Artificial Intelligence for Cognitive Health Assessment: State-of-the-Art, Open Challenges and Future Directions

Journal article


Javed, A. R., Saadia, A., Mughal, H., Gadekallu, T.R., Rizwan, M., Maddikunta, P.K.R., Mahmud, M., Liyanage, M and Hussain, A. 2023. Artificial Intelligence for Cognitive Health Assessment: State-of-the-Art, Open Challenges and Future Directions. Cognitive Computation. pp. 1-46. https://doi.org/10.1007/s12559-023-10153-4
AuthorsJaved, A. R., Saadia, A., Mughal, H., Gadekallu, T.R., Rizwan, M., Maddikunta, P.K.R., Mahmud, M., Liyanage, M and Hussain, A.
Abstract

The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and, challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field.

KeywordsHealthcare; Internet of Things; Healthcare services; Remote monitoring; Smart homes; Sustainability; Mental health; Cognitive health; Dementia
Year2023
JournalCognitive Computation
Journal citationpp. 1-46
PublisherSpringer
ISSN1866-9964
Digital Object Identifier (DOI)https://doi.org/10.1007/s12559-023-10153-4
Web address (URL)https://link.springer.com/article/10.1007/s12559-023-10153-4
Accepted author manuscript
File Access Level
Open
Output statusPublished
Publication dates
Online24 Jun 2023
Publication process dates
Accepted01 May 2023
Deposited29 Jun 2023
Permalink -

https://repository.derby.ac.uk/item/9z390/artificial-intelligence-for-cognitive-health-assessment-state-of-the-art-open-challenges-and-future-directions

  • 40
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems
Khan, A., Rizwan, M., Bagdasar, O., Alabdulatif, A., Alamro, S. and Alnajim, A. 2024. Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems. Computer Modeling in Engineering & Sciences . 141 (3), pp. 2121-2141. https://doi.org/10.32604/cmes.2024.054380
Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems
Abid, R., Rizwan, M., Alabdulatif, A., Alnajim, A., Alamro, M. and Azrour, M. 2024. Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems. CMC-Computers, Materials & Continua. pp. 1-17. https://doi.org/10.32604/cmc.2024.046880
Enhanced clustering based routing protocol in vehicular ad‐hocnetworks
Afia, N., Rizwan, M., Shtwai, A., Almadhor, A., Akhtaruzzaman, Md., Islam, S. and Rahman, H. 2023. Enhanced clustering based routing protocol in vehicular ad‐hocnetworks. IET Electrical Systems in Transportation. 13 (1), pp. 1-15. https://doi.org/10.1049/els2.12069
Intrusion Detection Framework for Industrial Internet of Things Using Software Defined Network
Alshahrani, H., Khan, A., Rizwan, M., Al Reshan, M. S., Sulaiman, A. and Shaikh, A. 2023. Intrusion Detection Framework for Industrial Internet of Things Using Software Defined Network. Sustainability. 15 (11), pp. 1-18. https://doi.org/10.3390/su15119001
Intelligent Transportation Systems in Smart City: A Systematic Survey
Hassan, M. A., Javed, R., Farhatullah, Granelli, F., Gen, X., Rizwan, M., Ali, S. H., Junaid, H. and Ullah, S. 2023. Intelligent Transportation Systems in Smart City: A Systematic Survey. 2023 International Conference on Robotics and Automation in Industry (ICRAI). IEEE Computer Society. https://doi.org/10.1109/ICRAI57502.2023.10089543
Brain Tumor and Glioma Grade Classification Using Gaussian Convolutional Neural Network
Rizwan, M., Aysha, S., Maryam, S., AR Javed, Baker, T. and Dhiya, O. 2022. Brain Tumor and Glioma Grade Classification Using Gaussian Convolutional Neural Network. IEEE Access. 10, pp. 29731 - 29740. https://doi.org/10.1109/ACCESS.2022.3153108
Exploratory Data Analysis, Classification, Comparative Analysis, Case Severity Detection, and Internet of Things in COVID 19 Telemonitoring for Smart Hospitals
Shabbir, A., Shabbir, M., Javed, A. R., Rizwan, M., Iwendi, C. and Chakraborty, C. 2022. Exploratory Data Analysis, Classification, Comparative Analysis, Case Severity Detection, and Internet of Things in COVID 19 Telemonitoring for Smart Hospitals. Journal of Experimental & Theoretical Artificial Intelligence. 35 (4), pp. 507-534. https://doi.org/10.1080/0952813X.2021.1960634