Use of artificial intelligence to improve resilience and preparedness against adverse flood events
Journal article
Authors | Saravi, Sara, Kalawsky, Roy, Joannou, Demetrios, Rivas Casado, Monica, Fu, Guangtao and Meng, Fanlin |
---|---|
Abstract | The main focus of this paper is the novel use of Artificial Intelligence (AI) in natural disaster, more specifically flooding, to improve flood resilience and preparedness. Different types of flood have varying consequences and are followed by a specific pattern. For example, a flash flood can be a result of snow or ice melt and can occur in specific geographic places and certain season. The motivation behind this research has been raised from the Building Resilience into Risk Management (BRIM) project, looking at resilience in water systems. This research uses the application of the state-of-the-art techniques i.e., AI, more specifically Machin Learning (ML) approaches on big data, collected from previous flood events to learn from the past to extract patterns and information and understand flood behaviours in order to improve resilience, prevent damage, and save lives. In this paper, various ML models have been developed and evaluated for classifying floods, i.e., flash flood, lakeshore flood, etc. using current information i.e., weather forecast in different locations. The analytical results show that the Random Forest technique provides the highest accuracy of classification, followed by J48 decision tree and Lazy methods. The classification results can lead to better decision-making on what measures can be taken for prevention and preparedness and thus improve flood resilience. |
Keywords | Artificial Intelligence; machine learning; flood; preparedness; resilience; flood resilience |
Year | 2019 |
Journal | Water |
Journal citation | 11 (5), p. 973 |
Publisher | MDPI AG |
ISSN | 2073-4441 |
Digital Object Identifier (DOI) | https://doi.org/10.3390/w11050973 |
Web address (URL) | http://hdl.handle.net/10545/624221 |
hdl:10545/624221 | |
Publication dates | 09 May 2019 |
Publication process dates | |
Deposited | 18 Oct 2019, 15:29 |
Accepted | 06 May 2019 |
Contributors | Loughborough University |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/9337y/use-of-artificial-intelligence-to-improve-resilience-and-preparedness-against-adverse-flood-events
Download files
42
total views13
total downloads1
views this month0
downloads this month