A boundary class for the k-path partition problem.
Journal article
Korpelainen, Nicholas 2018. A boundary class for the k-path partition problem. Electronic Notes in Discrete Mathematics. https://doi.org/10.1016/j.endm.2018.05.009
Authors | Korpelainen, Nicholas |
---|---|
Abstract | We establish the first known boundary class for the k-path partition problem and deduce that for a graph class defined by finitely many minimal forbidden induced subgraphs, the k-path partition problem remains NP-hard unless one of the forbidden induced subgraphs is a subcubic tree (a tree of maximum degree at most 3) with at most one vertex of degree 3. |
Keywords | Hereditary graph classes; Boundary properties |
Year | 2018 |
Journal | Electronic Notes in Discrete Mathematics |
Publisher | Elsevier |
ISSN | 15710653 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.endm.2018.05.009 |
Web address (URL) | http://hdl.handle.net/10545/622756 |
hdl:10545/622756 | |
Publication dates | 14 Jun 2018 |
Publication process dates | |
Deposited | 15 Jun 2018, 14:35 |
Rights | Archived with thanks to Electronic Notes in Discrete Mathematics |
Contributors | University of Derby |
File | File Access Level Open |
File | |
File | File Access Level Open |
File | File Access Level Open |
Permalink -
https://repository.derby.ac.uk/item/93289/a-boundary-class-for-the-k-path-partition-problem
Download files
25
total views34
total downloads1
views this month0
downloads this month
Export as
Related outputs

A new graph construction of unbounded clique-width.
Korpelainen, Nicholas 2016. A new graph construction of unbounded clique-width. Electronic Notes in Discrete Mathematics. https://doi.org/10.1016/j.endm.2016.11.005
Infinitely many minimal classes of graphs of unbounded clique-width.
Collins, Andrew, Foniok, Jan, Korpelainen, Nicholas, Lozin, Vadim and Zamaraev, Viktor 2017. Infinitely many minimal classes of graphs of unbounded clique-width. Discrete Applied Mathematics. https://doi.org/10.1016/j.dam.2017.02.012
Well-quasi-order for permutation graphs omitting a path and a clique
Korpelainen, Nicholas, Atminas, Aistis, Brignall, Robert, Vatter, Vincent and Lozin, Vadim 2015. Well-quasi-order for permutation graphs omitting a path and a clique. The Electronic Journal of Combinatorics.