Targeting pathogenic Acanthamoeba castellanii using DNA minor groove binding agents

Journal article


Alniss, H. Y, Sajeev, S, Siddiqui, R, Daalah, M, Alawfi, B. S, AlJubeh, H. M, Ravi, A and Khan, N. 2024. Targeting pathogenic Acanthamoeba castellanii using DNA minor groove binding agents. Acta Tropica. 260, p. e107451. https://doi.org/10.1016/j.actatropica.2024.107451
AuthorsAlniss, H. Y, Sajeev, S, Siddiqui, R, Daalah, M, Alawfi, B. S, AlJubeh, H. M, Ravi, A and Khan, N.
Abstract

DNA minor groove binders exhibit a high degree of sequence specificity and have a variety of biological actions including antiviral, anticancer, antibacterial, and anti-protozoal properties. Since it is the location of non-covalent interactions, the minor groove of double helical B-DNA is gaining significant interest as therapeutic targets. For the purpose of this investigation, the synthesis of five novel DNA minor groove binding agents was accomplished and antiparasitic efficacies were determined against Acanthamoeba castellanii of the T4 genotype in vitro. Using amoebicidal assays, the results revealed that all inhibitors tested showed significant killing of amoebae (P < 0.05). Pre-treatment of amoebae with DNA minor groove binders inhibited parasite-mediated human cell death by measuring lactate dehydrogenase release using cytopathogenicity assays. Cytotoxicity assays revealed minimal effects on human cells. As phenotypic switching leads to infection recurrence, assays revealed that inhibitors blocked amoebae phenotypic transformation. These are promising findings and suggest that DNA minor groove binders may hold promise for further research in the effective eradication of pathogenic A. castellanii.

KeywordsParasites; Infections; DNA minor groove binders; Cytopathogenicity; Treatment
Year2024
JournalActa Tropica
Journal citation260, p. e107451
PublisherElsevier
ISSN0001-706X
Digital Object Identifier (DOI)https://doi.org/10.1016/j.actatropica.2024.107451
Web address (URL)https://www.sciencedirect.com/science/article/pii/S0001706X24003322
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
Publication dates16 Dec 2024
Online05 Nov 2024
Publication process dates
Accepted30 Oct 2024
Deposited08 Apr 2025
Permalink -

https://repository.derby.ac.uk/item/qx6qv/targeting-pathogenic-acanthamoeba-castellanii-using-dna-minor-groove-binding-agents

Download files


Accepted author manuscript
Author version.pdf
License: CC BY 4.0
File access level: Open

  • 3
    total views
  • 4
    total downloads
  • 3
    views this month
  • 4
    downloads this month

Export as

Related outputs

Theranostics in the management of Acanthamoeba infections
Siddiqui, R, Lloyd, D and Khan, N. 2025. Theranostics in the management of Acanthamoeba infections. Acta Tropica. 261, p. 107494. https://doi.org/10.1016/j.actatropica.2024.107494
Integration of deep eutectic solvents to develop advanced contact lens disinfectants
Siddiqui, R, Khamis, M, Ibrahim, T and Khan, N. 2025. Integration of deep eutectic solvents to develop advanced contact lens disinfectants. Clinical and Experimental Optometry. 4 (1), p. e2. https://doi.org/10.1080/08164622.2025.2461236
Emerging patents versus brain eating amoebae, Naegleria fowleri
Siddiqui, R, Lloyd, D and Khan, N. 2025. Emerging patents versus brain eating amoebae, Naegleria fowleri. Pharmaceutical Patent Analyst. 3 (1), p. e6. https://doi.org/10.1080/20468954.2025.2459584
Epigenetics and gut microbiome of reptiles can reveal potential targets to improve human health and performance
Siddiqui, R, Alvi, A, Alqassim, S, Alharbi, A.M., Alhazmi, A and Khan, N. 2025. Epigenetics and gut microbiome of reptiles can reveal potential targets to improve human health and performance. Discover Bacteria. 2, p. e4. https://doi.org/10.1007/s44351-025-00014-w
Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer
Halim, R. A., Halim, H, Hussain, R. H. M., Aazmi, S, Khan, N., Siddiqui, R and Anuar, T. S. 2024. Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer. Journal of Water and Health. 22 (12), pp. 2289-2303. https://doi.org/10.2166/wh.2024.162
Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline
Jabri, T, Daalah, M, Alawfi, B. S, Gul, J, Ahmed, U, Shah, M. R, Khan, N., Siddiqui, R, Ying, T. Y, Tong, Y. J and Anwar, A 2024. Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline. Parasitology Research. 123 (11), p. e387. https://doi.org/10.1007/s00436-024-08389-6
The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens
Siddiqui, R, Khatoon, B, Kawish, M, Sajeev, S, Faizi, S, Shah, M. R, Alharbi, A. M and Khan, N. 2024. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. International Microbiology. https://doi.org/10.1007/s10123-024-00584-w