Two-way photoswitching norbornadiene derivatives for solar energy storage

Journal article


Liang Fei, Helen Hölzel, Zhihang Wang, Andreas Erbs Hillers-Bendtsen, Adil S. Aslam, Monika Shamsabadi, Jialing Tan, Kurt V. Mikkelsen, Chaoxia Wang and Kasper Moth-Poulsen 2024. Two-way photoswitching norbornadiene derivatives for solar energy storage. Chemical Science. (15), pp. 18179-18186. https://doi.org/10.1039/d4sc04247f
AuthorsLiang Fei, Helen Hölzel, Zhihang Wang, Andreas Erbs Hillers-Bendtsen, Adil S. Aslam, Monika Shamsabadi, Jialing Tan, Kurt V. Mikkelsen, Chaoxia Wang and Kasper Moth-Poulsen
Abstract

Molecular photoswitches of norbornadiene (NBD) derivatives have been effectively applied in molecular solar-thermal energy storage (MOST) by photoisomerization of NBD to a quadricyclane (QC) state. However, a challenge of the NBD-based MOST system is the lack of a reversible two-way photoswitching process, limiting conversion from QC to thermal and catalytic methods. Here we design a series of NBD derivatives with a combination of acceptor and donor units to achieve two-way photoswitching, which can optically release energy by back-conversion from QC to NBD. Highly efficient photoconversion yields from NBD to QC and QC to NBD are up to 99% and 82%, respectively. The energy storage density of two-way photoswitching NBD is up to 312 J g−1 and optically controlled two-way photoswitching devices are demonstrated for the first time both in flow and in thin films, which illustrate a promising approach for fast and robust energy release in both solution and solid state.

KeywordsMolecular photoswitches; molecular solar-thermal energy storage (MOST); photoisomerization; photoswitching
Year2024
JournalChemical Science
Journal citation(15), pp. 18179-18186
PublisherRoyal Society of Chemistry
ISSN2041-6539
Digital Object Identifier (DOI)https://doi.org/10.1039/d4sc04247f
Web address (URL)https://doi.org/10.1039/D4SC04247F
Output statusPublished
Publication dates26 Sep 2023
Publication process dates
Deposited21 Nov 2024
Permalink -

https://repository.derby.ac.uk/item/qqzw2/two-way-photoswitching-norbornadiene-derivatives-for-solar-energy-storage

  • 60
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Functionalized azobenzenes for micellar solar thermal energy storage as a next-generation MOST system
Huang, R., Loch, A., Pincham, A., Smith, A., Seddon, A., Wang, Z. and Adams, D. 2025. Functionalized azobenzenes for micellar solar thermal energy storage as a next-generation MOST system. Communications Chemistry.
Molecular solar thermal energy storage system based functional devices
Wang, Z. 2025. Molecular solar thermal energy storage system based functional devices. in: Moth-Poulsen, K. (ed.) Molecular Solar Thermal Energy Storage Systems Cham Springer. pp. 169–192
Surfactant-enabled strategy for molecular solar thermal energy storage systems in water
Fernandez, L., Hölzel, H., Ferreira, P., Baggi, N., Moreno, K., Wang, Z. and Moth-Poulsen, K. 2025. Surfactant-enabled strategy for molecular solar thermal energy storage systems in water. Green Chemistry.
Reusable and closed-loop recyclable underwater adhesives via printable multi-dynamic networks
Wang, S., Wu, X., Li, J., Zhao, J., Wang, S., Sun, Y., Wang, Z. and Xu, X. 2025. Reusable and closed-loop recyclable underwater adhesives via printable multi-dynamic networks. Chemical Engineering Journal.
Tailor-made solar desalination and salt harvesting from diverse saline water enabled by multi-material printing
Li, J., Zhao, J., Sun, Y., Li, Z., Murto, P., Wang, Z. and Xu, X. 2025. Tailor-made solar desalination and salt harvesting from diverse saline water enabled by multi-material printing. Advanced Materials. https://doi.org/10.1002/adma.202517244
Influence of surfactant–cosurfactant ratios on the morphology of vaterite microparticles in Inverse microemulsions
Hu, M, Wang, K, Zuo, J, Jevric, M, Feng, J, Wang, Z. and Wang, N 2025. Influence of surfactant–cosurfactant ratios on the morphology of vaterite microparticles in Inverse microemulsions. ChemistrySelect. 10 (36). https://doi.org/10.1002/slct.202504254
3D-printed hygroscopic matrices based on granular hydrogels for atmospheric water adsorption and on-demand defogging
Wu, X., Wang, S., Zhao, J., Li, J., Sun, Y., Wang, Z., Murto, O., Cui, H. and Xu, X. 2025. 3D-printed hygroscopic matrices based on granular hydrogels for atmospheric water adsorption and on-demand defogging. Advanced Functional Materials. https://doi.org/10.1002/adfm.202514721
Reversible dual stimuli-responsive polymer coatings with antimicrobial properties for oil–water separation
Wang, N., Wang, H., Wang, K., Zuo, J. and Wang, Z. 2025. Reversible dual stimuli-responsive polymer coatings with antimicrobial properties for oil–water separation. Journal of Water Process Engineering. 77. https://doi.org/10.1016/j.jwpe.2025.108484
Spectrally-tailored hygroscopic hydrogels with Janus interfaces for hybrid passive cooling of solar cells
Li, S., Wang, S., Zhao, J., Wang, Z., Murto, P., Yu, L., Chen, J. and Xu, X. 2025. Spectrally-tailored hygroscopic hydrogels with Janus interfaces for hybrid passive cooling of solar cells. Small. https://doi.org/10.1002/smll.202505647
Kinetic investigations on the fading reaction between MX and SDS at concentrations below and above the critical micellar concentration
Zuo, J., Liu, G., Wang, K., Wang, Z. and Wang, N. 2025. Kinetic investigations on the fading reaction between MX and SDS at concentrations below and above the critical micellar concentration. ChemistrySelect. 10 (22). https://doi.org/10.1002/slct.202501841
Simulation-guided design of solar steam generator arrays for efficient all-cold evaporation under natural sunlight
Shao, K., Li, J., Zhao, J., Wang, S., Lu, Y, Murto, P., Wang, Z. and Xu, X. 2025. Simulation-guided design of solar steam generator arrays for efficient all-cold evaporation under natural sunlight. 17 (7). https://doi.org/10.1021/acsami.5c04498
Synergistic solar-powered water-electricity generation using a 3D-printed heatsink-like device
Li, N., He, J., Li, J., Li, Z., Murto, P., Wang, Z. and Xu, X. 2025. Synergistic solar-powered water-electricity generation using a 3D-printed heatsink-like device. EES Solar. https://doi.org/10.1039/D4EL00041B
Tailor-Made Hygroscopic Photothermal Organogels for Moisture Management and Evaporative Cooling through a 1D-to-3D Design
Wang, Y., Li, S., Li, J., Sun, Y., Li, Z., Murto, P., Wang, Z. and Xu, X. 2025. Tailor-Made Hygroscopic Photothermal Organogels for Moisture Management and Evaporative Cooling through a 1D-to-3D Design. Journal of Materials Chemistry A. 6. https://doi.org/10.1039/D4TA07811J
Photoresponsive Surfactants for Controllable and Reversible Emulsion Systems
Xue, H., Han, Y., Liu, G., Chen, W., Wang, Z. and Wang, N. 2024. Photoresponsive Surfactants for Controllable and Reversible Emulsion Systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 705 (1), pp. 1-9. https://doi.org/10.1016/j.colsurfa.2024.135669