Big data analytics in healthcare: A cloud based framework for generating insights

Book chapter


Anjum, Ashiq, Aizad, Sanna, Arshad, Bilal, Subhani, Moeez, Davies-Tagg, Dominic, Abdullah, Tariq and Antonopoulos, Nikolaos 2017. Big data analytics in healthcare: A cloud based framework for generating insights. in: Springer.
AuthorsAnjum, Ashiq, Aizad, Sanna, Arshad, Bilal, Subhani, Moeez, Davies-Tagg, Dominic, Abdullah, Tariq and Antonopoulos, Nikolaos
Abstract

With exabytes of data being generated from genome sequencing, a whole new science behind genomic big data has emerged. As technology improves, the cost of sequencing a human genome has gone down considerably increasing the number of genomes being sequenced. Huge amounts of genomic data along with a vast variety of clinical data cannot be handled using existing frameworks and techniques. It is to be efficiently stored in a warehouse where a number of things have to be taken into account. Firstly, the genome data is to be integrated effectively and correctly with clinical data. The other data sources along with their formats have to be identified. Required data is then extracted from these other sources (such as clinical datasets) and integrated with the genome. The main challenge here is to be able to handle the integration complexity as a large number of datasets are being integrated with huge amounts of genome. Secondly, since the data is captured at disparate locations individually by clinicians and scientists, it brings the challenge of data consistency. It has to be made sure that the data consistency is not compromised as it is passed along the warehouse. Checks have to be put in place to make sure the data remains consistent from start to finish. Thirdly, to carry this out effectively, the data infrastructure has to be in the correct order. How frequently the data is accessed plays a crucial role here. Data in frequent use will be handled differently than data which is not in frequent use. Lastly, efficient browsing mechanisms have to put in place to allow the data to be quickly retrieved. The data is then iteratively analysed to get meaningful insights. The challenge here is to perform analysis very quickly. Cloud Computing plays an important role as it is used to provide scalability.

With exabytes of data being generated from genome sequencing, a
whole new science behind genomic big data has emerged. As technology
improves, the cost of sequencing a human genome has gone down considerably
increasing the number of genomes being sequenced. Huge amounts of genomic
data along with a vast variety of clinical data cannot be handled using existing
frameworks and techniques. It is to be efficiently stored in a warehouse where a
number of things have to be taken into account. Firstly, the genome data is to be
integrated effectively and correctly with clinical data. The other data sources along
with their formats have to be identified. Required data is then extracted from these
other sources (such as clinical datasets) and integrated with the genome. The main
challenge here is to be able to handle the integration complexity as a large number
of datasets are being integrated with huge amounts of genome. Secondly, since the
data is captured at disparate locations individually by clinicians and scientists, it
brings the challenge of data consistency. It has to be made sure that the data
consistency is not compromised as it is passed along the warehouse. Checks have
to be put in place to make sure the data remains consistent from start to finish.
Thirdly, to carry this out effectively, the data infrastructure has to be in the correct
order. How frequently the data is accessed plays a crucial role here. Data in
frequent use will be handled differently than data which is not in frequent use.
Lastly, efficient browsing mechanisms have to put in place to allow the data to be
quickly retrieved. The data is then iteratively analysed to get meaningful insights.
The challenge here is to perform analysis very quickly. Cloud Computing plays an
important role as it is used to provide scalability.

KeywordsBig data; Cloud computing; Analytics; Healthcare data; Graph models; Tiered data storage
Year2017
PublisherSpringer
Series1617-7975
ISBN9783319546445
Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-319-54645-2
Web address (URL)http://hdl.handle.net/10545/621422
hdl:10545/621422
File
File Access Level
Open
Publication dates2017
Publication process dates
Deposited17 Feb 2017, 16:57
ContributorsUniversity of Derby
Permalink -

https://repository.derby.ac.uk/item/93z9v/big-data-analytics-in-healthcare-a-cloud-based-framework-for-generating-insights

Download files


File
license.txt
File access level: Open

  • 114
    total views
  • 0
    total downloads
  • 2
    views this month
  • 0
    downloads this month

Export as

Related outputs

Virtual, augmented reality and learning analytics impact on learners, and educators: A systematic review
Sakr, A. and Abdullah, T. 2024. Virtual, augmented reality and learning analytics impact on learners, and educators: A systematic review. Education and Information Technologies. pp. 1-50. https://doi.org/10.1007/s10639-024-12602-5
A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA
Gilani, S. Y., Anjum, A., Khan, A., Khan, A., Syed, M. H., Moqurrab, S. A. and Srivastava, G. 2024. A Robust Internet of Drones Security Surveillance Communication Network Based on IOTA. Internet of Things. pp. 1-21. https://doi.org/10.1016/j.iot.2024.101066
A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy
Batool, H., Anjum, A., Khan, A., Izzo, S., Mazzocca, C. and Jeon, G. 2023. A Secure and Privacy Preserved Infrastructure for VANETs based on Federated Learning with Local Differential Privacy. Elsevier Information Sciences. 652. https://doi.org/10.1016/j.ins.2023.119717
Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning
Sikandar, H. S., Malik, S. R., Anjum, A., Khan, A. and Jeon, G. 2023. Cohort-based kernel principal component analysis with Multi-path Service Routing in Federated Learning. Future Generation Computer Systems. 149, pp. 518-530. https://doi.org/10.1016/j.future.2023.07.037
An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids
Mahmood, A., Khan, A., Anjum, A., Maple, C. and Jeon, G. 2023. An Efficient and Privacy-preserving Blockchain-based Secure Data Aggregation in Smart Grids. Sustainable Energy Technologies and Assessments. 60, pp. 1-11. https://doi.org/10.1016/j.seta.2023.103414
Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger
Iftikhar, Z., Anjum, A., Jeon, G., Shah, M. A. and Khan, A. 2023. Privacy Preservation in the Internet of Vehicles using Local Differential Privacy and IOTA Ledger. Springer Cluster Computing . pp. 1-17. https://doi.org/10.1007/s10586-023-04002-0
Deep Learning in Sentiment Analysis: A Survey of Recent Architectures
Abdullah, T. and Ahmet, A. 2022. Deep Learning in Sentiment Analysis: A Survey of Recent Architectures. ACM Computing Surveys. 55 (8), pp. 1-37. https://doi.org/10.1145/3548772
Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing
Amin, Z., Anjum, A., Khan, A., Ahmad, A. and Jeon, G. 2022. Preserving Privacy of High-Dimensional Data by l-Diverse Constrained Slicing. Electronics. 11 (8), p. 1257. https://doi.org/10.3390/electronics11081257
Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches
Kanwal, T., Attaullaha, H., Anjum, A., Khan, A. and Jeon, G. 2022. Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches. Elsevier Digital Communications and Networks. pp. 1-16. https://doi.org/10.1016/j.dcan.2022.09.025
Explaining deep neural networks: A survey on the global interpretation methods
Saleem, R., Yuan, B., Kurugollu, F., Anjum, A. and Liu, L. 2022. Explaining deep neural networks: A survey on the global interpretation methods. Neurocomputing. 513, pp. 165-180. https://doi.org/10.1016/j.neucom.2022.09.129
A unified graph model based on molecular data binning for disease subtyping
Hassan Zada, M., Yuan, B, Khan, W., Anjum, A., Reiff-Marganiec, S. and Saleem, R. 2022. A unified graph model based on molecular data binning for disease subtyping. Journal of Biomedical Informatics. pp. 1-24. https://doi.org/10.1016/j.jbi.2022.104187
Large-scale Data Integration Using Graph Probabilistic Dependencies (GPDs)
Zada, Muhammad Sadiq Hassan, Yuan, Bo, Anjum, Ashiq, Azad, Muhammad Ajmal, Khan, Wajahat Ali and Reiff-Marganiec, Stephan 2020. Large-scale Data Integration Using Graph Probabilistic Dependencies (GPDs). IEEE. https://doi.org/10.1109/bdcat50828.2020.00028
Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks
Saleem, Rabia, Yuan, Bo, Kurugollu, Fatih and Anjum, Ashiq 2020. Explaining probabilistic Artificial Intelligence (AI) models by discretizing Deep Neural Networks. IEEE. https://doi.org/10.1109/ucc48980.2020.00070
Improving MOOCs experience using Learning Analytics and Intelligent Conversational Agent
Abdullah, T. and Sakr, A. 2021. Improving MOOCs experience using Learning Analytics and Intelligent Conversational Agent. in: Caballé, S., Demetriadis, S., Gómez-Sánchez, E., Papadopoulos, P. and Weinberger, A. (ed.) Intelligent Systems and Learning Data Analytics in Online Education Academic Press. pp. 47-70
Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study
Erhan, Laura, Di Mauro, Mario, Anjum, Ashiq, Bagdasar, Ovidiu, Song, Wei and Liotta, Antonio 2021. Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study. Sensors. 21 (23), p. 7774. https://doi.org/10.3390/s21237774
Intelligent price alert system for digital assets - cryptocurrencies
Chhem, Sronglong, Anjum, Ashiq and Arshad, Bilal 2019. Intelligent price alert system for digital assets - cryptocurrencies. ACM Press. https://doi.org/10.1145/3368235.3368874
Congestion prediction for smart sustainable cities using IoT and machine learning approaches
Majumdar, Sharmila, Subhani, Moeez M., Roullier, Benjamin, Anjum, Ashiq and Zhu, Rongbo 2020. Congestion prediction for smart sustainable cities using IoT and machine learning approaches. Sustainable Cities and Society. 64, p. 102500. https://doi.org/10.1016/j.scs.2020.102500
A deep reinforcement learning based homeostatic system for unmanned position control
Manning, Warren, Anjum, Ashiq, Bower, Craig and Dassanayake, Priyanthi 2019. A deep reinforcement learning based homeostatic system for unmanned position control. Association for Computing Machinery.
Intelligent data fusion algorithm based on hybrid delay-aware adaptive clustering in wireless sensor networks
Liu, Xiaozhu, Zhu, Rongbo, Anjum, Ashiq, Wang, Jun, Zhang, Hao and Ma, Maode 2019. Intelligent data fusion algorithm based on hybrid delay-aware adaptive clustering in wireless sensor networks. Future Generation Computer Systems. 104, pp. 1-14. https://doi.org/10.1016/j.future.2019.10.001
Fog computing-based approximate spatial keyword queries with numeric attributes in IoV
Li, Yanhong, Zhu, Rongbo, Mao, Shiwen and Anjum, Ashiq 2020. Fog computing-based approximate spatial keyword queries with numeric attributes in IoV. IEEE Internet of Things. https://doi.org/10.1109/jiot.2020.2965730
A cascade learning approach for automated detection of locomotive speed sensor using imbalanced data in ITS
Li, Bo, Zhou, Sisi, Cheng, Lifang, Zhu, Rongbo, Hu, Tao, Anjum, Ashiq, He, Zheng and Zou, Yongkai 2019. A cascade learning approach for automated detection of locomotive speed sensor using imbalanced data in ITS. IEEE Access. 7, pp. 90851-90862. https://doi.org/10.1109/access.2019.2928224
Exploring network embedding for efficient message routing in opportunistic mobile social networks
Yuan, Bo, Anjum, Ashiq, Panneerselvam, J. and Liu, Lu 2020. Exploring network embedding for efficient message routing in opportunistic mobile social networks. IEEE. https://doi.org/10.1109/ICDMW.2019.00077
Graph data modelling for genomic variants
Anjum, Ashiq and Aizad, Sanna 2019. Graph data modelling for genomic variants.
Multiclass disease predictions based on integrated clinical and genomics datasets
Anjum, Ashiq and Subhani, Moeez 2019. Multiclass disease predictions based on integrated clinical and genomics datasets. IARIA.
Improved Kalman filter based differentially private streaming data release in cognitive computing.
Wang, Jun, Luo, Jing, Liu, Xiaozhu, Li, Yongkai, Liu, Shubo, Zhu, Rongbo and Anjum, Ashiq 2019. Improved Kalman filter based differentially private streaming data release in cognitive computing. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2019.03.050
Intelligent augmented keyword search on spatial entities in real-life internet of vehicles
Li, Yanhong, Wang, Meng, Du, Xiaokun, Feng, Yuhe, Luo, Changyin, Tian, Shasha, Anjum, Ashiq and Zhu, Rongbo 2018. Intelligent augmented keyword search on spatial entities in real-life internet of vehicles. Future Generation Computer Systems. 94, pp. 697-711. https://doi.org/10.1016/j.future.2018.12.051
Language model-based automatic prefix abbreviation expansion method for biomedical big data analysis
Anjum, Ashiq 2019. Language model-based automatic prefix abbreviation expansion method for biomedical big data analysis. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2019.01.016
Machine-learning-based side-channel evaluation of elliptic-curve cryptographic FPGA processor.
Mukhtar, Naila, Mehrabi, Mohamad, Kong, Yinan and Anjum, Ashiq 2018. Machine-learning-based side-channel evaluation of elliptic-curve cryptographic FPGA processor. Applied Sciences. 9 (1), p. 64. https://doi.org/10.3390/app9010064
Providing traceability for neuroimaging analyses.
McClatchey, Richard, Branson, Andrew, Anjum, Ashiq, Bloodsworth, Peter, Habib, Irfan, Munir, Kamran, Shamdasani, Jetendr and Soomro, Kamran 2013. Providing traceability for neuroimaging analyses. International Journal of Medical Informatics.
CMS workflow execution using intelligent job scheduling and data access strategies.
Hasham, Khawar, Delgado Peris, Antonio, Anjum, Ashiq, Evans, Dave, Gowdy, Stephen, Hernandez, José M., Huedo, Eduardo, Hufnagel, Dirk, van Lingen, Frank, McClatchey, Richard and Metson, Simon 2011. CMS workflow execution using intelligent job scheduling and data access strategies. IEEE Transactions on Nuclear Science. https://doi.org/10.1109/TNS.2011.2146276
Context-aware service utilisation in the clouds and energy conservation.
Kiani, Saad Liaquat, Anjum, Ashiq, Antonopoulos, Nick and Knappmeyer, Michael 2012. Context-aware service utilisation in the clouds and energy conservation. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-012-0131-1
Exploiting in-memory systems for gnomic data analysis.
Shah, Zeeshan Ali, El-Kalioby, Mohamed, Faquih, Tariq, Shokrof, Moustafa, Subhani, Shazia, Alnakhli, Yasser, Aljafar, Hussain, Anjum, Ashiq and Abouelhoda, Mohamed 2018. Exploiting in-memory systems for gnomic data analysis. Springer. https://doi.org/10.1007/978-3-319-78723-7_35
Cloud-based video analytics using convolutional neural networks.
Yaseen, M., Anjum, Ashiq, Farid, Mohsen and Antonopoulos, Nick 2018. Cloud-based video analytics using convolutional neural networks. Software Practice and Experience. https://doi.org/10.1002/spe.2636
Deep learning hyper-parameter optimization for video analytics in clouds.
Yaseen, M., Anjum, Ashiq, Rana, Omer and Antonopoulos, Nikolaos 2018. Deep learning hyper-parameter optimization for video analytics in clouds. IEEE Transactions on Systems, Man, and Cybernetics. https://doi.org/10.1109/TSMC.2018.2840341
Edge enhanced deep learning system for large-scale video stream analytics.
Muhammad, A., Anjum, Ashiq, Yaseen, M. Usman, Zamani, A. Reza, Balouek-Thomert, Daniel, Rana, Omer and Parashar, Manish 2018. Edge enhanced deep learning system for large-scale video stream analytics. IEEE. https://doi.org/10.1109/CFEC.2018.8358733
Representing variant calling format as directed acyclic graphs to enable the use of cloud computing for efficient and cost effective genome analysis
Aizad, Sanna, Anjum, Ashiq and Sakellariou, Rizos 2017. Representing variant calling format as directed acyclic graphs to enable the use of cloud computing for efficient and cost effective genome analysis. IEEE. https://doi.org/10.1109/CCGRID.2017.116
Blockchain standards for compliance and trust
Anjum, Ashiq, Sporny, Manu and Sill, Alan 2017. Blockchain standards for compliance and trust. IEEE Cloud Computing. https://doi.org/10.1109/MCC.2017.3791019
Clinical and genomics data integration using meta-dimensional approach
Subhani, Moeez, Anjum, Ashiq, Koop, Andreas and Antonopoulos, Nikolaos 2016. Clinical and genomics data integration using meta-dimensional approach. Association for Computing Machinery. https://doi.org/10.1145/2996890.3007896
Deadline constrained video analysis via in-transit computational environments
Zamani, Ali Reza, Zou, Mengsong, Diaz-Montes, Javier, Petri, Ioan, Rana, Omer, Anjum, Ashiq and Parashar, Manish 2017. Deadline constrained video analysis via in-transit computational environments. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2017.2653116
Data Intensive and Network Aware (DIANA) grid scheduling
McClatchey, Richard, Anjum, Ashiq, Stockinger, Heinz, Ali, Arshad, Willers, Ian and Thomas, Michael 2007. Data Intensive and Network Aware (DIANA) grid scheduling. Journal of Grid Computing. https://doi.org/10.1007/s10723-006-9059-z
Intelligent grid enabled services for neuroimaging analysis
McClatchey, Richard, Habib, Irfan, Anjum, Ashiq, Munir, Kamran, Branson, Andrew, Bloodsworth, Peter and Kiani, Saad Liaquat 2013. Intelligent grid enabled services for neuroimaging analysis. Neurocomputing. https://doi.org/10.1016/j.neucom.2013.01.042
Cloud-based scalable object detection and classification in video streams
Yaseen, M., Anjum, Ashiq, Rana, Omer and Hill, Richard 2017. Cloud-based scalable object detection and classification in video streams. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.02.003
Modeling and analysis of a deep learning pipeline for cloud based video analytics.
Yaseen, M., Anjum, Ashiq and Antonopoulos, Nikolaos 2017. Modeling and analysis of a deep learning pipeline for cloud based video analytics. https://doi.org/10.1145/3148055.3148081
Traffic monitoring using video analytics in clouds
Abdullah, Tariq, Anjum, Ashiq, Tariq, M. Fahim, Baltaci, Yusuf and Antonopoulos, Nikolaos 2014. Traffic monitoring using video analytics in clouds. IEEE. https://doi.org/10.1109/UCC.2014.12
Big-Data analytics and cloud computing: Theory, algorithms and applications
Hill, Richard, Trovati, Marcello, Liu, Lu, Anjum, Ashiq and Zhu, Shao Ying 2015. Big-Data analytics and cloud computing: Theory, algorithms and applications. Springer.
A cloud resource management model for the creation and orchestration of social communities
Ikram, Ahsan, Anjum, Ashiq and Bessis, Nik 2015. A cloud resource management model for the creation and orchestration of social communities. Simulation Modelling Practice and Theory. https://doi.org/10.1016/j.simpat.2014.05.003
Federated broker system for pervasive context provisioning
Kiani, Saad Liaquat, Anjum, Ashiq, Knappmeyer, Michael, Bessis, Nik and Antonopoulos, Nikolaos 2013. Federated broker system for pervasive context provisioning. Journal of Systems and Software. https://doi.org/10.1016/j.jss.2012.11.050
Adapting scientific workflow structures using multi-objective optimization strategies
Habib, Irfan, Anjum, Ashiq, Mcclatchey, Richard and Rana, Omer 2013. Adapting scientific workflow structures using multi-objective optimization strategies. ACM Transactions on Autonomous and Adaptive Systems. https://doi.org/10.1145/2451248.2451252
Video stream analysis in clouds: An object detection and classification framework for high performance video analytics
Anjum, Ashiq, Abdullah, Tariq, Tariq, M. Fahim, Baltaci, Yusuf and Antonopoulos, Nikolaos 2016. Video stream analysis in clouds: An object detection and classification framework for high performance video analytics. IEEE Transactions on Cloud Computing. https://doi.org/10.1109/TCC.2016.2517653
Towards cloud based big data analytics for smart future cities
Khan, Zaheer, Anjum, Ashiq, Tahir, Muhammad Atif and Soomro, Kamran Ahmed 2015. Towards cloud based big data analytics for smart future cities. Journal of Cloud Computing. https://doi.org/10.1186/s13677-015-0026-8
Spatial frequency based video stream analysis for object classification and recognition in clouds
Yaseen, M., Anjum, Ashiq and Antonopoulos, Nikolaos 2016. Spatial frequency based video stream analysis for object classification and recognition in clouds. IEEE.
High performance video processing in cloud data centres
Yaseen, M., Zafar, Muhammad Sarim, Anjum, Ashiq and Hill, Richard 2016. High performance video processing in cloud data centres. IEEE. https://doi.org/10.1109/SOSE.2016.56
An Inter-Cloud Meta-Scheduling (ICMS) simulation framework: architecture and evaluation
Sotiriadis, Stelios, Bessis, Nik, Anjum, Ashiq and Buyya, Rajkumar 2015. An Inter-Cloud Meta-Scheduling (ICMS) simulation framework: architecture and evaluation. IEEE Transactions on Services Computing. https://doi.org/10.1109/TSC.2015.2399312
Glueing grids and clouds together: a service-oriented approach
Anjum, Ashiq, Hill, Richard, McClatchey, Richard, Bessis, Nik and Branson, Andrew 2012. Glueing grids and clouds together: a service-oriented approach. International Journal of Web and Grid Services. https://doi.org/10.1504/IJWGS.2012.049169
Energy conservation in mobile devices and applications: a case for context parsing, processing and distribution in clouds
Kiani, Saad Liaquat, Anjum, Ashiq, Bessis, Nik, Hill, Richard and Knappmeyer, Michael 2013. Energy conservation in mobile devices and applications: a case for context parsing, processing and distribution in clouds. Mobile Information Systems.
Approaching the Internet of things (IoT): a modelling, analysis and abstraction framework
Ikram, Ahsan, Anjum, Ashiq, Hill, Richard, Antonopoulos, Nikolaos, Liu, Lu and Sotiriadis, Stelios 2013. Approaching the Internet of things (IoT): a modelling, analysis and abstraction framework. Concurrency and Computation: Practice and Experience. https://doi.org/10.1002/cpe.3131
Performance simulation of a context provisioning middleware based on empirical measurements
Reetz, Eike Steffen, Knappmeyer, Michael, Kiani, Saad Liaquat, Anjum, Ashiq, Bessis, Nik and Tönjes, Ralf 2012. Performance simulation of a context provisioning middleware based on empirical measurements. https://doi.org/10.1016/j.simpat.2012.03.002
Dot-base62x: building a compact and user-friendly text representation scheme of ipv6 addresses for cloud computing
Liu, Zhenxing, Liu, Lu, Hardy, J., Anjum, Ashiq, Hill, Richard and Antonopoulos, Nikolaos 2012. Dot-base62x: building a compact and user-friendly text representation scheme of ipv6 addresses for cloud computing. Journal of Cloud Computing: Advances, Systems and Applications. https://doi.org/10.1186/2192-113X-1-3