Shearlet transform and convolutional neural network for histopathology images in breast cancer classification
Journal article
Khairi, S. S. M., Bakar, M. A. A., Alias, M. A., Bakar, S. A., Rosli, N. and Farid, M. 2025. Shearlet transform and convolutional neural network for histopathology images in breast cancer classification . The Malaysian Journal of Fundamental and Applied Sciences. 21 (4), p. 2288−2302. https://doi.org/10.11113/mjfas.v21n4.38422288MohdKhairietal.|MalaysianJournalofFundamentalandAppliedSciences,Vol.21(2025)2288−2302RESEARCHARTICLEShearletTransformandConvolutionalNeuralNetworkforHistopathologyImagesinBreastCancerClassificationSitiShalizaMohdKhairia,b,MohdAftarAbuBakarb*,MohdAlmieAliasb,SakhinahAbuBakarb,NurwahyunaRoslic,MohsenFariddaFacultyofComputerandMathematicalSciences,UniversitiTeknologiMARA,40450ShahAlam,Selangor,Malaysia;DepartmentofMathematicalSciences,FacultyofScienceandTechnology,UniversitiKebangsaanMalaysia,43600UKMBangi,Selangor,Malaysia;cDepartmentofPathology,FacultyofMedicine,HospitalCanselorTuankuMuhriz,UniversitiKebangsaanMalaysia,JalanYaacobLatif,BandarTunRazak,Cheras,56000KualaLumpur,Malaysia;dDepartmentofComputingandMathematics,UniversityofDerby,KedlestonRoad,Derby,DE221GB,UnitedKingdomAbstractBreastcancerstandsoutasoneoftheglobalhealththreats,asitmaycausedeathifimproperlytreated.Thus,detectingtheillnessattheearlystagethroughprecisediagnosisisimportanttopreventprogressionoftumorswitheffectivetreatmentsthroughmedicalimaging.Traditionally,manualdiagnosticprocessesrelyontheinputdatarepresentationandexpertknowledge,whichconsumemuchtimeandarepronetohumanerrorduetoheavyworkloadsandfatigue.Recently,deeplearninghasshowndistinguishingresultsinmedicalimaginganalysisforimageclassificationanddetection.Nevertheless,theincreasingdemandtoenhancetheperformanceofimageclassificationisbecomingmoreprominent.Inthisstudy,ahybridmethodofdeeplearningisproposedbycombiningShearlettransformandconvolutionalneuralnetwork(CNN)forbreastcancerhistopathologyimageclassification.First,thehistopathologyimagesaredecomposedusingShearlettransformforShearletcoefficients.Then,theCNNapproachisusedtoclassifytheimagesintobenignandmalignantwithminimalpre-processingprocedure.TheabilityofShearlettransformtoaddresssingularitieshelpstoincreasethequalityofimages.TheproposedhybridmodelimprovestheperformanceoftheoriginalbasicCNNmodel.Resultsfromtheexperimentshowthattheproposedhybridmodelachievesanaccuracyof75%,anF1-scoreof85%formalignanttumor,andamisclassificationrateof0.25%.ThisresultshowsthattheuseofShearlettransformasthefirstfeatureextractionlayerintheCNNarchitectureprovidesbetterfeatureextraction,consequentlyleadingtoimprovedaccuracyforimageclassification.Keywords:Shearlettransform,imageclassification,convolutionalneuralnetwork,breastcancer.IntroductionBreastcancerisoneofthemostcommonillnesseshighlightedbyresearchersinmedicalfieldasitcontributestohighestdeathrates[1].Thiscancerpredominantlyoccursinwomen,hitsthemafterpubertywheretheincidenceratesrisingsteadilyaspeoplegrowolder.Itisanticipatedthatthenumberofdeathsfrombreastcancerwillgrowcontinuouslyfrom2020to2030forEastandSouthAsiancountries[2].Breastcancerisnotanairborneorspreadingillness.Theaffectedbreastcellsexperienceunregulatedgrowthandcandevelopintobenignormalignanttumors.Malignanttumors(canceroustumors)canmetastasizeorspreadtootherpartsofthebody,conferringworseprognosisforthepatients[3].Earlydiagnosisandaccuratetreatmentmayhelpindeceleratingthegrowthprocessandpreventspreadingofuncontrolledabnormalcellstootherpartsofthebody.*Forcorrespondence:aftar@ukm.edu.myReceived:04Sept.2024Accepted:25June2025©CopyrightMohdKhairi.ThisarticleisdistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduseandredistributionprovidedthattheoriginalauthorandsourcearecredited.
Permalink -
https://repository.derby.ac.uk/item/v0vz4/shearlet-transform-and-convolutional-neural-network-for-histopathology-images-in-breast-cancer-classification
Download files
73
total views19
total downloads8
views this month6
downloads this month