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Abstract: The possible positions of an equilateral triangle whose vertices are located on the support
sides of a generic triangle are studied. Using complex coordinates, we show that there are infinitely
many such configurations, then we prove that the centroids of these equilateral triangles are collinear,
defining two lines perpendicular to the Euler’s line of the original triangle. Finally, we obtain the
complex coordinates of the intersection points and study some particular cases.
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1. Introduction

Let ∆ABC be a triangle in the Euclidean plane, and denote the complex coordinates of
the vertices A, B, and C by a, b, and c, respectively. We examine some geometric properties
of the equilateral triangles ∆MNP whose vertices are located on the support sides of ∆ABC,
that is, M ∈ BC, N ∈ AC, and P ∈ AB.

The problem studied in this paper is related to a known general topological property.
The polygon P is said to be inscribed in the Jordan curve γ (not necessarily contained
in the interior of γ) if all the vertices of P are located on γ [1]. While Jordan curves
can be complicated, they satisfy certain regular properties in this respect. For example,
Meyerson [2] showed that an equilateral triangle can be inscribed in every Jordan curve, as
illustrated in Figure 1. Later on, Nielsen proved the following result ([3], [Theorem 1.1]):
Let J ⊂ R2 be a Jordan curve and let ∆ be any triangle. Then infinitely many triangles similar to ∆
can be inscribed in γ. Similar results exist for Jordan curves in Rn [4]. Interestingly, Toeplitz’s
statement from 1911 that every Jordan curve admits an inscribed square is still a conjecture in
the general case. Just recently, it was proved for convex or piecewise smooth curves, while
extensions exist for rectangles, curves, and Klein bottles (see, e.g., [5,6]).

Figure 1. Inscribed equilateral triangle in a Jordan curve.
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The triangle is the simplest example of a non-smooth and piecewise linear Jordan
curve; while the equilateral triangle appears to be a simple configuration, it can generate
very interesting properties and applications [7]. In the sense of the above definition for
polygons, an equilateral triangle MNP inscribed in a given triangle ABC can have two
vertices on the same side, a situation that does not present much interest from the geometric
point of view. This is why in the present paper we consider the case M ∈ BC, N ∈ CA, and
P ∈ AB, as seen in Figures 2 and 3 for an acute triangle ABC and in Figure 4 for an obtuse
triangle, respectively. Similar to Nielsen’s result, there are infinitely many such triangles,
generating interesting properties in the triangle geometry [8–11]. Recently, in [12], we
studied the equilateral triangles inscribed in the interior of arbitrary triangles, describing
them by a single parameter and examining some extremal properties (e.g., the angles for
which the minimum inscribed equilateral triangles are obtained). A summary of the results
obtained in [12] is presented in Section 2.

Figure 2. Equilateral triangle MNP inscribed in the triangle ABC. In our example, the initial triangle
has the coordinates A(0, 7), B(−3, 0), C(7, 0), for which the angles in degrees measure Â = 68.1986◦,
B̂ = 66.8014◦, and Ĉ = 45◦, while M̂ = N̂ = P̂ = 60◦.

(a) (b)

(c) (d)

Figure 3. Figures corresponding to equilateral triangles ∆MNP with vertices on the lines BC, CA,
and AB. (a) λ = −0.5; (b) λ = 0; (c) λ = 0.5; (d) λ = 1.5.
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(a) (b)

(c) (d)

Figure 4. Figures corresponding to equilateral triangles ∆MNP with vertices on the lines BC, CA,
and AB of an obtuse triangle ∆ABC for (a) λ = −0.5; (b) λ = 0; (c) λ = 0.5; (d) λ = 1.5.

In this paper, we explore the equilateral triangles whose vertices are located on the
support lines of the sides of an arbitrary triangle. While this configuration does not
represent a Jordan curve, this presents interesting geometric properties. We prove that the
centers of these triangles are situated on two parallel lines, which are perpendicular to the
Euler’s line of the original triangle.

The structure of this paper is as follows. In Section 2, we review some results obtained
in [12], devoted to exact formulas for the lengths of the sides of inscribed equilateral

triangles as a function of a unique parameter and to extremal properties of the side length.
In Section 3, we obtain the complex coordinates of the centroids of the equilateral triangles
having vertices on the support lines of a given triangle. The main result concerning the
locus of these centroids is presented in Section 4. Furthermore, in Section 5 we prove that
the locus of centroids consists of two parallel lines perpendicular to the Euler’s line of the
original triangle. Alternative derivations and particular cases are provided in Section 6,
while conclusions are formulated in Section 7.

The adoption of complex coordinates instead of Cartesian coordinates considerably
simplifies the computations.

2. Inscribed Equilateral Triangles

The particular case when the inscribed equilateral triangle MNP is nested, i.e.,
M ∈ (BC), N ∈ (CA), and P ∈ (AB), was studied in [12] by a trigonometric approach.
Related investigations by other means can be consulted in [8,10,11,13].

Let ∆ABC be a triangle in the Euclidean plane, and denote by A, B, and C the measures
of the angles from vertices A, B, and C, respectively. Without loss of generality, one may
assume that A ≥ B ≥ C; therefore, C ≤ 60◦ ≤ A. In the notation of Figure 2, one obtains
the system
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

α1 + α2 = 2π
3

β1 + β2 = 2π
3

γ1 + γ2 = 2π
3

β1 + γ2 = π − A
γ1 + α2 = π − B
α1 + β2 = π − C.

(1)

The system can be written in matrix form as

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 1 1 0
1 0 0 0 0 1
0 1 1 0 0 0





α1
α2
β1
β2
γ1
γ2

 =



2π
3

2π
3

2π
3

π − A
π − B
π − C

. (2)

By simple calculation, one can show that the system (2) is compatible and it has
infinitely many solutions. Moreover, since the rank of the matrix is 5, the solutions are fully
determined by a single variable chosen as the parameter. From the first three equations,
one can substitute α2, β2, and γ2 into the last three and obtain the reduced system

γ1 − β1 = π
3 − A

α1 − γ1 = π
3 − B

β1 − α1 = π
3 − C,

(3)

which can be written in matrix form as 0 −1 1
1 0 −1
−1 1 0

α1
β1
γ1

 =

π
3 − A
π
3 − B
π
3 − C

. (4)

Fixing the parameter α1 = α ∈ [0, 120◦] = m(∠NMC), the system (3) has the solution

β1 = α + C − 60◦, γ1 = α + 60◦ − B.

From the conditions 0 ≤ β1, γ1 ≤ 120◦ one obtains α + 60◦ − B ≤ 120◦. The geometric
constraints illustrated in Figure 2

60◦ − C ≤ α ≤ min{60◦ + B, 120◦}, (5)

show that there are infinitely many possible configurations.
In our recent paper [12], we obtained the following explicit formula for the side length

of the inscribed equilateral triangle as a function of the parameter α:

l(α) =
2R · sin A · sin B · sin C

sin C · sin(α + 60◦ − B) + sin B · sin(α + C)

=
2R · sin A · sin B · sin C

sin A · sin α + sin C · sin(60◦ + B − α)

=
2R · sin A · sin B · sin C

sin B · sin(α + C − 60◦) + sin A · sin(α + 60◦)
,

where R is the circumradius of triangle ABC. Denote K[ABC] as the area of triangle ABC,
and from the relation K[ABC] = AB·BC·CA

4R2 and the Law of Sines, one obtains
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l(α) =
2K[ABC]

AB · sin(α + 60◦ − B) + AC · sin(α + C)
(6)

=
2K[ABC]

BC · sin α + AB · sin(60◦ + B − α)

=
2K[ABC]

AC · sin(α + C − 60◦) + BC · sin(α + 60◦)
.

Furthermore, we showed in [12] that the minimal triangle MNP is obtained for

α∗ = arctan

√
3

2 sin B · sin C + 1
2 cos B sin C + sin B cos C

√
3

2 cos B sin C + 1
2 sin B sin C

.

Numerous illustrative examples are also provided in [12].

3. Coordinates of the Centroids of the Triangle MNP

The complex coordinates of the vertices of ∆MNP are denoted by m, n, and p. As seen
in Figure 3 for an acute triangle and in Figure 4 for an obtuse triangle, such triangles can be
constructed starting from the points N on AC and P on the side AB, with the condition that
the third point M on BC is obtained by a rotation of angle π/3, which in complex numbers
can be performed by multiplying with (see, for example, [14]):

ω = cos
π

3
+ i sin

π

3
=

1
2
+

√
3

2
i.

Clearly, if N ∈ AC and P ∈ AB, there exist the scalars λ and µ such that

n = a + λ(c − a), p = a + µ(b − a), λ, µ ∈ R.

In this notation, note that, as seen in Figure 3, we have

1. If λ < 0, then A ∈ (NC);
2. If λ = 0, then A = N;
3. If 0 < λ < 1, then N ∈ (AC) (the case presented in Section 2);
4. If λ = 1, then N = C;
5. If λ > 1, then C ∈ (AN).

Then, the point M of the equilateral triangle MNP is obtained by rotating segment
(PN) around point N through an angle of π/3, clockwise or anticlockwise.

3.1. First Orientation of Triangle MNP: Anticlockwise Rotation

For anticlockwise rotation, we obtain the complex coordinate

m = n + (p − n)ω

= [(1 − µ)a + µb]ω + [(1 − λ)a + λc]ω

= a + µω(b − a) + λω(c − a) = c + s(b − c),

where we use the relation ω + ω = 1. Since M ∈ (BC), one must have s ∈ R, hence s = s.
From here it follows that

s =
a − c + µω(b − a) + λω(c − a)

b − c

=
a − c + µω

(
b − a

)
+ λω(c − a)

b − c
= s.
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This condition can be written as

[(a − c) + µω(b − a) + λω(c − a)]
(

b − c
)
=
[
(a − c) + µω

(
b − a

)
+ λω(c − a)

]
(b − c),

which reduces to

µ =
y
x

λ +
z
x
= kλ + l, (7)

where x, y, and z are given by

x = ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c) ∈ i ·R, (8)

y = ω(b − c)(c − a)− ω
(

b − c
)
(c − a) ∈ i ·R,

z = (b − c)(a − c)−
(

b − c
)
(a − c) ∈ i ·R.

Clearly, this shows that the coordinates m, n, p depend linearly on λ ∈ R, as

n(λ) = a + λ(c − a),

p(λ) = a + (kλ + l)(b − a),

m(λ) = a + (kλ + l)ω(b − a) + λω(c − a), λ ∈ R,

where the values k and l are real numbers obtained from (7) and (8), as

k =
ω(b − c)(c − a)− ω

(
b − c

)
(c − a)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

, (9)

l =
(b − c)(a − c)−

(
b − c

)
(a − c)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

,

which are ratios of purely imaginary numbers.

3.2. Second Orientation of Triangle MNP: Clockwise Rotation

An alternative configuration is obtained when the rotation of P around N is taken
with an angle of 60◦ clockwise. Similar to Section 3.1, we obtain

m2 = n + (p2 − n)ω

= [(1 − µ)a + µb]ω + [(1 − λ)a + λc]ω

= a + µω(b − a) + λω(c − a) = c + s(b − c),

where we use the fact that ω + ω = 1. Imposing the condition s = s, for λ ∈ R, the
coordinates of the vertices of ∆MNP can be written explicitly

n(λ) = a + λ(c − a),

p2(λ) = a + (k2λ + l2)(b − a),

m2(λ) = a + (k2λ + l2)ω(b − a) + λω(c − a). (10)

The coefficients are related through the formula

µ2 =
y2

x2
λ +

z2

x2
= k2λ + l2, (11)
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where x2, y2, and z2 are obtained from

x2 = ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c) ∈ i ·R, (12)

y2 = ω(b − c)(c − a)− ω
(

b − c
)
(c − a) ∈ i ·R,

z2 = (b − c)(a − c)−
(

b − c
)
(a − c) = z.

Using (11) and (12), the values k2 and l2 are the real numbers given by

k2 =
ω(b − c)(c − a)− ω

(
b − c

)
(c − a)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

, (13)

l2 =
(b − c)(a − c)−

(
b − c

)
(a − c)

ω(b − a)
(

b − c
)
− ω

(
b − a

)
(b − c)

.

These formulas allow a convenient calculation for the coordinates of the centroids.
For a given point N ∈ AC, the possible equilateral triangles are shown in Figure 5.

Figure 5. Inscribed equilateral triangles with distinct orientations.

4. The Collinearity of the Centroids of Triangle MNP

In this section, we show that for each orientation of the triangles MNP (clockwise and
anticlockwise), the corresponding centroids are collinear.

4.1. The First Line of Centroids

As a function of λ, the coordinate of the centroid of triangle ∆MNP is given by

g1(λ) =
m + n + p

3

=
[a + µω(b − a) + λω(c − a)] + [a + λ(c − a)] + [a + µ(b − a)]

3

= a +
µ(1 + ω)(b − a) + λ(1 + ω)(c − a)

3

= [k(1 + ω)(b − a) + (1 + ω)(c − a)] · λ

3
+

l(1 + ω)(b − a)
3

+ a, (14)

where we use (7) for k and l. By this formula, it follows that the centroids of the equilateral
triangles ∆MNP situated on the support lines BC, CA, and AB, are collinear, as depicted
in Figures 6 and 7, for a specified range of values λ.
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(a) (b)

Figure 6. Equilateral triangles ∆MNP with the vertices on the lines BC, CA, and AB, with centroids
represented by red “x” symbols. (a) λ = −0.5, 0, 0.5, 1, 1.5; (b) λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Also plotted
are the centroid G and orthocenter H of ∆ABC.

(a) (b)

Figure 7. Equilateral triangles ∆MNP with the vertices on the lines BC, CA, and AB, with centroids
represented by red “x” symbols. (a) λ = −0.5, 0, 0.5, 1, 1.5; (b) λ = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Also plotted
are the centroid G and orthocenter H of ∆ABC.

4.2. The Second Line of Centroids

For the second line, using (10), we have the formula

g2(λ) =
m2 + n + p2

3

=
[a + µ2ω(b − a) + λω(c − a)] + [a + λ(c − a)] + [a + µ2(b − a)]

3

= a +
µ2(1 + ω)(b − a) + λ(1 + ω)(c − a)

3

= [k2(1 + ω)(b − a) + (1 + ω)(c − a)] · λ

3
+

l2(1 + ω)(b − a)
3

+ a, (15)

where we use (11) and the coefficients k2 and l2 given by (13).

5. Perpendicularity and Intersection with Euler’s Line

The following auxiliary result is useful in proving the main results of this section.

Lemma 1. Let u1, u2, v1, and v2 be complex numbers and consider the lines (α1) and (α2) given
in parametric form by z = u1t + v1, t ∈ R and ζ = u2s + v2, s ∈ R, respectively. The following
properties hold:

(1) If u1u2 + u1u2 = 0, then (α1) and (α2) are perpendicular.
(2) If u1u2 − u1u2 ̸= 0, then (α1) and (α2) intersect at the point

Z =
u1(u2v2 − u2v2)− u2(u1v1 − u1v1)

u1u2 − u1u2
. (16)

Proof. (1) Let us consider the points z′ = u1t1 + v1 and z′′ = u1t2 + v1 on (α1) and the
points ζ ′ = u2s1 + v2 and ζ ′′ = u2s2 + v2 on (α2). The lines are perpendicular if and only if
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ζ ′′ − ζ ′

z′′ − z′
=

(u2s2 + v2)− (u2s1 + v2)

(u1t2 + v1)− (u1t1 + v1)
=

u2(s2 − s1)

u1(t2 − t1)
∈ i ·R,

which reduces to u2
u1

∈ i ·R. Therefore,

0 =
u2

u1
+

(
u2

u1

)
=

u2

u1
+

u2

u1
=

u1u2 + u1u2

|u1|2
= 0,

from where the conclusion follows.
(2) If the point of coordinate Z is located on both lines, it means that there exist

real numbers t and s such that Z = u1t + v1 = u2s + v2. By conjugation, one obtains
u1t + v1 = u2s + v2, from where we can solve for t and s the system{

u2s − u1t = v1 − v2

u2s − u1t = v1 − v2.
(17)

The system (17) has the solution

s =
u1(v1 − v2)− u1(v1 − v2)

(u1u2 − u1u2)
, t =

u2(v1 − v2)− u2(v1 − v2)

(u1u2 − u1u2)
,

and by substitution, one obtains

Z = u1t + v1 = u1 ·
u2(v1 − v2)− u2(v1 − v2)

(u1u2 − u1u2)
+ v1,

which after simplifications recovers formula (16).

A special case is when (α2) passes through the origin.
Recall that in every triangle ABC, the circumcenter O, the centroid G, and the or-

thocenter H are collinear on the Euler line of the triangle. Without loss of generality, we
can choose the circumcenter O of ∆ABC as the origin of the complex plane. Under this
assumption, we obtain the coordinates o = 0, g = a+b+c

3 , and h = a + b + c; hence, Euler’s
line is defined by the formula u(a + b + c), u ∈ R. Furthermore, the circumradius of the
triangle ABC can be set to 1, in which case we have |a| = |b| = |c| = 1, or

a =
1
a

, b =
1
b

, c =
1
c

.

5.1. The First Line of Centroids

For the first centroid line, by substituting, we obtain

x = ω(b − a)
(

1
b
− 1

c

)
− ω

(
1
b
− 1

a

)
(b − c)

=
1

abc
(b − a)(c − b)(ωa − ωc)

y = ω(b − c)
(

1
c
− 1

a

)
− ω

(
1
b
− 1

c

)
(c − a)

=
1

abc
(b − c)(a − c)(ωb − ωa) =

1
abc

(c − b)(c − a)(ωb − ωa)

z = (b − c)
(

1
a
− 1

c

)
−
(

1
b
− 1

c

)
(a − c)

=
1

abc
(b − a)(b − c)(c − a) =

1
abc

(b − a)(c − b)(a − c).
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Substituting in (7), we obtain

k =
y
x
=

c − a
b − a

· ωb − ωa
ωa − ωc

, (18)

l =
z
x
=

a − c
ωa − ωc

. (19)

Therefore, the first line of centroids depicted in Figure 8 has the equation

g1(λ) =
c − a

ωa − ωc
· (a + b + c) ·

√
3i · λ

3
+

a − c
ωa − ωc

· (1 + ω)(b − a)
3

+ a

= −(a + b + c) · λ
√

3i · l
3
+

l(1 + ω)(b − a)
3

+ a = u1λ + v1, (20)

while Euler’s line is given by

E(s) = (a + b + c)s = u2s + v2. (21)

(a) (b)

Figure 8. First line of centroids g1(λ) given by (14), represented by red “x” symbols. (a) Acute
triangle; (b) obtuse triangle. Also plotted are the centroid G, orthocenter H, and centre O of ∆ABC.

By Formulas (20) and (21) for the line of centroids and Euler’s line, we obtain

u1 = −(a + b + c) ·
√

3i · l
3

,

v1 =
l(1 + ω)(b − a)

3
+ a,

u2 = a + b + c,

v2 = 0,

where l ∈ R is given by (19). First, notice that

u1 = −
√

3l
3

i · u2, u1 =

√
3l

3
i · u2. (22)

By Lemma 1, we obtain the following result.

Theorem 1. (1) The first line of centroids g1(λ) is perpendicular to Euler’s line.
(2) The intersection point between the line g1(λ), λ ∈ R and Euler’s line is

Z = ℜ
(

v1

u2

)
· u2,

where ℜ(z) denotes the real part of the complex number z.
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Proof. (1) Substituting (22) in Lemma 1 (1), one obtains

u1u2 + u1u2 =

√
3l

3
i · u2 · u2 +

(
−
√

3l
3

i · u2u2

)
= 0.

(2) Since v2 = 0, the formula (16) reduces to

Z = −u2(u1v1 − u1v1)

(u1u2 − u1u2)
. (23)

Therefore, we obtain

u1u2 − u1u2 =
2
√

3l
3

i · u2 · u2 =
2
√

3l
3

i · |u2|2. (24)

After simplifications, one obtains

Z = u2 ·
v1
u2

+ v1
u2

2
= ℜ

[
v1

u2

]
· u2. (25)

This ends the proof.

5.2. The Second Line of Centroids

For the second centroid line, similar calculations show that

x2 =
1

abc
(b − a)(c − b)(ωa − ωc),

y2 =
1

abc
(c − b)(c − a)(ωb − ωa),

z2 = z =
1

abc
(b − a)(c − b)(a − c),

from where, through (11), we have

k2 =
y2

x2
=

c − a
b − a

· ωb − ωa
ωa − ωc

, (26)

l2 =
z2

x2
=

a − c
ωa − ωc

. (27)

The second line of centroids has the equation

g2(λ) =
c − a

ωa − ωc
· (a + b + c) ·

√
3i · λ

3
+

a − c
ωa − ωc

· (1 + ω)(b − a)
3

+ a

= −(a + b + c) · λ
√

3i · l2
3
+

l2(1 + ω)(b − a)
3

+ a = u3λ + v3, (28)

where the coefficients are

u3 = −(a + b + c) ·
√

3i · l2
3

, v3 =
l2(1 + ω)(b − a)

3
+ a,

where l2 ∈ R is given by (27). Again, one may notice that

u3 = −
√

3l2
3

i · u2, u3 =

√
3l2
3

i · u2, (29)
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so by Lemma 1, the perpendicularity follows from the relation

u3u2 + u3u2 =

√
3l2
3

i · u2 · u2 +

(
−
√

3l2
3

i · u2u2

)
= 0.

The two parallel lines of centroids g1(λ) and g2(λ) are shown in Figure 9.

(a) (b)

Figure 9. First and second lines of centroids g1(λ) and g2(λ) given by (14) and (28), respectively,
represented by red “x” symbols. (a) Acute triangle; (b) obtuse triangle. Also plotted are the centroid
G, orthocenter H, and centre O of ∆ABC.

The coordinates of this intersection point are given by

Z2 = u2 ·
v3
u2

+ v3
u2

2
= ℜ

(
v3

u2

)
· u2. (30)

We have an analogous result to Theorem 1, for the second line of centroids.

Theorem 2. (1) The second line of centroids g2(λ) is perpendicular to Euler’s line.
(2) The intersection point between the line g2(λ), λ ∈ R and Euler’s line is

Z2 = ℜ
(

v3

u2

)
· u2.

6. Alternative Approaches and Particular Examples

This section presents alternative proofs of the results.

6.1. Perpendicularity to Euler’s Line

For a direct proof of the result in Theorem 1 (1), without using Lemma 1, it suffices to
show that for λ1 ̸= λ2 we obtain

g1(λ1)− g1(λ2)

a + b + c
∈ i ·R.

Indeed, by formula (14), one obtains

g1(λ1)− g1(λ2) = [k(1 + ω)(b − a) + (1 + ω)(c − a)] · λ1 − λ2

3
.

Furthermore, one can write
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k(1 + ω)(b − a) + (1 + ω)(c − a) = (c − a) ·
[

ωb − ωa
ωa − ωc

(1 + ω) + (1 + ω)

]
=

c − a
ωa − ωc

· [(ωb − ωa)(1 + ω) + (ωa − ωc)(1 + ω)]

=
c − a

ωa − ωc
·
[
(ω − ω)a +

(
ω + ω2

)
b +

(
−ω − ω2

)
c
]

=
c − a

ωa − ωc
· (a + b + c) ·

√
3i,

where for ω = 1
2 +

√
3

2 i, we use the identities

ω − ω = ω + ω2 = −ω − ω2 =
√

3i.

Clearly, this shows that

g1(λ1)− g1(λ2)

a + b + c
=

λ1 − λ2

3
· c − a

ωa − ωc
·
√

3i,

which is purely imaginary since

c − a
ωa − ωc

=
1
c −

1
a

ω
a − ω

c
=

c − a
ωa − ωc

.

This ends the proof. A proof based on trilinear coordinates was provided in [8].
Similarly, one can prove the result for the second line of centroids.

6.2. Intersection Points

From the condition s ∈ R (i.e., s = s), we obtain

s =
g1(λ)

a + b + c
=

g1(λ)

a + b + c
= s.

This condition reduces to

l(1 + ω)(b − a) + 3a
a + b + c

−
l(1 + ω)

(
b − a

)
+ 3a

a + b + c
= 2l

√
3i · λ,

which gives (using that l ∈ R)

[l(1 + ω)(b − a) + 3a]
(

a + b + c
)
−
[
l(1 + ω)

(
b − a

)
+ 3a

]
(a + b + c)

= 2l | a + b + c |2
√

3i · λ,

or

2 · λ
√

3i =
(1 + ω)(b − a)

a + b + c
−

(1 + ω)
(

b − a
)

a + b + c
+

1
l

[
3a

a + b + c
− 3a

a + b + c

]
.

By substituting λ
√

3i in (20) and dividing by a + b + c, one obtains

s = ℜ
[

l(1 + ω)(b − a) + 3a
3(a + b + c)

]
,

from where we deduce the following result.
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Theorem 3. The intersection point between the first line of centroids g1(λ), λ ∈ R and Euler’s
line of ∆ABC has the complex coordinates

Z = ℜ
[

l(1 + ω)(b − a) + 3a
3(a + b + c)

]
· (a + b + c)

= ℜ
[

a−c
ωa−ωc (1 + ω)(b − a) + 3a

3(a + b + c)

]
· (a + b + c).

Similarly, one can prove the coordinate of the intersection between the second line of
centroids g2(λ), λ ∈ R and Euler’s line of ∆ABC as

Z2 = ℜ
[

l2(1 + ω)(b − a) + 3a
3(a + b + c)

]
· (a + b + c)

= ℜ
[

a−c
ωa−ωc (1 + ω)(b − a) + 3a

3(a + b + c)

]
· (a + b + c).

6.3. Particular Examples and Formulas

In this section, we derive some particular formulas for the lines of centroids and their
intersection with Euler’s line obtained for a = 0. From (14), we obtain

g1(λ) =
m + n + p

3
= [k(1 + ω)b + (1 + ω)c] · λ

3
+

l(1 + ω)b
3

, (31)

where by (9) and using ω − ω =
√

3i, the values k and l are given by

k =
ω(b − c)c − ω

(
b − c

)
c

ωb
(

b − c
)
− ωb(b − c)

=
−|c|2

√
3i +

(
ωbc − ωbc

)
|b|2

√
3i −

(
ωbc − ωbc

) , (32)

l =
c
(

b − c
)
− c(b − c)

ωb
(

b − c
)
− ωb(b − c)

=
cb − bc

|b|2
√

3i −
(

ωbc − ωbc
) .

For the second line of centroids, we obtain

g2(λ) =
m2 + n + p2

3
= [k2(1 + ω)b + (1 + ω)c] · λ

3
+

l2(1 + ω)b
3

, (33)

where by (13), the coefficients k2 and l2 are given by

k2 =
ω(b − c)c − ω

(
b − c

)
c

ωb
(

b − c
)
− ωb(b − c)

=
|c|2

√
3i −

(
ωcb − ωcb

)
−|b|2

√
3i +

(
ωcb − ωcb

) , (34)

l2 =

(
b − c

)
c − (b − c)c

ωb
(

b − c
)
− ωb(b − c)

=
cb − bc

−|b|2
√

3i +
(

ωcb − ωcb
) .

We notice that these parametrizations are different from those in Section 5.

7. Conclusions

In this paper, we studied the equilateral triangles whose vertices are located on the sup-
port lines of a given arbitrary triangle. Using complex coordinates and a parametrization,
we proved that the centers of these triangles are located on two lines, which are perpen-
dicular to the Euler’s line of the given triangle, and we also computed the coordinates of
these intersections.
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It is interesting to investigate geometric properties related to triangles similar to a
prototype whose vertices are located on the support lines of a given triangle.
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12. Andrica, D.; Bagdasar, O.; Marinescu, D.-Ş. Inscribed equilateral triangles in general triangles. Int. J. Geom. 2024, 13, 113–124.
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