Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources

Journal article


Mohamed, Naoui, Aymen, Flah, Altamimi, Abdullah, Khan, Zafar A. and Lassaad, Sbita 2022. Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources. Sustainability. 14 (5), p. 2551. https://doi.org/10.3390/su14052551
AuthorsMohamed, Naoui, Aymen, Flah, Altamimi, Abdullah, Khan, Zafar A. and Lassaad, Sbita
Abstract

This paper deals with an energy management problem to ensure the best performance of the recharging tools used in electric vehicles. The main objective of this work is to find the optimal condition for controlling a hybrid recharging system by regrouping the photovoltaic cells and fuel cells. The photovoltaic and fuel cell systems were connected in parallel via two converters to feed either a lithium battery bank or the main traction motor. This combination of energy sources resulted in a hybrid recharging system. The mathematical model of the overall recharging system and the designed power management loop was developed, taking into account multiple aspects, including vehicle loading, the stepwise mathematical modelling of each component, and a detailed discussion of the required electronic equipment. Finally, a simplistic management loop was designed and implemented. Multiple case studies were simulated, statistical approaches were used to quantify the contribution of each recharging method, and the benefits of the combination of the two sources were evaluated. The energetic performance of an electric vehicle with the proposed hybrid recharging tool under various conditions, including static and dynamic modes, was simulated using the MATLAB/Simulink tool. The results suggest that despite the additional weight of PV panels, the combination of the PV and FC systems improves the vehicle’s energetic performance and provides a higher charging capacity instead of using an FC alone. A comparison with similar studies revealed that the proposed model has a higher efficiency. Finally, the benefits and drawbacks of each solution are discussed to emphasise the significance of the hybrid recharging system.

KeywordsManagement, Monitoring, Policy and Law; Renewable Energy, Sustainability and the Environment; Geography, Planning and Development
Year2022
JournalSustainability
Journal citation14 (5), p. 2551
PublisherMDPI AG
ISSN2071-1050
Digital Object Identifier (DOI)https://doi.org/10.3390/su14052551
Web address (URL)http://hdl.handle.net/10545/626342
http://creativecommons.org/licenses/by/4.0/
hdl:10545/626342
Publication dates23 Feb 2022
Publication process dates
Deposited07 Mar 2022, 12:14
Accepted16 Feb 2022
Rights

Attribution 4.0 International

ContributorsUniversity of Gabès, Gabès 6072, Tunisia, University, Al-Majmaah 11952, Saudi Arabia, Mirpur University of Science and Technology, Mirpur 10250, Pakistan and University of Derby
File
File Access Level
Open
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/9361w/power-management-and-control-of-a-hybrid-electric-vehicle-based-on-photovoltaic-fuel-cells-and-battery-energy-sources

Download files

  • 21
    total views
  • 55
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as