman Filter (KF) in the feedback as a real measurement estimator that has been affected by the plant and measurement noises. Then the flight control system based on a PID controller, Fig.3, is developed to establish the calibration of the pre-existing quadcopter, MATLAB/SIMULINK model developed [3,4] by extracting the real values of the propulsion system used in the study and the test Quadcopter build [3].
 [image:]
[bookmark: _Toc516576693][bookmark: _Toc516576636]Figure 3 The whole Simulink model for a 6DOF quadcopter with control algorithmes [3].

4.1 Flight controller modelling
This model includes PID, the quad mixer and the scaling blocks. It aims to stabilize the quadcopter by determining the necessary motor voltages’ for the desired command generated and compared to the real estimated measurement[5]. Fig.4 shows a snapshot of this implementation in Simulink.
[image:]
[bookmark: _Toc516576702]
Figure 4 PID controllers Block from MATLAB SIMULINK.
[bookmark: _Toc516576637]4.2 Kalman Filter modelling
The Kalman Filter (KF) developed Simulink model aims to estimate the real output of the Quadcopter in order to filter all the noises encountered during the processing. The implementation of the KF in Simulink is one of the important steps for this work. The filter is achieved using the KF block in the Control System Toolbox library in Simulink, and the block input setting parameters, [3].
[image:]
[bookmark: _Toc516576704]Figure 5 Kalman Filter SIMULINK block Diagram for Height, Pitch, Roll and Yaw.

The designed KF includes the main parameters that influence the behaviour of the filter represented by the initial estimates X [0] and the covariance matrices Q and R [3]. The filter implementation has been built, independently, for each movement of the quadcopter taking into account all the parameters related to the system (mass, moments of inertia, the biases of the sensors, etc.). The parameters, used in the filter, are extracted from a real quadcopter used in this simulation, and used to test the performance of the KF [3].

[bookmark: _Toc516576640]4.3 Quadcopter Mixer
The quadcopter mixer block is built in two stages, the first stage is implemented using the parameters extracted from the real quadcopter such as torque constant, drag and the quad arms’ length [3, 4]. The second stage is to establish the relation between the voltage [V] signals sent to the motors and the actual squared angular velocities Ω2 [rad/s]2 using the linear regression. A snap shot of the Simulink block for the quad-mixer is shown in Fig.6 [3].

[bookmark: _Toc516576641]4.4 PWM Scaling
This is the last block in the chain of blocks used to scale the necessary voltages for the commands and converted to 16-bit integer which were used in the PWM analogue output of the MCU. The scaling linearity uses the linear characteristic coefficient, Fig.7, which represent a snapshot of this block.
[image:][image:]
[bookmark: _Toc516576707]Figure 6 Quadcopter mixer SIMULINK block [3].
[image:]
[bookmark: _Toc516576708]Figure 7 Scaling PWM SIMULINK block.

Hardware testing

After testing the designed controller, and successfully simulated its 3D animation, the real implementation of the controller was undertaken. The SIMULINK application building into the PIXHAWK is shown with the essential information that is required to build the controller designed, Fig. 8, using both sources Pixhawk Website developper and mathworks developper.

[bookmark: _Toc516576645] 5.1 Software Setting
The Simulink controller designed was linked to the Pixhawk Simulink target block tools after the whole model was discretised. The main Pixhawk Target block used are described as follow:

[bookmark: _Toc516576716]Figure 8 Block Diagram for the Implementation procedures.

5.1.1 Input-rc block:

Fig.10, permit to access the command coming from the Radio Controller transmitter which generates the command of Height, Pitch, Roll and Yaw. To connect this block, the 5 Channels, Ch1-Ch5, are configured to generate the signal for the Roll, Pitch, Height, Yaw and RGB LED respectively. All the data from the transmitter is expressed in an Unsigned Integer 16-bit PWM [4];

Figure 9 Radio Control SIMULINK Block

[bookmark: _Hlk26954513]5.1.2 The PWM_Output blocjk
Fig.10, allows the controller to send the motors’ command to the ESC which controls the motor speed, and delivered in unsigned 16 bit at the PWM frequency rates of 50, 125, 250, 300 and 400Hz[2].

[bookmark: _Toc516576718]Figure 10 PWM SIMULIK Generator for Pixhawk
5.1.3 The sensor combined block
Fig. 11, facilitates access to the various sensors available on the Pixhawk Board hardware. The signal used is the barometer to control the altitude of quadcopter based on the barometric pressure [2].

[bookmark: _Toc516576720]Figure 11 Sensor combined block

5.1.4 The vehicle_attitude block
Fig. 12 allows calculating the vehicle’s attitude Roll, Pitch and Yaw using the combination of the accelerometer, magnetometer and gyroscope.

5.1.5 The quad-copter controller interface:
Fig. 13 shows the interface the sub-blocks with the quad copter controller. The designed continous system is digitised using the zero order hold at a sampling rate of 4ms.

[bookmark: _Toc516576719]Figure 12 Sensor Block for the Pixhawk [4].

[image:]
[bookmark: _Toc516576721]Figure 13 Quad controller link with the Pixhawk SIMULINK block set [4].

5.2 Code generation methodology
In order to target the PX4 hardware and generate the appropriate C\C++ code, the Simulink model is configured using a suitable setting of the code generation options in the Hardware implementation page of the Pixhawk PX4 as Hardware Board target. The appropriate code is generated automatically using Build Tool Integration, Fig.14, in the SIMULINK command window.

[image:]
[bookmark: _Toc516576722]Figure 14 Build Integration Icon from Simulink window [4].

The MathWorks’ Build Tool Integration (BTI) allows MATLAB to invoke the ARM-GCC compiler. The system target file needs to be ert.tlc (Embedded Real-Time) which is available with Embedded Coder. The user is then able to choose the hardware and toolchain. If the target hardware is set to ‘Pixhawk’, then the appropriate toolchain (Pixhawk) will be chosen automatically.

[bookmark: _Toc516576651]5.3 Pixhawk Test
After the Calibration of the sensor and setting all the Simulink model controller software configurations, the application uploading was successfully dowloaded to the Pixhawk autopilot [4], fig. 15. However to run the px4_simulink_app which express the Matlab SIMULINK model, inside the board,
a start-up script is necessary for the board to execute and copy the file to the micro-SD card used on the PX4. The script is provided by the Pixhawk Support MATLAB Guide and modified to be adopted to this application[1]. Altitude controller test was set up using the test quad and the scope to measure the PWM signal.

[bookmark: _Toc516576730]Figure 15 Picture during uploading the SIMULINK model into the Pixhawk [4].

Conclusion

The whole purpose of this paper was to build a Flight controller with an experimental method using PID control algorithm linked with KF for the quadcopter. The implementation was done in MATLAB SIMULINK software and uploaded into Pixhawk AutoPilot which permitted a real test of the developed SIMULINK controller model. To generate custom flight control for the hardware autopilot (Pixhawk), the discrete SIMULINK model controller has been designed. The operation was successfully done and the whole controller designed was converted into C\C++ code and was integrated into Pixhawk autopilots using Embedded Coder® generator in MATLAB/SIMULINK, using this method any robotic control algorithm developed in MATLAB/SIMULINK could be converted in to real real time without acquiring a lot of skills in C\C++ programming language.

References

Websites
[1] ‘Pixhawk Website developper, pixhawk’, 2017, https://pixhawk.org/modules/pixhawk, accessed 06 March 2018.
[2] ‘Mathworks developper’, https://uk.mathworks.com/, September 2017, accessed March 2018
[3] ‘Hatware support/pixhawk.html’, https://uk.mathworks.com, accessed 23 March 2018.

Conference paper
[4] Fareha, A., Bousbaine, A., Joseph, A.: ‘Experimental Characterisation of quad rotor controller based on Kalman Filter’, 53rd international Universities Power Engineering Conference (UPEC 2018) , Glasgow, UK, 2018.

Thesis
[5] Fareha, A.: ‘Assembly, Design and Implementation of the Quadrotor controller based on Kalman Filter by Experimental Characterisation and PID technique to control the position’, MSc thesis, University of Derby, Derby, UK, 2018.
[6] Herrera, D. F. G.,: ‘Design, Development and Implementation of Intelligent Algorithms to Increase Autonomy of Quadrotor Unmanned Missions’, MSc thesis, EMBRY-RIDDLE Aeronauticla University, Daytona Beach, Florida, 2017.

image1.emf

image2.emf

image3.png

image4.png
Fositon Contol

|
>
—
B
Vancs S

T o—

)

I

Theta_Phi Nau, Messursd

—

PID Contrler

—
ezl @D
vt Feeack eroez
D Contoter 21
[——

PCrt

[sepoint vaw

Feschack vaw

W M

Ermor_psi

D Cantraler VAW

image5.png

image6.png
vvvvvvvvv

image7.png
>

U Thret Toraue

%

Saturanar

%

Saturanar

%

Saturanar

I

Saturaons

Satenvanzbiat Vectr Forces ve Angulart “Angular v Voliage

PlantDiturt

image8.png
- o

Data Type Conversion
20kq

-] o

Data Type Comversion!
oKgt

-]

Daia Type Conversion2
e

-]

Daia Type Conversion3
e

image9.emf
Develop Discreet

Simulink model &

Configure Hardware

Implementation

Invoke the ARM-GCC

compiler to build

px4_simulink_app and

flash the Pixhawk

C/C++ Code generation

of the Simulink model

with Embedded Coder

Microsoft_Visio_Drawing.vsdx

Develop Discreet Simulink model & Configure Hardware Implementation
Invoke the ARM-GCC compiler to build px4_simulink_app and flash the Pixhawk
C/C++ Code generation of the Simulink model with Embedded Coder

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.png
-8 0% |9 @)s
pdemo stude sytam O
e

Voriy : [110%
Verify
Reboot
‘make[1]: Leaving directory Jhome/abdullpxd/sre/Firmware’

End of Simulink Buld #57

#44# Done invoking postbuild ool

##4# Successfully generated al binary outputs,

make: Nothing to be dore for dovniond.

##4# Successtul completion of buid proceduro for model: pxidemo atifude system

Build process completed successfully

image29.png
Verify 11.0%
Verify
Rebooting.
‘make[1]: Leaving directory ‘/home/abdul/px4/src/Firmyware'
##3# End of Simulink Build ###

##4# Done invoking postbuild tool

##4 Successfully generated all binary outputs.

‘make: Nothing to be done for ‘download'.

##3# Successful completion of build procedure for model:

100.0%

Build process completed successfully

image30.jpeg

image31.png
-8 0% |9 @)s
pdemo stude sytam O
e

Voriy : [110%
Verify
Reboot
‘make[1]: Leaving directory Jhome/abdullpxd/sre/Firmware’

End of Simulink Buld #57

#44# Done invoking postbuild ool

##4# Successfully generated al binary outputs,

make: Nothing to be dore for dovniond.

##4# Successtul completion of buid proceduro for model: pxidemo atifude system

Build process completed successfully

image32.png
Verify 11.0%
Verify
Rebooting.
‘make[1]: Leaving directory ‘/home/abdul/px4/src/Firmyware'
##3# End of Simulink Build ###

##4# Done invoking postbuild tool

##4 Successfully generated all binary outputs.

‘make: Nothing to be done for ‘download'.

##3# Successful completion of build procedure for model:

100.0%

Build process completed successfully

image33.jpeg

