Shearlet transform and convolutional neural network for histopathology images in breast cancer classification
Journal article
Khairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Rosli, N. and Farid, M. 2025. Shearlet transform and convolutional neural network for histopathology images in breast cancer classification . The Malaysian Journal of Fundamental and Applied Sciences. 21 (4), p. 2288−2302. https://doi.org/10.11113/mjfas.v21n4.38422288MohdKhairietal.|MalaysianJournalofFundamentalandAppliedSciences,Vol.21(2025)2288−2302RESEARCHARTICLEShearletTransformandConvolutionalNeuralNetworkforHistopathologyImagesinBreastCancerClassificationSitiShalizaMohdKhairia,b,MohdAftarAbuBakarb*,MohdAlmieAliasb,SakhinahAbuBakarb,NurwahyunaRoslic,MohsenFariddaFacultyofComputerandMathematicalSciences,UniversitiTeknologiMARA,40450ShahAlam,Selangor,Malaysia;DepartmentofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia,43600UKMBangi,Selangor,Malaysia;cDepartmentofPathology,FacultyofMedicine,HospitalCanselorTuankuMuhriz,UniversitiKebangsaanMalaysia,JalanYaacobLatif,BandarTunRazak,Cheras,56000KualaLumpur,Malaysia;dDepartmentofComputingandMathematics,UniversityofDerby,KedlestonRoad,Derby,DE221GB,UnitedKingdomAbstractBreastcancerstandsoutasoneoftheglobalhealththreats,asitmaycausedeathifimproperlytreated.Thus,detectingtheillnessattheearlystagethroughprecisediagnosisisimportanttopreventprogressionoftumorswitheffectivetreatmentsthroughmedicalimaging.Traditionally,manualdiagnosticprocessesrelyontheinputdatarepresentationandexpertknowledge,whichconsumemuchtimeandarepronetohumanerrorduetoheavyworkloadsandfatigue.Recently,deeplearninghasshowndistinguishingresultsinmedicalimaginganalysisforimageclassificationanddetection.Nevertheless,theincreasingdemandtoenhancetheperformanceofimageclassificationisbecomingmoreprominent.Inthisstudy,ahybridmethodofdeeplearningisproposedbycombiningShearlettransformandconvolutionalneuralnetwork(CNN)forbreastcancerhistopathologyimageclassification.First,thehistopathologyimagesaredecomposedusingShearlettransformforShearletcoefficients.Then,theCNNapproachisusedtoclassifytheimagesintobenignandmalignantwithminimalpre-processingprocedure.TheabilityofShearlettransformtoaddresssingularitieshelpstoincreasethequalityofimages.TheproposedhybridmodelimprovestheperformanceoftheoriginalbasicCNNmodel.Resultsfromtheexperimentshowthattheproposedhybridmodelachievesanaccuracyof75%,anF1-scoreof85%formalignanttumor,andamisclassificationrateof0.25%.ThisresultshowsthattheuseofShearlettransformasthefirstfeatureextractionlayerintheCNNarchitectureprovidesbetterfeatureextraction,consequentlyleadingtoimprovedaccuracyforimageclassification.Keywords:Shearlettransform,imageclassification,convolutionalneuralnetwork,breastcancer.IntroductionBreastcancerisoneofthemostcommonillnesseshighlightedbyresearchersinmedicalfieldasitcontributestohighestdeathrates[1].Thiscancerpredominantlyoccursinwomen,hitsthemafterpubertywheretheincidenceratesrisingsteadilyaspeoplegrowolder.Itisanticipatedthatthenumberofdeathsfrombreastcancerwillgrowcontinuouslyfrom2020to2030forEastandSouthAsiancountries[2].Breastcancerisnotanairborneorspreadingillness.Theaffectedbreastcellsexperienceunregulatedgrowthandcandevelopintobenignormalignanttumors.Malignanttumors(canceroustumors)canmetastasizeorspreadtootherpartsofthebody,conferringworseprognosisforthepatients[3].Earlydiagnosisandaccuratetreatmentmayhelpindeceleratingthegrowthprocessandpreventspreadingofuncontrolledabnormalcellstootherpartsofthebody.*Forcorrespondence:aftar@ukm.edu.myReceived:04Sept.2024Accepted:25June2025©CopyrightMohdKhairi.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduseandredistributionprovidedthattheoriginalauthorandsourcearecredited.
Permalink -
https://repository.derby.ac.uk/item/v0vz4/shearlet-transform-and-convolutional-neural-network-for-histopathology-images-in-breast-cancer-classification
Download files
59
total views8
total downloads11
views this month2
downloads this month