The formyl peptide receptor agonist FPRa14 induces differentiation of Neuro2a mouse neuroblastoma cells into multiple distinct morphologies which can be specifically inhibited with FPR antagonists and FPR knockdown using siRNA

Journal article


Howe, Michael, Illingworth, Thomas, Milton, Nathaniel, Paterson, Andrew, Gomez-Escalada, Margarita and Cussell, Peter.J.G 2019. The formyl peptide receptor agonist FPRa14 induces differentiation of Neuro2a mouse neuroblastoma cells into multiple distinct morphologies which can be specifically inhibited with FPR antagonists and FPR knockdown using siRNA. PLos ONE. https://doi.org/10.1371/journal.pone.0217815
AuthorsHowe, Michael, Illingworth, Thomas, Milton, Nathaniel, Paterson, Andrew, Gomez-Escalada, Margarita and Cussell, Peter.J.G
Abstract

The N-formyl peptide receptors (FPRs) have been identified within neuronal tissues and may serve as yet undetermined functions within the nervous system. The FPRs have been implicated in the progression and invasiveness of neuroblastoma and other cancers. In this study the effects of the synthetic FPR agonist FPRa14, FPR antagonists and FPR knockdown using siRNA on mouse neuroblastoma neuro2a (N2a) cell differentiation plus toxicity were examined. The FPRa14 (1–10μM) was found to induce a significant dose-dependent differentiation response in mouse neuroblastoma N2a cells. Interestingly, three distinct differentiated morphologies were observed, with two non-archetypal forms observed at the higher FPRa14 concentrations. These three forms were also observed in the human neuroblastoma cell-lines IMR-32 and SH-SY5Y when exposed to 100μM FPRa14. In N2a cells combined knockdown of FPR1 and FPR2 using siRNA inhibited the differentiation response to FPRa14, suggesting involvement of both receptor subtypes. Pre-incubating N2a cultures with the FPR1 antagonists Boc-MLF and cyclosporin H significantly reduced FPRa14- induced differentiation to near baseline levels. Meanwhile, the FPR2 antagonist WRW4 had no significant effect on FPRa14-induced N2a differentiation. These results suggest that the N2a differentiation response observed has an FPR1-dependent component. Toxicity of FPRa14 was only observed at higher concentrations. All three antagonists used blocked FPRa14-induced toxicity, whilst only siRNA knockdown of FPR2 reduced toxicity. This suggests that the toxicity and differentiation involve different mechanisms. The demonstration of neuronal differentiation mediated via FPRs in this study represents a significant finding and suggests a role for FPRs in the CNS. This finding could potentially lead to novel therapies for a range of neurological conditions including neuroblastoma, Alzheimer’s disease, Parkinson’s disease and neuropathic pain. Furthermore, this could represent a potential avenue for neuronal regeneration therapies.

KeywordsFPRa14; Neuroblastoma differentiation; Formyl peptide receptor antagonists; siRNA Knockdown
Year2019
JournalPLos ONE
PublisherPublic Library of Science
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0217815
Web address (URL)http://hdl.handle.net/10545/624550
http://creativecommons.org/licenses/by/4.0/
hdl:10545/624550
Publication dates06 Jun 2019
Publication process dates
Deposited05 Mar 2020, 15:23
Accepted20 May 2019
Rights

Attribution 4.0 International

ContributorsLeeds Beckett University
File
File Access Level
Open
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/92407/the-formyl-peptide-receptor-agonist-fpra14-induces-differentiation-of-neuro2a-mouse-neuroblastoma-cells-into-multiple-distinct-morphologies-which-can-be-specifically-inhibited-with-fpr-antagonists

Download files

  • 36
    total views
  • 12
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Factors affecting COVID-19 vaccine uptake in populations with higher education: insights from a cross-sectional study among university students in Malawi
Madhlopa, Q.K, Mtumbuka, M, Kumwenda, J, Illingworth, T.A, Van Hout, M, Mfutso-Bengo, J, Mikeka, C and Shawa, I.T 2024. Factors affecting COVID-19 vaccine uptake in populations with higher education: insights from a cross-sectional study among university students in Malawi. BMC Infectious Diseases. 24 (1), p. 848. https://doi.org/10.1186/s12879-024-09534-3
Targeting hPKM2 in cancer: a bio isosteric approach for ligand design
Pipitò.L, Illingworth, T.A and Deganutti.G 2023. Targeting hPKM2 in cancer: a bio isosteric approach for ligand design. Computers in Biology and Medicine. 158, pp. 1-9. https://doi.org/10.1016/j.compbiomed.2023.106852
Bacterial Interactions Affecting Chemotherapy Effectiveness
Chambers, J.M and Illingworth, T. 2023. Bacterial Interactions Affecting Chemotherapy Effectiveness. McGill Science Undergraduate Research Journal. 18 (1), pp. 15 - 18. https://doi.org/10.26443/msurj.v18i1.190
Development and validation of anti-human Alpha synuclein DNA aptamer using computer modelling techniques—an in silico study
Rock, M., Zouganelis, G., Belchior de Andrade, A., Drake, S., Alexiou, A., Albrakati, A., Bathia, G. E. S. and Illingworth, T. 2022. Development and validation of anti-human Alpha synuclein DNA aptamer using computer modelling techniques—an in silico study. Journal of Integrative Neuroscience. 21 (1), p. 5. https://doi.org/10.31083/j.jin2101005