Mechanisms of interpersonal sway synchrony and stability
Journal article
Authors | Reynolds, Raymond Francis and Osler, Callum J. |
---|---|
Abstract | Here we explain the neural and mechanical mechanisms responsible for synchronizing sway and improving postural control during physical contact with another standing person. Postural control processes were modelled using an inverted pendulum under continuous feedback control. Interpersonal interactions were simulated either by coupling the sensory feedback loops or by physically coupling the pendulums with a damped spring. These simulations precisely recreated the timing and magnitude of sway interactions observed empirically. Effects of firmly grasping another person's shoulder were explained entirely by the mechanical linkage. This contrasted with light touch and/or visual contact, which were explained by a sensory weighting phenomenon; each person's estimate of upright was based on a weighted combination of veridical sensory feedback combined with a small contribution from their partner. Under these circumstances, the model predicted reductions in sway even without the need to distinguish between self and partner motion. Our findings explain the seemingly paradoxical observation that touching a swaying person can improve postural control. |
Keywords | Posture; Interpersonal; Feedback model |
Year | 2014 |
Journal | Journal of The Royal Society Interface |
Publisher | The Royal Society |
ISSN | 1742-5689 |
1742-5662 | |
Digital Object Identifier (DOI) | https://doi.org/10.1098/rsif.2014.0751 |
Web address (URL) | http://hdl.handle.net/10545/335867 |
hdl:10545/335867 | |
Publication dates | 22 Oct 2014 |
Publication process dates | |
Deposited | 21 Nov 2014, 09:36 |
Rights | Archived with thanks to Journal of The Royal Society Interface |
Contributors | University of Birmingham and University of Derby |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/935vq/mechanisms-of-interpersonal-sway-synchrony-and-stability
Download files
47
total views22
total downloads2
views this month0
downloads this month
Export as
Related outputs
A prospective clinical and biomechanical analysis of feet following first metatarsophalangeal joint arthrodesis for end stage hallux rigidus
Rajan, R., Kerr, M., Hafesji-Wade, A., Osler, C. and Outram, T. 2024. A prospective clinical and biomechanical analysis of feet following first metatarsophalangeal joint arthrodesis for end stage hallux rigidus. Gait & Posture. 109, pp. 208-212. https://doi.org/10.1016/j.gaitpost.2024.02.010
Effects of Caffeine Ingestion on Human Standing Balance: A Systematic Review of Placebo-Controlled Trials.
Briggs, Isobel, Chidley, Joel, Chidley, Corinna and Osler, Callum 2021. Effects of Caffeine Ingestion on Human Standing Balance: A Systematic Review of Placebo-Controlled Trials. Nutrients. 13 (10). https://doi.org/10.3390/nu13103527Effects of mental fatigue on static upright stance and functional balance in older adults
Fletcher, Lucy J. and Osler, Callum J. 2021. Effects of mental fatigue on static upright stance and functional balance in older adults. Aging and Health Research. 1 (4), pp. 1-6. https://doi.org/10.1016/j.ahr.2021.100043
Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates post-exercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion.
Gough, Lewis A., Rimmer, Steven, Osler, Callum J. and Higgins, Matthew F. 2017. Ingestion of sodium bicarbonate (NaHCO3) following a fatiguing bout of exercise accelerates post-exercise acid-base balance recovery and improves subsequent high-intensity cycling time to exhaustion. International Journal of Sport Nutrition and Exercise Metabolism. https://doi.org/10.1123/ijsnem.2017-0065Increased gravitational force reveals the mechanical, resonant nature of physiological tremor
Lakie, M., Vernooij, C. A., Osler, Callum J., Stevenson, A. T., Scott, J. P. R. and Reynolds, Raymond Francis 2015. Increased gravitational force reveals the mechanical, resonant nature of physiological tremor. The Journal of Physiology. https://doi.org/10.1113/JP270464
Rebuttal from Raymond Reynolds, Callum Osler, Linda Tersteeg and Ian Loram
Reynolds, Raymond Francis, Osler, Callum J., Tersteeg, M. C. A. and Loram, Ian D. 2015. Rebuttal from Raymond Reynolds, Callum Osler, Linda Tersteeg and Ian Loram. The Journal of Physiology. https://doi.org/10.1113/JP270804
Crosstalk opposing view: Fear of falling does not influence vestibular-evoked balance responses
Reynolds, Raymond Francis, Osler, Callum J., Tersteeg, M. C. A. and Loram, Ian D. 2015. Crosstalk opposing view: Fear of falling does not influence vestibular-evoked balance responses. The Journal of Physiology. https://doi.org/10.1113/JP270444
Postural reorientation does not cause the locomotor after-effect following rotary locomotion
Osler, Callum J. and Reynolds, Raymond Francis 2012. Postural reorientation does not cause the locomotor after-effect following rotary locomotion. Springer. https://doi.org/10.1007/s00221-012-3132-6Galvanic vestibular stimulation produces sensations of rotation consistent with activation of semicircular canal afferents
Reynolds, Raymond Francis and Osler, Callum J. 2012. Galvanic vestibular stimulation produces sensations of rotation consistent with activation of semicircular canal afferents. Frontiers in Neurology. https://doi.org/10.3389/fneur.2012.00104
Dynamic transformation of vestibular signals for orientation
Osler, Callum J. and Reynolds, Raymond Francis 2012. Dynamic transformation of vestibular signals for orientation. Springer. https://doi.org/10.1007/s00221-012-3250-1