
IET Circuits, Devices & Systems

Research Article

Timing error detection and correction for
power efficiency: an aggressive scaling
approach

ISSN 1751-858X
Received on 30th April 2018
Revised 13th August 2018
Accepted on 6th September 2018
doi: 10.1049/iet-cds.2018.5143
www.ietdl.org

Prasanthi Rathnala1, Tim Wilmshurst1, Ahmad Kharaz1 
1Department of Electronics, Computing and Mathematics, College of Engineering and Technology, University of Derby, Derby DE22 3AW, UK

 E-mail: a.kharaz@derby.ac.uk

Abstract: Low-power consumption has become an important aspect of processors and systems design. Many techniques
ranging from architectural to system level are available. Voltage scaling or frequency boosting methods are the most effective to
achieve low-power consumption as the dynamic power is proportional to the frequency and to the square of the supply voltage.
The basic principle of operation of aggressive voltage scaling is to adjust the supply voltage to the lowest level possible to
achieve minimum power consumption while maintaining reliable operations. Similarly, aggressive frequency boosting is to alter
the operating frequency to achieve optimum performance improvement. In this study, an aggressive technique which employs
voltage or frequency varying hardware circuit with the time-borrowing feature is presented. The proposed technique double
samples the data to detect any timing violations as the frequency/voltage is scaled. The detected violations are masked by
phase delaying the flip-flop clock to capture the late arrival data. This makes the system timing error tolerant without incurring
error correction timing penalty. The proposed technique is implemented in a field programmable gate array using a two-stage
arithmetic pipeline. Results on various benchmarks clearly demonstrate the achieved power savings and performance
improvement.

1 Introduction
Owing to the increased use of mobile and portable devices, power
consumption has become a major constraint in the design of
modern processors. Many techniques ranging from architectural to
system level have been developed. Of all these, dynamic voltage
and frequency scaling (DVFS) has received more attention over the
last two decades. This technique dynamically adjusts voltage and
frequency depending on the present task requirements, thereby
reduces the power consumption of the system [1]. The technique
has been proven ideal to trade-off performance and power
consumption of a processor because supply voltage reduction is the
ideal way of achieving low-power consumption. Owing to its
benefits, DVFS has been used not only to reduce power and
temperature but also to improve the security of the systems from
power analysis attacks. The traditional DVFS approach scales the
supply voltage based on either workload or timing margins
available [2]. To guarantee safe operation, voltage and frequency
pairs are pre-determined along with workload conditions by
considering all process corners. The hardware realisation of this
open-loop system uses look-up tables (LUTs) to store voltage and
frequency pairs. Since the LUT is pre-loaded with values, the
system is not able to adapt to process variations or environmental
conditions. Owing to an increase in the process–voltage–
temperature variations and advancements in the process
technology, the basic DVFS technique has a reduced demand. On
the other hand, timing margin-based DVFS is a closed-loop
system, which adaptively changes the supply voltage to a minimum
level to meet performance requirements by considering the process,
voltage and temperature variations. The typical closed-loop system
employs a monitoring algorithm to provide application
requirements in order to configure a programmable DC–DC
converter and a programmable clock generator. In recent years, this
technique uses critical path monitors to monitor critical path delay
in a process and adjusts the frequency/voltage so as to minimise
timing margins during runtime.

According to the available literature, critical path monitoring
techniques can be classified into three categories: direct
monitoring, indirect monitoring and time-borrowing monitoring.
The direct monitors track the actual critical path delay during
runtime for detecting and correcting timing errors. This technique

is more effective in reducing all the timing margins. However, this
approach detects errors after their occurrence and incurs a large
timing penalty for error correction. The indirect monitors use
critical path replicas (CPRs) that reflect the delay behaviour of the
actual critical paths in the design. The design of these CPRs is most
critical and it must be as close to the actual delay of the circuit as
possible because these are used to generate the feedback signal
controlling voltage or frequency of the processor. This technique
requires a large timing margin compared with the direct technique
because of the difference between actual and predicted paths. The
time-borrowing monitors mask timing error by borrowing time,
either delaying the arrival time of the correct data to the next
pipeline stage or delaying the clock to capture the late arrival data.
This technique needs a large checking window to be more
effective. The checking window is referred to as the period of time
after the clock edge reserved for error detection and masking.

To summarise, the main challenges for the proposed technique
are: (i) reducing large timing penalty for error correction, (ii)
reducing large timing margins and (iii) having large checking
window for error detection and correction. The proposed
methodology presents a comprehensive solution to the above three
issues in developing an appropriate critical path monitor leading to
a power-efficient DVFS system.

The rest of this paper is organised as follows: the background
related to the present work is presented in Section 2. The principle
of operation of the proposed technique is presented in Section 3.
The timing analysis and extension of the technique to the general
pipeline architecture are presented in Sections 4 and 5,
respectively. The simulation results are provided in Section 6 and
the concluding remarks are presented in Section 7.

2 Background
In the recent past, aggressive scaling with critical path monitoring
techniques has received considerable attention from industry [3].
Intel and advanced RISC machines (ARM) have initiated research
efforts focused at evaluating these techniques for low-power
microprocessor cores [4]. In [5], the ARM-based industrial
prototype was developed, where razor dynamic adaptation led to
52% energy savings at 1 GHz operation. Still, several challenges

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018

1



remain before these techniques are to be widely adopted as a
mainstream technology. However, they deliver improved power
savings or performance improvements suitable for high-
performance processor designs. The first reported technique based
on critical path monitors are direct monitors. The best example for
this category is razor technique [6]. This technique detects timing
error by double sampling the critical path output at different points
in time and compares them with each other. Some of the benefits of
this technique are highlighted in [6]; however, it poses significant
challenges. The technique monitors critical path signals for late
arrival data, detects error after the system is corrupted and stalls the
current execution to recover from the error. Some of the limitations
of razor circuits are listed below: (i) error correction overhead –
takes multiple cycles to recover from error; (ii) dependency
between checking window and hold time constraint; (iii)
susceptibility to datapath metastability – require substantial design
overhead [7]. The bubble razor [8] technique addressed these
limitations and proposed a new solution using a latch-based design.
The latch-based flows have been around for a long time; however,
the majority of design flows in the industry rely heavily on the use
of edge-triggered flip-flops [9]. In the case of error-free operation,
the shadow latch is susceptible to glitches as long as it is open.
Hence it is more prone to glitches than flip-flop-based designs.
This causes unnecessary activity and consumes more power.

TEAtime [10] is the best example of the indirect critical path
monitoring. This method uses a CPR to estimate the timing error
before the occurrence of an error. This is achieved by replicating
the most critical paths to estimate the behaviour of the path with
respect to voltage or frequency variation. The advantages of this
method are: (i) errors are detected before they occur and (ii)
architecture modification of processor is not required. However,
the major difficulty is in the design of replica that closely
resembles the actual critical path.

The third classification is based on time-borrowing feature.
Many techniques have been proposed related to this including
transition detector with time borrowing (TDTB) [11], double
sampling with time borrowing (DSTB) [11] and timber [9]. In
DSTB, the positions of flip-flop and latch are interchanged to
eliminate datapath metastability but the checking window for
timing speculation is small compared with razor flip-flop. Timber
proposed a new time-borrowing scheme, which detects the late
arrival of data and masks them by reducing the arrival time of the
correct data to the next pipeline stage [7]. The drawback of timber
is the small checking window for timing speculation. In
conventional systems, a closed loop is used to change the delay of

the flip-flop clock based on timing error on the fly. This will
consume more power as the phase of the clock is changing on the
fly. Moreover, the clock signal and clock tree are the most power-
consuming elements of a digital processor.

In this paper, we propose a new aggressive scaling technique to
address the issues of the above-mentioned techniques. The features
of the proposed technique are compared with the previously
introduced techniques as shown in Table 1. As can be seen from
this table, all the techniques mentioned require high area overhead
because of the complexity involved in error detection and recovery,
except the proposed technique. 

The area overhead involved the proposed technique is small
compared with the other techniques. In addition to this, it is quite
attractive for most of the features listed in Table 1. The summary of
our main contributions is: (i) a new technique to reduce power
consumption or improve the performance of processor designs, (ii)
error correction without timing penalty, (iii) use of phase-delayed
clock to borrow time reduces the sequential clock energy overhead
in traditional designs and (iv) experimental work by prototyping
the design on to a field programmable gate array (FPGA) to
validate the effectiveness of the proposed technique.

3 Principle of operation
The aim of the proposed technique is to operate systems beyond
worst-case estimates with minimal error correction overhead and
timing margins. To reduce excess timing penalty of error correction
overhead, a timing monitor unit employing time-borrowing
approach is used. Fig. 1 shows a gate-level circuit diagram of the
proposed unit. The fundamental idea here is to delay the main
clock in such a way that the late arrival data can be captured with
time borrowing. The proposed circuit mainly consists of a flip-flop,
a latch and a multiplexer. The combination of flip-flop and latch
performs double sampling to identify when there is any timing
violation as in razor circuit described earlier. However, in this
circuit, as in DSTB, the position of flip-flop and latch are
interchanged to avail the feature of time borrowing and to reduce
sequence overhead. The drawback of DSTB is having a small
checking window for timing speculation. The proposed technique
overcomes this drawback by adding a multiplexed clock signal to
further extend the checking window. Having a larger checking
window helps to detect the timing error if the data arrives after the
rising edge of the clock signal [12]. The proposed circuit detects
timing error by double sampling the data using flip-flop and latch
combination. When the data arrives late, the output of flip-flop and
latch differ and thereby activates the error signal, which in turn
changes the phase of the clock signal to the flip-flop. Now, the flip-
flop clock is phase delayed to capture the late arrival data and
eliminate the timing error. If the error continues beyond this point,
further action needs to be taken to change voltage or frequency.

To reduce the sequential clock energy overhead, both main and
delayed clock signals are generated beforehand and only the
selection is done on the fly.

3.1 Timing waveform

Fig. 2 shows the timing waveforms of the proposed technique. The
main clock and the input data signals are clk and D_in,
respectively. The same input data D_in is fed to both the sequential
elements flip-flop and latch. 

Table 1 Comparison of the proposed technique to other latest techniques
Indirect (CPR) Razor TDTB Timber DSTB Proposed technique

architecture modification no yes yes yes yes less, no need to replace all registers in the
pipeline

datapath metastability no yes no yes no no
error correction overhead no yes no no no no
design complexity high low high high low low
timing margin large small small small small small
power overhead CPM CPM + additional pipes + 

recomputing + buffers
CPM CPM CPM CPM + buffers

 

Fig. 1  Gate-level circuit diagram of the proposed technique
 

2 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018



During cycle 2, D_in arrives longer than the setup time and
before the rising edge of the flip-flop. This is the ideal case of
operation for any digital circuit. The input data is captured
correctly by both flip-flop and latch. Hence, there is no error signal
during this cycle.

During cycle 3, D_in arrives after the rising edge of the main
clock signal clk. As frequency is scaled beyond the worst-case
estimate, the input data arrives late [13]. This means that the clock
frequency is not sufficient for the critical signal to travel along the
path. So the flip-flop missed the data, causing the error signal to be
activated. When this happens, the multiplexer selects the phase-
delayed clock and flip-flop uses this to capture the late arrival data.
The error signal is masked immediately as soon as both flip-flop
and latch capture the same data. Since the error is masked, the
proposed technique resumes the normal pipeline operation.

4 Timing constraints
To ensure correct functionality, the input data must arrive at a setup
time prior to the rising edge of the clock. Sometimes data can
arrive after the rising edge due to the worst-case dynamic variation.
The proposed technique can be used to ensure the correct
functionality. The two main elements in the technique are the flip-
flop and latch; both elements are clocked by different clock signals
ff_clk and latch_clk. Both the clocks have the same frequency but
ff_clk is phase delayed by 180∘ with respect to the latch_clk.
Timing constraints must be analysed thoroughly to safeguard the
correct operation of any digital circuit. The main basis for the
analysis is taken from [8] for the DSTB circuit and modified
further to analyse the benefits of the proposed technique. The
timing constraints for the proposed technique are given below.

t(su, F) = setup time of flip-flop; t(su, L) = setup time of latch;
tclk = clock period; tch = checking window; tpw = pulse width; tpd = 
propagation delay; tpcql = latch clock-to-Q propagation delay; and
td = delayed clock

tch = tpw + (t(su, F) − t(su, L)) (1)

Equation (1) ensures that the proposed circuit has a checking
window, which detects late arriving data. In general, the input data
to be captured properly by the flip-flop must stabilise at least t (su,
F) before the rising edge of the clock. Because of the variations,

there is a possibility for the late arrival of data. The circuit must
have a large checking window to ensure the late arrival data can be
sampled by the latch if flip-flop missed it. The checking window
should be as wide as possible to eliminate large guard bands. In our
case, the clock to the flip-flop is delayed by 180∘ to capture the late
arrival data, which is indicated by an error signal. Therefore, (1)
can be modified as shown below:

tch = tclk
2 + (t(su, F) − t(su, L)) (2)

From (2), it is evident that the checking window is almost 50% of
the clock period which is wide enough to eliminate the excess
timing margins. In the case of error, the checking window reduces
as in (3) but other times the checking window is large enough to
detect timing violations

tch = tpw + (t(su, F) − t(su, L)) − td

= tclk
2 + (t(su, F) − t(su, L)) − tclk

2
= (t(su, F) − t(su, L))

(3)

Another important metric in digital circuits is the maximum
propagation delay, which is the maximum delay of the circuit under
worst-case conditions. This delay helps to hide the flip-flop setup
time from the critical path

tpd ≤ tclk − tpcql − (t(su, F) − td

≤ tclk
2 − tpcql − t(su, F)

(4)

In addition to this, two other timing conditions must be met on the
circuit behaviour: max-delay and min-delay. The timing diagram
for the delay constraints is illustrated in Fig. 3. The critical path
exhibiting a maximum delay in the presence of worst-case dynamic
conditions. The timing analysis of both delays is followed as in
[11] and defined in (5) and (6). If the max-delay constraint is not
satisfied, false detections can occur causing timing violations and
capturing wrong data. The min-delay constraint depends on short
path delay and holds time as defined in (6). The short paths in the
design must be padded to have a delay greater than the sum of hold
time and the checking period. The max- and min-delay constraints
are common issues that all critical path monitoring (error detection)
techniques and the proposed technique need to address. The
potential hold time violation can be overcome by using additional
buffers or clock phase tuned with a duty cycle control circuit [11].
Microprocessors with shallow pipelines greatly relax the min-delay
requirements as compared with a deep pipeline design, enabling a
more effective trade-off of max-delay improvement for min-delay
penalty [11]

tch ≥ tcritical_path − tclk + t(su, F) (5)

tshort_path ≥ thold + tch (6)

5 Extension to processor architecture
Fig. 4 shows the integration of the proposed technique into the
general five-stage pipeline architecture. Unlike the techniques in
[1, 6], all the pipeline registers need not be replaced with the new
circuit. Only the critical paths that get negative slack, because of
the variations, need to be replaced. However, the worst-case
situation is shown in Fig. 3. Note that the paths that require time
borrowing need to be replaced by the proposed circuit.

The pipeline executes instructions normally when there is no
error at any stage of the pipeline. If the operating frequency is
scaled beyond the worst-case estimate, timing errors start to occur.
The error signal is activated to indicate the occurrence of timing
error at each stage of the pipeline. All these error signals are
combined to generate a global error signal. As explained in Section
2, timing errors are masked by phase delaying the clock to capture

Fig. 2  Timing diagram of the proposed technique
 

Fig. 3  Conceptual timing diagram for maximum and minimum delay
constraints

 

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018

3



the late arrival data. The activation of the global error signal
indicates the worst-case scenario of the circuit. This situation
shows that the present operating frequency/voltage needs to be
altered to perform normal operation. The control unit makes the
decision and commands the clock/voltage generator to supply a
new set of operating frequency/voltage to recover from the error.

6 Simulation and evaluation
The proposed technique is implemented and analysed on a 90 nm
Spartan 3E FPGA development board. The reason for choosing
FPGA environment is the flexibility of FPGA architecture to
modify circuit post-placements to insert the proposed technique to
monitor critical paths post-compilation. Such opportunities are not
available in application-specific integrated circuit (ASIC) without
significant incremental cost [14]. The technique is validated by
implementing a simple application circuit, two-stage pipeline
counter and targeted to FPGA. The Spartan 3E FPGA development
board has chosen two reasons: (i) ease of frequency tuning and (ii)
no need to alter the hardware for evaluating the proposed design. In
general, timing error estimation, detection and correction circuits
use either frequency or voltage to verify the effectiveness of their
techniques. In this case, to validate the proposed technique, the
frequency is varied by monitoring the timing error of critical paths.
The whole idea here is to evaluate the circuit behaviour with
respect to timing error and not the source of error.

The flip-flop clock is delayed by using digital clock manager
(DCM) and the latch clock is set to the base clock frequency. Since
the clocks have the same frequency, the base clock frequency is set
as the main clock frequency and the DCM is used to provide the
required phase difference to the flip-flop clock. We implemented
the proposed technique in a two-stage arithmetic pipeline. The first
stage of the pipeline consists of two counters with 16 bit output.
The second stage of the pipeline uses 32 bit input exclusive-OR
tree to output the synchronised counter output. The design is
simulated, synthesised and targeted to Xilinx Spartan 3E FPGA.
The potential critical paths are identified with the static timing
analysis. For these critical paths, we replaced 9% of the original
flip-flops in the netlist with our proposed technique.

6.1 Experimental methodology

To evaluate the effectiveness of the proposed unit, a control
scheme presented in [15] is used to switch clock frequency
between the worst-case clock frequency Fmin and the possible
over-clock frequency Fmax. In this case, Fmin is the estimated worst
clock frequency by the timing analysis. The flip-flop clock is phase
delayed by 180∘ with respect to the latch clock. Owing to this delay,
the late arrival of data detection can be extended from the rising
edge to the negative edge of the main clock signal. This allows the
circuit to go beyond the maximum clock frequency. The maximum
clock frequency can be extended to 1.5 times the original/estimated
worst-case clock frequency. To evaluate the performance of the
proposed circuit, three scenarios, as described below, are
monitored:

(a) Normal operation: A clock frequency was chosen below the
worst-case clock frequency. From the static timing analysis, the
worst-case clock frequency, in this case, was 120 MHz. The above-
mentioned two-stage arithmetic was run for 10,000 cycles to count
the number of errors occurred. No errors were found in this case
and the circuit executed the normal operation.
(b) Over-clocking: A clock frequency was chosen between worst-
case clock frequency Fmin and maximum frequency Fmax. The
same procedure as in the first case was repeated here, to monitor
the number of errors that occurred during 10,000 cycles. Few
errors occurred, which were masked by the time-borrowing feature
of the circuit.
(c) Aggressive over-clocking: A clock frequency was chosen just
below the maximum frequency Fmax with the same as above
procedure repeated for 10,000 cycles. These errors were masked by
using this proposed circuit, without even error correction timing
penalty. Thus this circuit permitted aggressive over-clocking
beyond worst-case clock frequency without any performance
penalties.

6.2 Results

The above procedure was used to evaluate the performance
increase of the proposed technique as a function of error rate.
Fig. 5 shows the relation between error rate and frequency of the
two-stage design with and without the proposed technique. In
general, the occurrence of timing errors below the worst-case clock
frequency estimated by the computer-aided design timing analysis
was very rare. The same can be seen in this figure. The blue line
corresponds to the design without the proposed technique; no
errors occurred up to about 124 MHz. As the operating frequency
was increased beyond this point, the percentage of error rate started
increasing. 

The same procedure was repeated using two-stage arithmetic
with the proposed technique. No errors occurred until the
frequency has reached up to 160 MHz. The timing errors occurred
as the frequency was tuned beyond worst-case frequency of 120 
MHz. However, these errors were masked by the technique,
causing performance improvement of around 33%. The percentage
of error rate started increasing after 160 MHz. This indicated that
critical path timing violations exceeded the maximum time
borrowing allowed with the proposed technique.

We simulated the two-stage design with razor technique to
evaluate the performance improvement. Fig. 6 shows the results of
razor and proposed techniques. As shown in this figure, the
performance of the proposed technique is comparable with the
razor technique and the existing minor rise in error rate is due to
the fixed phase delay of the clock signal. This limitation can be
improved by using tunable phase delay element to capture late
arrival data and to mask timing errors. However, this has an impact
on area overhead and hence the power consumption. 

We also simulated different benchmarks to evaluate the
performance improvement of the proposed technique. The results
of three benchmarks [advanced encryption standard (AES) and
multiply and filter (MUL)] are presented in Fig. 7. From the
results, it can be seen that the proposed technique provides ∼20%
performance improvement when compared with the design without

Fig. 4  Extension to general processor architecture
 

Fig. 5  Error rate versus frequency for the proposed technique
 

4 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018



the proposed technique. The main benefits of this are less area,
lower-power consumptions and reduced design overheads
compared with other reported techniques. The hardware resource
utilisation of all the benchmarks circuits implemented is presented
in Table 2. 

We evaluated the proposed technique power overhead involved
in dealing with error detection and correction. The original two-
stage design was run with voltage fixed to 1.0 V and frequency was
varied to measure the total power consumption of the design with
razor and the proposed technique. One frequency was chosen
below the worst-case frequency estimated by the timing analysis
and the other frequency was selected to be beyond the worst-case
clock frequency. The purpose was to evaluate the power
consumption of the proposed technique when there were no timing
errors and again in the presence of timing errors. Results of both
techniques, power consumption versus frequency are presented in
Fig. 8. In both cases, razor technique consumed more power
compared with the proposed technique. Although razor technique

provided a slightly better performance improvements compared
with the proposed technique, razor consumes more power before
and after timing error occurrences. Razor involves complex error
correction mechanisms such as counterflow pipelining or
architectural replay that consume more power in the event of
errors. They involve stalling the pipeline and flushing the wrong
data to recover from the error. These mechanisms are activated
when there is an error. However, the complex circuitry still
consumes power in the case of no errors.

Fig. 9 represents the measured error count versus frequency for
all the benchmark circuits implemented. In this figure, the region
up to 60 MHz is error-free zone, no errors occurred due to the
positive time slack. Within the region from 60 to 90 MHz, slight
errors occurred due to the clock jitter or the discrepancy between
the rise and fall times of the critical paths. These errors were
masked by the proposed circuit. The region after 90 MHz, the
timing violations caused an increased number of errors.

7 Conclusion
In this paper, a novel technique that reduces the power
consumption of embedded system has been presented. It reduces
the excessive timing margins which result in the reduction of
power consumption. This technique corrects the timing error
caused by aggressive voltage scaling or frequency boosting by
phase delaying the clock. The main benefits of this are less area,
lower-power consumption and fewer design overheads compared
with other reported techniques. The technique was validated by
prototyping on to an FPGA in a Spartan 3E FPGA development
board. Results are presented that show both performance and
power consumption improvements. Our experiments are based on
FPGA platform, an extension is planned to implement in ASIC
technology. This work presents an initial exploration of the
possibilities of using time borrowing to benefit power savings or
performance improvement. The effect of varying supply voltages
and the circuit behaviour at near threshold voltages will be carried
in the future work.

8 References
[1] Rathnala, P., Kharaz, A., Wilmshurst, T.: ‘An efficient adaptive voltage

scaling using delay monitor unit’. Ph.D. Research in Microelectronics and
Electronics (PRIME), Glasgow, UK, 2015, pp. 109–112

[2] Park, J.: ‘Self-tuning dynamic voltage scaling techniques for processor
design’. PhD dissertation, The University of Texas, Austin, May 2013

[3] Das, S.: Razor: a variability – tolerant design methodology for low-power and
robust computing’. PhD dissertation, The University of Michigan, 2009

[4] Savage, N.: ‘Intel and ARM are exploring self-correction schemes to boost
processor performance and cut power’ (IEEE Spectrum, 2008). Available at
http://spectrum.ieee.org/semiconductors/design/intel-and-arm-are-
exploringselfcorrection-schemes-to-boost-processor-performance-and-cut-
power, Accessed on July 30 2018

[5] Das, S., Bull, D.M., Whatmough, P.N.: ‘Error-resilient design techniques for
reliable and dependable computing’, IEEE Trans. Device Mater. Reliab.,
2015, 15, (1), pp. 24–34

Fig. 6  Comparison of the proposed technique performance improvement
to the original design and razor technique

 

Fig. 7  Performance improvement of various benchmarks using the
proposed technique

 
Table 2 Hardware resource utilisation report

AES MUL FILTER
slices 1526 1043 1624
slice flip-flops 1334 63 416
LUTs 6245 229 117

 

Fig. 8  Power consumption of razor and the proposed technique
 

Fig. 9  Measured error count
 

IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018

5

http://spectrum.ieee.org/semiconductors/design/intel-and-arm-are-exploringselfcorrection-schemes-to-boost-processor-performance-and-cut-power
http://spectrum.ieee.org/semiconductors/design/intel-and-arm-are-exploringselfcorrection-schemes-to-boost-processor-performance-and-cut-power
http://spectrum.ieee.org/semiconductors/design/intel-and-arm-are-exploringselfcorrection-schemes-to-boost-processor-performance-and-cut-power


[6] Ernst, D., Kim, N.S., Das, S., et al.: ‘Razor: a low-power pipeline based on
circuit-level timing speculation’. Proc. 36th Annual IEEE/ACM Int. Symp.
Microarchitecture, December 2003, pp. 7–18

[7] Shin, I., Kim, J., Shin, Y.: ‘Aggressive voltage scaling through fast correction
of multiple errors with seamless pipeline operation’, IEEE Trans. Circuits
Syst., 2015, 62, (2), pp. 468–477

[8] Fojtik, M., Fick, D., Kim, Y., et al.: ‘Bubble razor: eliminating timing margins
in an ARM cortex-M3 processor in 45 nm CMOS using architecturally
independent error detection and correction’, IEEE J. Solid-State Circuits,
2013, 48, (1)

[9] Chouhury, M.R., Chandra, V., Aitken, R.C., et al.: ‘Time-borrowing circuit
designs and hardware prototyping for timing error resilience’, IEEE Trans.
Comput., 2014, 63, (2), pp. 497–509

[10] Augustus, K.U.: ‘Going beyond worst-case specs with TEAtime’, IEEE
Computer Society, 2004, 37, (3), pp. 51–56

[11] Bowman, K.A., Tschanz, J.W., Kim, N.S., et al.: ‘Energy-efficient and
metastability – immune resilient circuits for dynamic variation tolerance’,
IEEE J. Solid-State Circuits, 2009, 44, (1)

[12] Kwanyeob, C., Mukhopadhyay, S.: ‘A dynamic timing error prevention
technique in pipelines with time borrowing and clock stretching’, IEEE Trans.
Circuits Syst., 2014, 61, (1), pp. 74–83

[13] Prasad, A.N.D., Somani, A.: ‘Countering power analysis attacks using reliable
and aggressive designs’, IEEE Trans. Comput., 2013, 63, (6), pp. 1408–1420

[14] Stott, E., Levine, J.M., Cheung, P.Y.K.: ‘Timing fault detection in FPGA-
based circuits’. IEEE 22nd Annual Int. Symp. Field-Programmable Custom
Computing Machines (FCCM), Boston, May 2014

[15] Prasad, A.N.D., Somani, A.: ‘Low overhead soft error mitigation techniques
for high-performance and aggressive designs’, IEEE Trans. Comput., 2013,
61, (4), pp. 488–501

6 IET Circuits Devices Syst.
© The Institution of Engineering and Technology 2018


