Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline

Journal article


Jabri, T, Daalah, M, Alawfi, B. S, Gul, J, Ahmed, U, Shah, M. R, Khan, N., Siddiqui, R, Ying, T. Y, Tong, Y. J and Anwar, A 2024. Drug modifications: graphene oxide-chitosan loading enhanced anti-amoebic effects of pentamidine and doxycycline. Parasitology Research. 123 (11), p. e387. https://doi.org/10.1007/s00436-024-08389-6
AuthorsJabri, T, Daalah, M, Alawfi, B. S, Gul, J, Ahmed, U, Shah, M. R, Khan, N., Siddiqui, R, Ying, T. Y, Tong, Y. J and Anwar, A
Abstract

Acanthamoeba castellanii is the causative pathogen of a severe eye infection, known as Acanthamoeba keratitis and a life-threatening brain infection, named granulomatous amoebic encephalitis. Current treatments are problematic and costly and exhibit limited efficacy against Acanthamoeba parasite, especially the cyst stage. In parallel to drug discovery and drug repurposing efforts, drug modification is also an important approach to tackle infections, especially against neglected parasites such as free-living amoebae: Acanthamoeba. In this study, we determined whether modifying pentamidine and doxycycline through chitosan-functionalized graphene oxide loading enhances their anti-amoebic effects. Various concentrations of doxycycline, pentamidine, graphene oxide, chitosan-functionalized graphene oxide, and chitosan-functionalized graphene oxide loaded with doxycycline and pentamidine were investigated for amoebicidal effects against pathogenic A. castellanii belonging to the T4 genotype. Lactate dehydrogenase assays were performed to determine toxic effects of these various drugs and nanoconjugates against human cells. The findings revealed that chitosan-functionalized graphene oxide loaded with doxycycline demonstrated potent amoebicidal effects. Nanomaterials significantly (p < 0.05) inhibited excystation and encystation of A. castellanii without exhibiting toxic effects against human cells in a concentration-dependent manner, as compared with other formulations. These results indicate that drug modifications coupled with nanotechnology may be a viable avenue in the rationale development of effective therapies against Acanthamoeba infections.

KeywordsParasites; Infection; Drug modification; Pentamidine; Graphene oxide; Chitoson
Year2024
JournalParasitology Research
Journal citation123 (11), p. e387
PublisherSpringer
ISSN1432-1955
Digital Object Identifier (DOI)https://doi.org/10.1007/s00436-024-08389-6
Web address (URL)https://link.springer.com/article/10.1007/s00436-024-08389-6
Accepted author manuscript
License
File Access Level
Open
Output statusPublished
Publication dates20 Nov 2024
Publication process dates
Accepted24 Oct 2024
Deposited08 Apr 2025
Permalink -

https://repository.derby.ac.uk/item/qx6qy/drug-modifications-graphene-oxide-chitosan-loading-enhanced-anti-amoebic-effects-of-pentamidine-and-doxycycline

Download files


Accepted author manuscript
Author version.pdf
License: CC BY 4.0
File access level: Open

  • 10
    total views
  • 4
    total downloads
  • 10
    views this month
  • 4
    downloads this month

Export as

Related outputs

Theranostics in the management of Acanthamoeba infections
Siddiqui, R, Lloyd, D and Khan, N. 2025. Theranostics in the management of Acanthamoeba infections. Acta Tropica. 261, p. 107494. https://doi.org/10.1016/j.actatropica.2024.107494
Integration of deep eutectic solvents to develop advanced contact lens disinfectants
Siddiqui, R, Khamis, M, Ibrahim, T and Khan, N. 2025. Integration of deep eutectic solvents to develop advanced contact lens disinfectants. Clinical and Experimental Optometry. 4 (1), p. e2. https://doi.org/10.1080/08164622.2025.2461236
Emerging patents versus brain eating amoebae, Naegleria fowleri
Siddiqui, R, Lloyd, D and Khan, N. 2025. Emerging patents versus brain eating amoebae, Naegleria fowleri. Pharmaceutical Patent Analyst. 3 (1), p. e6. https://doi.org/10.1080/20468954.2025.2459584
Epigenetics and gut microbiome of reptiles can reveal potential targets to improve human health and performance
Siddiqui, R, Alvi, A, Alqassim, S, Alharbi, A.M., Alhazmi, A and Khan, N. 2025. Epigenetics and gut microbiome of reptiles can reveal potential targets to improve human health and performance. Discover Bacteria. 2, p. e4. https://doi.org/10.1007/s44351-025-00014-w
Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer
Halim, R. A., Halim, H, Hussain, R. H. M., Aazmi, S, Khan, N., Siddiqui, R and Anuar, T. S. 2024. Assessment of in vitro dynamics of pathogenic environmental Acanthamoeba T4 and T9 genotypes isolated from three recreational lakes in Klang Valley, Malaysia over the HaCaT cell monolayer. Journal of Water and Health. 22 (12), pp. 2289-2303. https://doi.org/10.2166/wh.2024.162
Targeting pathogenic Acanthamoeba castellanii using DNA minor groove binding agents
Alniss, H. Y, Sajeev, S, Siddiqui, R, Daalah, M, Alawfi, B. S, AlJubeh, H. M, Ravi, A and Khan, N. 2024. Targeting pathogenic Acanthamoeba castellanii using DNA minor groove binding agents. Acta Tropica. 260, p. e107451. https://doi.org/10.1016/j.actatropica.2024.107451
The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens
Siddiqui, R, Khatoon, B, Kawish, M, Sajeev, S, Faizi, S, Shah, M. R, Alharbi, A. M and Khan, N. 2024. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. International Microbiology. https://doi.org/10.1007/s10123-024-00584-w