Passive Heat Recovery Wind Tower: Assessing the Overheating Risk in Summertime and Ventilation Heat Loss Reduction in Wintertime

Other


Liu, M., Jimenez-Bescos, C. and Calautit, J.K. 2023. Passive Heat Recovery Wind Tower: Assessing the Overheating Risk in Summertime and Ventilation Heat Loss Reduction in Wintertime. Elsevier. https://doi.org/10.2139/ssrn.4165662
AuthorsLiu, M., Jimenez-Bescos, C. and Calautit, J.K.
Abstract

Wind towers are low-energy ventilation devices which can provide cooling and reduce buildings’ energy use. However, during unfavourable climate conditions, wind tower operation could cause thermal discomfort and ventilation heat loss. There also has been very limited research into the overheating risk caused by wind tower ventilation. Therefore, this study explores the feasibility of the year-round operation of wind towers with solid tube heat recovery (THR) through computational fluid dynamics (CFD). The results show that within the mild-cold months, the natural ventilation wind tower with THR raised the room temperature by an average of 3.1 °C, based on the set conditions. This extended the working period of the wind tower throughout the year, especially during mild-cold months. During summertime, the highest indoor temperature observed in the space ventilated by the wind tower with THR was 24.35 °C, which meets the static overheating criteria. The wind tower with THR reduced the ventilation heat loss by up to 8.1% in wintertime. It should be acknowledged that the wind tower with THR cannot provide satisfactory thermal comfort in cold months with outdoor temperatures below 9.41 °C, and more research should be conducted to improve the heat recovery efficiency.

KeywordsBadgir; Windcatcher; Wind tower
Year2023
PublisherElsevier
ISSN1556-5068
Digital Object Identifier (DOI)https://doi.org/10.2139/ssrn.4165662
Web address (URL)http://www.scopus.com/inward/record.url?eid=2-s2.0-85134764044&partnerID=MN8TOARS
Output statusPublished
Publication dates
Online08 Jul 2023
2022
Publication process dates
Accepted01 Jun 2023
Deposited02 Aug 2023
Journal citation58, pp. 1-13
JournalSSRN
Permalink -

https://repository.derby.ac.uk/item/q0093/passive-heat-recovery-wind-tower-assessing-the-overheating-risk-in-summertime-and-ventilation-heat-loss-reduction-in-wintertime

  • 26
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates
Hao Sun, Carlos Jimenez-Bescos, Murtaza Mohammadi, Fangliang Zhong and John Kaiser Calautit 2024. Numerical Investigation of the Influence of Vegetation on the Aero-Thermal Performance of Buildings with Courtyards in Hot Climates. Energies. 14 (17), pp. 1-25. https://doi.org/10.3390/en14175388
Impact of Climate Change on the Heating Demand of Buildings. A District Level Approach
Apostolopoulou, A., Jimenez-Bescos, C., Cavazzi, S. and Boyd, D. Impact of Climate Change on the Heating Demand of Buildings. A District Level Approach. Environmental and Climate Technologies. 27 (1), pp. 1-12. https://doi.org/10.2478/rtuect-2023-0066
A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation
Miaomiao Liu, Payam Nejat, Pinlu Cao, Carlos Jimenez-Bescos and John Kaiser Calautit 2023. A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation. Renewable and Sustainable Energy Reviews. 191, pp. 1-22. https://doi.org/10.1016/j.rser.2023.114048
Can windcatcher's natural ventilation beat the chill? A view from heat loss and thermal discomfort
Liu, M., Almazmumi, S., Cao, P., Carlos Jimenez-bescos and Calautit, J. K. 2023. Can windcatcher's natural ventilation beat the chill? A view from heat loss and thermal discomfort. Building and Environment. 247, pp. 1-21. https://doi.org/10.1016/j.buildenv.2023.110916
Performance evaluation of wind tower natural ventilation with passive solid tube heat recovery based on CO2 levels
Miaomiao Liu, Carlos Jimenez-Bescos and John Kaiser Calautit 2023. Performance evaluation of wind tower natural ventilation with passive solid tube heat recovery based on CO2 levels. Journal of Building Engineering. 72, pp. 1-19. https://doi.org/10.1016/j.jobe.2023.106457
CFD simulation of pumping ventilation in a three-story isolated building with internal partitioning: Effects of partition widths, heights and locations
Zhong, H.-Y., Sun, J., Lin, C., Wu, S.-H., Shang, J., Kikumoto, H., Qian, F.-P., Jimenez-Bescos, C. and Zhao, F.-Y. 2023. CFD simulation of pumping ventilation in a three-story isolated building with internal partitioning: Effects of partition widths, heights and locations. Building Simulation. pp. 1-18. https://doi.org/10.1007/s12273-023-1068-3
Experiment and Numerical Investigation of a Novel Flap Fin Louver Windcatcher for Multidirectional Natural Ventilation and Passive Technology Integration
Li, J., Calautit, J. K. and Jimenez-Bescos, C. 2023. Experiment and Numerical Investigation of a Novel Flap Fin Louver Windcatcher for Multidirectional Natural Ventilation and Passive Technology Integration. Building and Environment. 242, pp. 1-18. https://doi.org/10.2139/ssrn.4364216
Evaluating the energy-saving potential of earth-air heat exchanger (EAHX) for Passivhaus standard buildings in different climates in China
Jiaxiang Li, Carlos Jimenez-Bescos, John Kaiser Calautit and Jiawei Yao 2023. Evaluating the energy-saving potential of earth-air heat exchanger (EAHX) for Passivhaus standard buildings in different climates in China. Energy and Buildings. 288, pp. 1-17. https://doi.org/10.1016/j.enbuild.2023.113005
Experimental and numerical evaluation of a novel dual-channel windcatcher with a rotary scoop for energy-saving technology integration
Li, J., Calautit, J., Jimenez-Bescos, C. and Riffat, S. 2023. Experimental and numerical evaluation of a novel dual-channel windcatcher with a rotary scoop for energy-saving technology integration. Building and Environment. 230, pp. 1-17. https://doi.org/10.1016/j.buildenv.2023.110018
Towards a Combined Physical and Social Evaluation of Climate Vulnerability in Coastal Urban Megacities
Komali Kantamaneni, Qiong Li, Haotian Wu, Mingyu Zhu, Athanasia Apostolopoulou, Weijie Xu, Inji Kenawy, Lakshmi Priya Rajendran, Louis Rice, Carlos Jimenez-Bescos, Sigamani Panneer and Robert Ramesh Babu Pushparaj 2023. Towards a Combined Physical and Social Evaluation of Climate Vulnerability in Coastal Urban Megacities. Water. 15 (4), pp. 1-20. https://doi.org/10.3390/w15040712
Evaluating the performance of an EnerPHit building under different climates in Greece – A Digital Twin approach
Athanasia Athanasia, Athanasia Apostolopoulou and Carlos Jimenez-Bescos 2020. Evaluating the performance of an EnerPHit building under different climates in Greece – A Digital Twin approach. International Conference on Applied Energy 2020. Energy Proceedings . https://doi.org/10.46855/energy-proceedings-7328