Shearlet transform and convolutional neural network for histopathology images in breast cancer classification
Journal article
Khairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Rosli, N. and Farid, M. 2025. Shearlet transform and convolutional neural network for histopathology images in breast cancer classification . The Malaysian Journal of Fundamental and Applied Sciences. 21 (4), p. 2288−2302. https://doi.org/10.11113/mjfas.v21n4.38422288MohdKhairietal.|MalaysianJournalofFundamentalandAppliedSciences,Vol.21(2025)2288−2302RESEARCHARTICLEShearletTransformandConvolutionalNeuralNetworkforHistopathologyImagesinBreastCancerClassificationSitiShalizaMohdKhairia,b,MohdAftarAbuBakarb*,MohdAlmieAliasb,SakhinahAbuBakarb,NurwahyunaRoslic,MohsenFariddaFacultyofComputerandMathematicalSciences,UniversitiTeknologiMARA,40450ShahAlam,Selangor,Malaysia;DepartmentofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia,43600UKMBangi,Selangor,Malaysia;cDepartmentofPathology,FacultyofMedicine,HospitalCanselorTuankuMuhriz,UniversitiKebangsaanMalaysia,JalanYaacobLatif,BandarTunRazak,Cheras,56000KualaLumpur,Malaysia;dDepartmentofComputingandMathematics,UniversityofDerby,KedlestonRoad,Derby,DE221GB,UnitedKingdomAbstractBreastcancerstandsoutasoneoftheglobalhealththreats,asitmaycausedeathifimproperlytreated.Thus,detectingtheillnessattheearlystagethroughprecisediagnosisisimportanttopreventprogressionoftumorswitheffectivetreatmentsthroughmedicalimaging.Traditionally,manualdiagnosticprocessesrelyontheinputdatarepresentationandexpertknowledge,whichconsumemuchtimeandarepronetohumanerrorduetoheavyworkloadsandfatigue.Recently,deeplearninghasshowndistinguishingresultsinmedicalimaginganalysisforimageclassificationanddetection.Nevertheless,theincreasingdemandtoenhancetheperformanceofimageclassificationisbecomingmoreprominent.Inthisstudy,ahybridmethodofdeeplearningisproposedbycombiningShearlettransformandconvolutionalneuralnetwork(CNN)forbreastcancerhistopathologyimageclassification.First,thehistopathologyimagesaredecomposedusingShearlettransformforShearletcoefficients.Then,theCNNapproachisusedtoclassifytheimagesintobenignandmalignantwithminimalpre-processingprocedure.TheabilityofShearlettransformtoaddresssingularitieshelpstoincreasethequalityofimages.TheproposedhybridmodelimprovestheperformanceoftheoriginalbasicCNNmodel.Resultsfromtheexperimentshowthattheproposedhybridmodelachievesanaccuracyof75%,anF1-scoreof85%formalignanttumor,andamisclassificationrateof0.25%.ThisresultshowsthattheuseofShearlettransformasthefirstfeatureextractionlayerintheCNNarchitectureprovidesbetterfeatureextraction,consequentlyleadingtoimprovedaccuracyforimageclassification.Keywords:Shearlettransform,imageclassification,convolutionalneuralnetwork,breastcancer.IntroductionBreastcancerisoneofthemostcommonillnesseshighlightedbyresearchersinmedicalfieldasitcontributestohighestdeathrates[1].Thiscancerpredominantlyoccursinwomen,hitsthemafterpubertywheretheincidenceratesrisingsteadilyaspeoplegrowolder.Itisanticipatedthatthenumberofdeathsfrombreastcancerwillgrowcontinuouslyfrom2020to2030forEastandSouthAsiancountries[2].Breastcancerisnotanairborneorspreadingillness.Theaffectedbreastcellsexperienceunregulatedgrowthandcandevelopintobenignormalignanttumors.Malignanttumors(canceroustumors)canmetastasizeorspreadtootherpartsofthebody,conferringworseprognosisforthepatients[3].Earlydiagnosisandaccuratetreatmentmayhelpindeceleratingthegrowthprocessandpreventspreadingofuncontrolledabnormalcellstootherpartsofthebody.*Forcorrespondence:aftar@ukm.edu.myReceived:04Sept.2024Accepted:25June2025©CopyrightMohdKhairi.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduseandredistributionprovidedthattheoriginalauthorandsourcearecredited.
Permalink -
https://repository.derby.ac.uk/item/v0vz4/shearlet-transform-and-convolutional-neural-network-for-histopathology-images-in-breast-cancer-classification
Download files
63
total views13
total downloads15
views this month7
downloads this month