Experimental and numerical evaluation of a novel dual-channel windcatcher with a rotary scoop for energy-saving technology integration
Journal article
Authors | Li, J., Calautit, J., Jimenez-Bescos, C. and Riffat, S. |
---|---|
Abstract | With the increasing requirements for fresh air supply in buildings after the COVID-19 pandemic and the rising energy demand from buildings, there has been an increased emphasis on passive cooling techniques such as natural ventilation. While natural ventilation devices such as windcatchers can be a sustainable and low-cost solution to remove indoor pollutants and improve indoor air quality, it is not as reliable as mechanical systems. Integration with low-energy cooling, heating or heat recovery technologies is necessary for operation in unfavourable outdoor conditions. In this research, a novel dual-channel windcatcher design consisting of a rotary wind scoop and a chimney was proposed to provide a fresh air supply irrespective of the wind direction. The dual-channel design allows for passive cooling, dehumidification and heat recovery technology integration to enhance its thermal performance. In this design, the positions of the supply and return duct are “fixed” or would not change under changing wind directions. An open wind tunnel and test room were employed to experimentally evaluate the ventilation performance of the proposed windcatcher prototype. A Computational Fluid Dynamic (CFD) model was developed and validated to further evaluate the system's ventilation performance. The results confirmed that the system could supply sufficient fresh air and exhaust stale air under changing wind directions. The ventilation rate of the rotary scoop windcatcher was higher than that of a conventional 8-sided multidirectional windcatcher of the same size. |
Keywords | COVID-19; Ventilation ; Windcatcher |
Year | 2023 |
Journal | Building and Environment |
Journal citation | 230, pp. 1-17 |
Publisher | Elsevier |
ISSN | 1873-684X |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.buildenv.2023.110018 |
Web address (URL) | https://doi.org/10.1016/j.buildenv.2023.110018 |
Output status | Published |
Publication dates | 16 Jan 2023 |
Publication process dates | |
Accepted | 13 Jan 2023 |
Deposited | 24 May 2023 |
https://repository.derby.ac.uk/item/9yy46/experimental-and-numerical-evaluation-of-a-novel-dual-channel-windcatcher-with-a-rotary-scoop-for-energy-saving-technology-integration
20
total views0
total downloads1
views this month0
downloads this month