COMPARING THE ACUTE EFFECTS OF WARM-UP STRATEGIES USING FREE-WEIGHT AND VARIABLE RESISTANCE ON STRENGTH AND POWER PERFORMANCE
Thesis
Authors | Mina, Minas A. |
---|---|
Qualification name | PhD |
Abstract | Warm-up routines are typically designed to precondition the neuromuscular system for enhanced performance and reduced injury risk during subsequent high-intensity physical activities, including during strength training. As such, identifying an effective warm-up routine to augment muscular performance is of clear importance to strength (and other) coaches and athletes. Incorporating variable resistance (VR) via the use of chains or elastic bands during strength training alters the loading characteristics during exercises to impose a greater mechanical stimulus, however the impact of VR on subsequent free-weight exercise performance is unknown. Therefore, the aims of this thesis were to examine the acute effects of conditioning VR exercise compared to free-weight resistance (FWR) exercise on subsequent one-repetition maximum (1-RM) back squat and countermovement vertical jump (CMJ) height performance after the performance of a comprehensive, test-specific warm-up, and to examine possible alterations to mechanics and neuromuscular activity underpinning any changes. Techniques including 3D motion analysis, electromyography (EMG) and ground reaction force measurement were used in three studies on recreationally active volunteers experienced in squatting and jumping. In Study 1, significantly greater 1-RM squat-lift load (6.2 ± 5.0%; p < 0.01) and mean eccentric-phase knee extensor EMG amplitude (32.2 ± 6.7%; p < 0.01) were found after the chain-loaded resistance (CLR) warm-up, where an increasing load is applied as the subject raises their body with the load, compared to the FWR condition. However, no statistical differences (p > 0.05) were detected in concentric phase EMG, knee angular velocity or peak knee flexion angle. Thus, performing a CLR warm-up enhanced subsequent free-weight 1-RM performance without kinematic changes; these data were considered to indicate a real 1-RM increase as the mechanics of the lift were not influenced. Study 2 followed an identical methodological design, however elastic bands were used to provide an inexpensive, portable, easily-implemented, and therefore more practical method of altering the load-time characteristics of the squat lift through VR. Significantly greater 1-RM squat load (7.7 ± 6.2%; p < 0.01) with lower peak and mean eccentric (16–19%; p < 0.05) and concentric (12–21%; p < 0.05) knee angular velocities were found after the elastic band (EB) warm-up compared to the FWR condition. As EB resistance evoked greater mean improvements in squat performance than the CLR used in Study 1, the influence of FWR and EB squat exercises following a comprehensive warm-up were compared using a more functional, CMJ, task at different post-exercise time points (i.e. 30 s, 4 min, 8 min, and 12 min) (Study 3). No changes in any variable were found after the FWR warm-up (p > 0.05). However, statistical (p < 0.05) and practically-meaningful increases were detected in CMJ height (5.3-6.5%), net impulse (2.7-3.3%), take-off velocity (2.7-3.8%), peak power (4.4-5.9%), kinetic (7.1-7.2%) and potential (5.4-6.7%) energy, peak normalised rate of force development (12.9-19.1%), peak concentric knee angular velocities (3.1-4.1%) and mean concentric vastus lateralis (VL) EMG activity (27.5-33.4%) at all time points after the EB warm-up condition. Thus, when a complete CMJ-specific warm-up was provided, FWR squat had no additional effect on CMJ performance however the alteration of the squat lift force-time characteristics using EB led to a substantial CMJ enhancement. The findings from the present series of studies have important implications for research study design as the warm-up imposed and the resistive modality selected appear to influence subsequent movement performances, i.e. 1-RM back squat or CMJ performances. In previous studies, standardised (or no) warm-up protocols imposed before the baseline testing have been associated with subsequent enhancements in squat lift and CMJ performances following conditioning contractions, although it is unclear whether this is a consequence of acute neuromuscular alteration relating to the conditioning contractions or to the warm-up itself. Collectively, the present findings, show that physical performance can be enhanced in at least some conditions by application of conditioning contractions even after completion of a comprehensive, test-specific warm-up, which have important practical implications in the formulation of pre-performance warm-up routines where maximal force production is an important goal. |
Keywords | warm-up, conditioning contractions, strength training, accommodating resistance, 1-RM, countermovement jump |
Year | 2020 |
Publisher | University of Derby |
College of Science and Engineering | |
Web address (URL) | http://hdl.handle.net/10545/625259 |
http://creativecommons.org/publicdomain/zero/1.0/ | |
hdl:10545/625259 | |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
Publication process dates | |
Deposited | 13 Oct 2020, 14:55 |
Publication dates | 08 Sep 2020 |
Rights | CC0 1.0 Universal |
Contributors | Kay, Tony (Advisor), Blazevich, Tony (Advisor), Giakas, Giannis (Advisor), Hooton, Andy (Advisor) and Akehurst, Sally (Advisor) |
https://repository.derby.ac.uk/item/948z0/comparing-the-acute-effects-of-warm-up-strategies-using-free-weight-and-variable-resistance-on-strength-and-power-performance
Download files
File
license.txt | ||
File access level: Open |
license_rdf | ||
File access level: Open |
Minas Mina PhD Thesis (Redactions).pdf | ||
File access level: Open |
70
total views137
total downloads1
views this month1
downloads this month