An efficient deep learning-based scheme for web spam detection in IoT environment

Journal article


Makkar, A. and Kumar, N. 2020. An efficient deep learning-based scheme for web spam detection in IoT environment. Future Generation Computer Systems. 108 (July 2020), pp. 467-487. https://doi.org/10.1016/j.future.2020.03.004
AuthorsMakkar, A. and Kumar, N.
Abstract

From the last few years, Internet of Things has revolutionized the entire world. In this, various smart objects perform the tasks of sensing and computing to provide uninterrupted services to the end users in different applications such as smart transportation, e-healthcare to name a few. With the inherent capabilities of these objects to take adaptive intelligent decisions, Cognitive Internet of Things is another paradigm of Internet of Things which emerges during this era. However, while accessing data from the Internet, web spam is one of the challenges to be handled. It has been observed from the literature review that for accessing data, search engines are preferred mostly by an individual. The search engine’s effective ranking can decrease the computational cost of objects during the data access. The current solutions to this issue are aimed to discover the spam in the search engine after its occurrence. So, in this proposal, we present a cognitive spammer framework that removes spam pages when search engines calculate the web page rank score. The framework detects web spam with the support of Long Short-Term Memory network by training the link features. This training resulted with an accuracy of 95.25, as more than 1,11,000 hosts are being correctly classified. However, the content features are trained by neural network. The proposed scheme has been validated with the WEBSPAM-UK 2007 dataset. Prior to processing, the dataset is pre-processed using a new technique called ‘Split by Over-sampling and Train by Under-fitting’. The ensemble and cross validation approach has been used for optimization of results with an accuracy of 96.96%. So, the proposed scheme outperforms the existing techniques.

KeywordsInternet of Things(IoT); Web spam; Cognitive IoT; Deep learning
Year2020
JournalFuture Generation Computer Systems
Journal citation108 (July 2020), pp. 467-487
PublisherElseiver
ISSN0167-739X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.future.2020.03.004
Web address (URL)http://www.scopus.com/inward/record.url?eid=2-s2.0-85081027648&partnerID=MN8TOARS
Output statusPublished
Publication dates
Online04 Mar 2020
Jul 2020
Publication process dates
Accepted01 Mar 2020
Deposited22 May 2023
Permalink -

https://repository.derby.ac.uk/item/9yx53/an-efficient-deep-learning-based-scheme-for-web-spam-detection-in-iot-environment

  • 56
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Preserving Accuracy in Federated Learning via Equitable Model and Efficient Aggregation
Mehdi, M., Makkar, A., Conway, M. and Sama. L 2024. Preserving Accuracy in Federated Learning via Equitable Model and Efficient Aggregation. International Conference on Recent Trends in Image Processing and Pattern Recognition. Springer Nature. https://doi.org/10.1007/978-3-031-53082-1_7
Exploring Imaging Biomarkers for Early Detection of Alzheimer’s Disease Using Deep Learning: A Comprehensive Analysis
Sami, N., Makkar, A., Meziane, F. and Conway, M. 2024. Exploring Imaging Biomarkers for Early Detection of Alzheimer’s Disease Using Deep Learning: A Comprehensive Analysis. International Conference on Recent Trends in Image Processing and Pattern Recognition. Springer. https://doi.org/10.1007/978-3-031-53085-2_17
Advancements in enhancing cyber-physical system security: Practical deep learning solutions for network traffic classification and integration with security technologies
Gaba, S., Budhiraja, S., Kumar, V. and Makkar, A. Advancements in enhancing cyber-physical system security: Practical deep learning solutions for network traffic classification and integration with security technologies. Communications in Analysis and Mechanics. 21 (1), pp. 1527-155. https://doi.org/10.3934/mbe.2024066
SecureFed: federated learning empowered medical imaging technique to analyze lung abnormalities in chest X‑rays
Makkar, A. and Santosh, K. C. 2023. SecureFed: federated learning empowered medical imaging technique to analyze lung abnormalities in chest X‑rays. International Journal of Machine Learning and Cybernetics. 14, p. 2659–2670. https://doi.org/10.1007/s13042-023-01789-7
A Fuzzy-based approach to Enhance Cyber Defence Security for Next-generation IoT
Makkar, A., Ghosh, U., Sharma, P.K. and Javed, A. 2023. A Fuzzy-based approach to Enhance Cyber Defence Security for Next-generation IoT. IEEE Internet of Things Journal. Vol 10 (Issue 3), pp. 2079-2086. https://doi.org/10.1109/jiot.2021.3053326
Quantum Machine Learning Driven Malicious User Prediction for Cloud Network Communications
Gupta, R., Saxena. R., Gupta, I., Makkar, A. and Sing, A. K. 2022. Quantum Machine Learning Driven Malicious User Prediction for Cloud Network Communications. IEEE Networking Letters . 4 (4), pp. 174-178. https://doi.org/https://doi.org/10.1109/LNET.2022.3200724
SecureEngine: Spammer classification in cyber defence for leveraging green computing in Sustainable city
Aaisha Makkar 2022. SecureEngine: Spammer classification in cyber defence for leveraging green computing in Sustainable city. Sustainable Cities and Society. 79 (April 2022), p. 103658. https://doi.org/10.1016/j.scs.2021.103658
SecureIIoT Environment: Federated Learning Empowered Approach for Securing IIoT From Data Breach
Aaisha Makkar, Tae Woo Kim, Ashutosh Kumar Singh, Jungho Kang and Jong Hyuk Park 2022. SecureIIoT Environment: Federated Learning Empowered Approach for Securing IIoT From Data Breach. IEEE Transactions on Industrial Informatics. 18 (9), pp. 6406 - 6414. https://doi.org/10.1109/tii.2022.3149902
Visualization and deep-learning-based malware variant detection using OpCode-level features
Darem, A., Abawajy, J., Makkar, A., Alhashmi, A. and Alanazi, S. 2021. Visualization and deep-learning-based malware variant detection using OpCode-level features. Future Generation Computer Systems. Vol 125 (Dec 2021), pp. 314-323. https://doi.org/10.1016/j.future.2021.06.032
An Efficient Spam Detection Technique for IoT Devices Using Machine Learning
Makkar, A., Garg, S., Kumar, N., Hossain, M.S., Ghoneim, A. and Alrashoud, M. 2021. An Efficient Spam Detection Technique for IoT Devices Using Machine Learning. IEEE Transactions on Industrial Informatics. Vol 17 (Issue 2), pp. 903-912. https://doi.org/10.1109/tii.2020.2968927
PROTECTOR: An optimized deep learning-based framework for image spam detection and prevention
Makkar, A. and Kumar, N. 2021. PROTECTOR: An optimized deep learning-based framework for image spam detection and prevention. Future Generation Computer Systems. 125 (Dec 2021), pp. 41-58. https://doi.org/10.1016/j.future.2021.06.026
Artificial Intelligence and Edge Computing-enabled Web Spam Detection for Next Generation IoT Applications
Makkar, A., Ghosh, U. and Sharma, P.K. 2021. Artificial Intelligence and Edge Computing-enabled Web Spam Detection for Next Generation IoT Applications. IEEE Sensors Journal. 21 (Issue: 22), pp. 25352 - 25361. https://doi.org/10.1109/jsen.2021.3066492
FedLearnSP: Preserving Privacy and Security using Federated Learning and Edge Computing
Makkar, A., Ghosh, U., Rawat, D.B. and Abawajy, J. 2021. FedLearnSP: Preserving Privacy and Security using Federated Learning and Edge Computing. IEEE. https://doi.org/10.1109/mce.2020.3048926
Ai based management of food wastage
Sama, L., Makkar, A., Prokshitha, P., Sharma, B.K. and Dhaloria, D. 2021. Ai based management of food wastage. 2021 International Semantic Intelligence Conference, ISIC 2021; New Delhi; India; 25 February 2021 through 27 February 2021; Code 167510. CEUR Workshops Proceedings.
An Intelligent Phishing Detection Scheme Using Machine Learning
Makkar, A., Kumar, N., Sama, L., Mishra, S. and Samdani, Y. Giri D., Buyya R., Ponnusamy S., De D., Adamatzky A. and Abawajy J.H. (ed.) An Intelligent Phishing Detection Scheme Using Machine Learning. Springer.
SPAMI: A cognitive spam protector for advertisement malicious images
Makkar, A., Kumar, N., Zomaya, A.Y. and Dhiman, S. 2020. SPAMI: A cognitive spam protector for advertisement malicious images. Information Sciences. 540 (Nov 2020), pp. 17-37. https://doi.org/10.1016/j.ins.2020.05.113
DIADL: An Energy Efficient Framework for Detecting Intrusion Attack Using Deep LearnIing
Sama, L., Makkar, A., Mishra, S.K. and Samdani, Y. 2020. DIADL: An Energy Efficient Framework for Detecting Intrusion Attack Using Deep LearnIing. 12th International Conference on Computer Modeling and Simulation, ICCMS 2020 and the 9th International Conference on Intelligent Computing and Applications. ICICA 2020; Virtual, Online; Australia; 22 June 2020 through 24 June 2020; Code 162275. ACM. https://doi.org/10.1145/3408066.3408107
The Power of AI in IoT : Cognitive IoT-based Scheme for Web Spam Detection
Makkar, A., Kumar, N. and Guizani, M. 2019. The Power of AI in IoT : Cognitive IoT-based Scheme for Web Spam Detection. 2019 IEEE Symposium Series on Computational Intelligence, SSCI 2019; Xiamen; China; 6 December 2019 through 9 December 2019; Category numberCFP19COI-ART; Code 157933. IEEE. https://doi.org/10.1109/ssci44817.2019.9002885
FS2RNN: Feature Selection Scheme for Web Spam Detection Using Recurrent Neural Networks
Makkar, A., Obaidat, M.S. and Kumar, N. 2018. FS2RNN: Feature Selection Scheme for Web Spam Detection Using Recurrent Neural Networks. 2018 IEEE Global Communications Conference, GLOBECOM 2018; Abu Dhabi National Exhibition Centre (ADNEC) Abu Dhabi; United Arab Emirates; 9 December 2018 through 13 December 2018; Category number CFP18GLO-ART; Code 145422. IEEE. https://doi.org/10.1109/glocom.2018.8647294
User behavior analysis-based smart energy management for webpage ranking: Learning automata-based solution
Makkar, A. and Kumar, N. 2018. User behavior analysis-based smart energy management for webpage ranking: Learning automata-based solution. Sustainable Computing: Informatics and Systems. Vol 20 (Dec 2018), pp. 174-191. https://doi.org/10.1016/j.suscom.2018.02.003
Cognitive spammer: A Framework for PageRank analysis with Split by Over-sampling and Train by Under-fitting
Makkar, A. and Kumar, N. 2018. Cognitive spammer: A Framework for PageRank analysis with Split by Over-sampling and Train by Under-fitting. Future Generation Computer Systems. 90 (January 2019), pp. 381-404. https://doi.org/10.1016/j.future.2018.07.046
QAIR: Quality Assessment Scheme for Information Retrieval in IoT Infrastructures
Makkar, A., Kumar, N., Obaidat, M.S. and Hsiao, K.-F. 2018. QAIR: Quality Assessment Scheme for Information Retrieval in IoT Infrastructures. 2018 IEEE Global Communications Conference. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/glocom.2018.8647180
Spammer classification using ensemble methods over content-based features
Makkar, A. and Goel, S. Kusum Deep, Jagdish Chand Bansal, Kedar Nath Das, Arvind Kumar Lal, Harish Garg, Atulya K. Nagar and Millie Pant (ed.) 2017. Spammer classification using ensemble methods over content-based features. Springer Verlag.