Shearlet transform and convolutional neural network for histopathology images in breast cancer classification

Journal article


Khairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Rosli, N. and Farid, M. 2025. Shearlet transform and convolutional neural network for histopathology images in breast cancer classification . The Malaysian Journal of Fundamental and Applied Sciences. 21 (4), p. 2288−2302. https://doi.org/10.11113/mjfas.v21n4.38422288MohdKhairietal.|MalaysianJournalofFundamentalandAppliedSciences,Vol.21(2025)2288−2302RESEARCHARTICLEShearletTransformandConvolutionalNeuralNetworkforHistopathologyImagesinBreastCancerClassificationSitiShalizaMohdKhairia,b,MohdAftarAbuBakarb*,MohdAlmieAliasb,SakhinahAbuBakarb,NurwahyunaRoslic,MohsenFariddaFacultyofComputerandMathematicalSciences,UniversitiTeknologiMARA,40450ShahAlam,Selangor,Malaysia;DepartmentofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia,43600UKMBangi,Selangor,Malaysia;cDepartmentofPathology,FacultyofMedicine,HospitalCanselorTuankuMuhriz,UniversitiKebangsaanMalaysia,JalanYaacobLatif,BandarTunRazak,Cheras,56000KualaLumpur,Malaysia;dDepartmentofComputingandMathematics,UniversityofDerby,KedlestonRoad,Derby,DE221GB,UnitedKingdomAbstractBreastcancerstandsoutasoneoftheglobalhealththreats,asitmaycausedeathifimproperlytreated.Thus,detectingtheillnessattheearlystagethroughprecisediagnosisisimportanttopreventprogressionoftumorswitheffectivetreatmentsthroughmedicalimaging.Traditionally,manualdiagnosticprocessesrelyontheinputdatarepresentationandexpertknowledge,whichconsumemuchtimeandarepronetohumanerrorduetoheavyworkloadsandfatigue.Recently,deeplearninghasshowndistinguishingresultsinmedicalimaginganalysisforimageclassificationanddetection.Nevertheless,theincreasingdemandtoenhancetheperformanceofimageclassificationisbecomingmoreprominent.Inthisstudy,ahybridmethodofdeeplearningisproposedbycombiningShearlettransformandconvolutionalneuralnetwork(CNN)forbreastcancerhistopathologyimageclassification.First,thehistopathologyimagesaredecomposedusingShearlettransformforShearletcoefficients.Then,theCNNapproachisusedtoclassifytheimagesintobenignandmalignantwithminimalpre-processingprocedure.TheabilityofShearlettransformtoaddresssingularitieshelpstoincreasethequalityofimages.TheproposedhybridmodelimprovestheperformanceoftheoriginalbasicCNNmodel.Resultsfromtheexperimentshowthattheproposedhybridmodelachievesanaccuracyof75%,anF1-scoreof85%formalignanttumor,andamisclassificationrateof0.25%.ThisresultshowsthattheuseofShearlettransformasthefirstfeatureextractionlayerintheCNNarchitectureprovidesbetterfeatureextraction,consequentlyleadingtoimprovedaccuracyforimageclassification.Keywords:Shearlettransform,imageclassification,convolutionalneuralnetwork,breastcancer.IntroductionBreastcancerisoneofthemostcommonillnesseshighlightedbyresearchersinmedicalfieldasitcontributestohighestdeathrates[1].Thiscancerpredominantlyoccursinwomen,hitsthemafterpubertywheretheincidenceratesrisingsteadilyaspeoplegrowolder.Itisanticipatedthatthenumberofdeathsfrombreastcancerwillgrowcontinuouslyfrom2020to2030forEastandSouthAsiancountries[2].Breastcancerisnotanairborneorspreadingillness.Theaffectedbreastcellsexperienceunregulatedgrowthandcandevelopintobenignormalignanttumors.Malignanttumors(canceroustumors)canmetastasizeorspreadtootherpartsofthebody,conferringworseprognosisforthepatients[3].Earlydiagnosisandaccuratetreatmentmayhelpindeceleratingthegrowthprocessandpreventspreadingofuncontrolledabnormalcellstootherpartsofthebody.*Forcorrespondence:aftar@ukm.edu.myReceived:04Sept.2024Accepted:25June2025©CopyrightMohdKhairi.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduseandredistributionprovidedthattheoriginalauthorandsourcearecredited.
AuthorsKhairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Rosli, N. and Farid, M.
Abstract

Breast cancer stands out as one of the global health threats, as it may cause death if improperly treated. Thus, detecting the illness at the early stage through precise diagnosis is important to prevent progression of tumors with effective treatments through medical imaging. Traditionally, manual diagnostic processes rely on the input data representation and expert knowledge, which consume much time and are prone to human error due to heavy workloads and fatigue. Recently, deep learning has shown distinguishing results in medical imaging analysis for image classification and detection. Nevertheless, the increasing demand to enhance the performance of image classification is becoming more prominent. In this study, a hybrid method of deep learning is proposed by combining Shearlet transform and convolutional neural network (CNN) for breast cancer histopathology image classification. First, the histopathology images are decomposed using Shearlet transform for Shearlet coefficients. Then, the CNN approach is used to classify the images into benign and malignant with minimal pre-processing procedure. The ability of Shearlet transform to address singularities helps to increase the quality of images. The proposed hybrid model improves the performance of the original basic CNN model. Results from the experiment show that the proposed hybrid model achieves an accuracy of 75%, an F1-score of 85% for malignant tumor, and a misclassification rate of 0.25%. This result shows that the use of Shearlet transform as the first feature extraction layer in the CNN architecture provides better feature extraction, consequently leading to improved accuracy for image classification.

KeywordsShearlet transform; image classification; convolutional neural network; breast cancer
Year2025
JournalThe Malaysian Journal of Fundamental and Applied Sciences
Journal citation21 (4), p. 2288−2302
PublisherPenerbit UTM Press
ISSN1823-626X
Digital Object Identifier (DOI)https://doi.org/10.11113/mjfas.v21n4.38422288MohdKhairietal.|MalaysianJournalofFundamentalandAppliedSciences,Vol.21(2025)2288−2302RESEARCHARTICLEShearletTransformandConvolutionalNeuralNetworkforHistopathologyImagesinBreastCancerClassificationSitiShalizaMohdKhairia,b,MohdAftarAbuBakarb*,MohdAlmieAliasb,SakhinahAbuBakarb,NurwahyunaRoslic,MohsenFariddaFacultyofComputerandMathematicalSciences,UniversitiTeknologiMARA,40450ShahAlam,Selangor,Malaysia;DepartmentofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia,43600UKMBangi,Selangor,Malaysia;cDepartmentofPathology,FacultyofMedicine,HospitalCanselorTuankuMuhriz,UniversitiKebangsaanMalaysia,JalanYaacobLatif,BandarTunRazak,Cheras,56000KualaLumpur,Malaysia;dDepartmentofComputingandMathematics,UniversityofDerby,KedlestonRoad,Derby,DE221GB,UnitedKingdomAbstractBreastcancerstandsoutasoneoftheglobalhealththreats,asitmaycausedeathifimproperlytreated.Thus,detectingtheillnessattheearlystagethroughprecisediagnosisisimportanttopreventprogressionoftumorswitheffectivetreatmentsthroughmedicalimaging.Traditionally,manualdiagnosticprocessesrelyontheinputdatarepresentationandexpertknowledge,whichconsumemuchtimeandarepronetohumanerrorduetoheavyworkloadsandfatigue.Recently,deeplearninghasshowndistinguishingresultsinmedicalimaginganalysisforimageclassificationanddetection.Nevertheless,theincreasingdemandtoenhancetheperformanceofimageclassificationisbecomingmoreprominent.Inthisstudy,ahybridmethodofdeeplearningisproposedbycombiningShearlettransformandconvolutionalneuralnetwork(CNN)forbreastcancerhistopathologyimageclassification.First,thehistopathologyimagesaredecomposedusingShearlettransformforShearletcoefficients.Then,theCNNapproachisusedtoclassifytheimagesintobenignandmalignantwithminimalpre-processingprocedure.TheabilityofShearlettransformtoaddresssingularitieshelpstoincreasethequalityofimages.TheproposedhybridmodelimprovestheperformanceoftheoriginalbasicCNNmodel.Resultsfromtheexperimentshowthattheproposedhybridmodelachievesanaccuracyof75%,anF1-scoreof85%formalignanttumor,andamisclassificationrateof0.25%.ThisresultshowsthattheuseofShearlettransformasthefirstfeatureextractionlayerintheCNNarchitectureprovidesbetterfeatureextraction,consequentlyleadingtoimprovedaccuracyforimageclassification.Keywords:Shearlettransform,imageclassification,convolutionalneuralnetwork,breastcancer.IntroductionBreastcancerisoneofthemostcommonillnesseshighlightedbyresearchersinmedicalfieldasitcontributestohighestdeathrates[1].Thiscancerpredominantlyoccursinwomen,hitsthemafterpubertywheretheincidenceratesrisingsteadilyaspeoplegrowolder.Itisanticipatedthatthenumberofdeathsfrombreastcancerwillgrowcontinuouslyfrom2020to2030forEastandSouthAsiancountries[2].Breastcancerisnotanairborneorspreadingillness.Theaffectedbreastcellsexperienceunregulatedgrowthandcandevelopintobenignormalignanttumors.Malignanttumors(canceroustumors)canmetastasizeorspreadtootherpartsofthebody,conferringworseprognosisforthepatients[3].Earlydiagnosisandaccuratetreatmentmayhelpindeceleratingthegrowthprocessandpreventspreadingofuncontrolledabnormalcellstootherpartsofthebody.*Forcorrespondence:aftar@ukm.edu.myReceived:04Sept.2024Accepted:25June2025©CopyrightMohdKhairi.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduseandredistributionprovidedthattheoriginalauthorandsourcearecredited.
Web address (URL)https://mjfas.utm.my/index.php/mjfas/about
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online26 Aug 2025
Publication process dates
Accepted25 Jun 2025
Deposited29 Sep 2025
Permalink -

https://repository.derby.ac.uk/item/v0vz4/shearlet-transform-and-convolutional-neural-network-for-histopathology-images-in-breast-cancer-classification

Download files


Publisher's version
5_3842_(2288-2302).pdf
License: CC BY 4.0
File access level: Open

  • 63
    total views
  • 13
    total downloads
  • 15
    views this month
  • 7
    downloads this month

Export as

Related outputs

Storage aware data management system for Genomics
Shah, Z. and Farid, M. 2024. Storage aware data management system for Genomics. 5th International Conference on Big-data Service and Intelligent Computation. ACM Press. https://doi.org/10.1145/3633624
Neurotechnological solutions for post-traumatic stress disorder: A perspective review and concept proposal
Laugharne, R., Farid, M., James, C., Dutta, A., Mould, C., Molten, N., Laugharne, J. and Shankar, R. 2023. Neurotechnological solutions for post-traumatic stress disorder: A perspective review and concept proposal. Healthcare Technology Letters. 10 (6), pp. 133-138. https://doi.org/10.1049/htl2.12055
Comparative study of the scaling behavior of the Rényi entropy for He-like atoms
Farid, M, Abdel-Hady, A, Nasser, I and Farid, Mohsen 2017. Comparative study of the scaling behavior of the Rényi entropy for He-like atoms. IOP Publishing. https://doi.org/10.1088/1742-6596/869/1/012011
Contextualizing geometric data analysis and related data analytics: A virtual microscope for big data analytics
Farid, Mohsen and Murtagh, Fionn 2017. Contextualizing geometric data analysis and related data analytics: A virtual microscope for big data analytics. Journal of Interdisciplinary Methodologies and Issues in Sciences. https://doi.org/10.18713/JIMIS-010917-3-1
Frontal view gait recognition with fusion of depth features from a time of flight camera
Afendi Tengku Mohd, Kurugollu, Fatih, Crookes, Danny, Bouridane, Ahmed and Farid, Mohsen 2018. Frontal view gait recognition with fusion of depth features from a time of flight camera. IEEE Transactions on Information Forensics and Security. https://doi.org/10.1109/TIFS.2018.2870594
Cloud-based video analytics using convolutional neural networks.
Yaseen, M., Anjum, Ashiq, Farid, Mohsen and Antonopoulos, Nick 2018. Cloud-based video analytics using convolutional neural networks. Software Practice and Experience. https://doi.org/10.1002/spe.2636
Video authentication based on statistical local information
Al-Athamneh, Mohammad, Crookes, Danny and Farid, Mohsen 2016. Video authentication based on statistical local information. IEEE.
Digital video source identification based on green-channel photo response non-uniformity (G-PRNU)
Al-Athamneh, Mohammad, Kurugollu, Fatih, Crookes, Danny and Farid, Mohsen 2016. Digital video source identification based on green-channel photo response non-uniformity (G-PRNU). https://doi.org/10.5121/csit.2016.61105
The structure of argument: Semantic mapping of US supreme court cases
Murtagh, Fionn and Farid, Mohsen 2015. The structure of argument: Semantic mapping of US supreme court cases. Springer. https://doi.org/10.1007/978-3-319-17091-6_34