Dimpling process in cold roll metal forming by finite element modelling and experimental validation

Journal article


Nguyen, Van Bac, Wang, Chang, Mynors, Diane, English, Martin and Castellucci, Michael 2014. Dimpling process in cold roll metal forming by finite element modelling and experimental validation. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2014.03.001
AuthorsNguyen, Van Bac, Wang, Chang, Mynors, Diane, English, Martin and Castellucci, Michael
Abstract

The dimpling process is a novel cold-roll forming process that involves dimpling of a rolled flat strip prior to the roll forming operation. This is a process undertaken to enhance the material properties and subsequent products’ structural performance while maintaining a minimum strip thickness. In order to understand the complex and interrelated nonlinear changes in contact, geometry and material properties that occur in the process, it is necessary to accurately simulate the process and validate through physical tests. In this paper, 3D non-linear finite element analysis was employed to simulate the dimpling process and mechanical testing of the subsequent dimpled sheets, in which the dimple geometry and material properties data were directly transferred from the dimpling process. Physical measurements, tensile and bending tests on dimpled sheet steel were conducted to evaluate the simulation results. Simulation of the dimpling process identified the amount of non-uniform plastic strain introduced and the manner in which this was distributed through the sheet. The plastic strain resulted in strain hardening which could correlate to the increase in the strength of the dimpled steel when compared to plain steel originating from the same coil material. A parametric study revealed that the amount of plastic strain depends upon on the process parameters such as friction and overlapping gap between the two forming rolls. The results derived from simulations of the tensile and bending tests were in good agreement with the experimental ones. The validation indicates that the finite element analysis was able to successfully simulate the dimpling process and mechanical properties of the subsequent dimpled steel products.

KeywordsSteel strength; Finite Element analysis; Dimpling process; Plastic strength
Year2014
JournalJournal of Manufacturing Processes
PublisherElsevier
ISSN15266125
Digital Object Identifier (DOI)https://doi.org/10.1016/j.jmapro.2014.03.001
Web address (URL)http://hdl.handle.net/10545/621446
http://creativecommons.org/licenses/by-nc-nd/4.0/
hdl:10545/621446
Publication datesAug 2014
Publication process dates
Deposited21 Feb 2017, 15:15
ContributorsHadley Industries plc, University of Wolverhampton and University of Sussex
File
File Access Level
Open
Permalink -

https://repository.derby.ac.uk/item/9416v/dimpling-process-in-cold-roll-metal-forming-by-finite-element-modelling-and-experimental-validation

Download files

  • 18
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Design optimisation for cold rolled steel beam sections with web and flange stiffeners
Qadir, S., Nguyen, V.B. and Hajirasouliha, I. 2024. Design optimisation for cold rolled steel beam sections with web and flange stiffeners. Journal of Constructional Steel Research. 213, pp. 1-19. https://doi.org/10.1016/j.jcsr.2023.108375
Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects
Sangar Qadir, Nguyen, V.B., Iman Hajirasouliha and Martin English 2023. Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects. 9th International Conference on Thin-Walled Structures . Conference Proceedings of the 9th International Conference on Thin-Walled Structures .
Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling
Nguyen, T.T.T., Nguyen, V.B. and Thai, M.Q. 2023. Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling. Buildings. 13 (1), pp. 1-31. https://doi.org/10.3390/buildings13010216
Shape optimisation of cold roll formed sections considering effects of cold working
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Ceranic, Boris, Tracada, Eleni and English, Martin 2021. Shape optimisation of cold roll formed sections considering effects of cold working. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2021.108576
Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Cartwright, Brian and English, Martin 2020. Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2020.107020
Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation
Phuong Ngo, Chau, Nguyen, Van Bac, Nguyen, Thanh Phong, Bay Pham, Ngoc, Le, Van Phuc and Hung Nguyen, Van 2020. Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation. Journal of Construction Research. https://doi.org/10.30564/jcr.v1i2.1283
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
Malikan, Mohammad and Nguyen, Van Bac 2019. Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/ab15ff
A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law.
Malikan, Mohammad and Nguyen, Van Bac 2018. A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law. World Journal of Engineering. https://doi.org/10.1108/WJE-11-2017-0357
Effects of cold roll dimpling process on mechanical properties of dimpled steel.
Nguyen, Van Bac and English, Martin 2017. Effects of cold roll dimpling process on mechanical properties of dimpled steel. Procedia Engineering. https://doi.org/10.1016/j.proeng.2017.10.885
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory.
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/aad144
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2018.06.001
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory.
Malikan, Mohammad and Nguyen, Van Bac 2018. Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2018.04.018
Design of new cold rolled purlins by experimental testing and Direct Strength Method
Nguyen, Van Bac, Pham, Cao Hung, Cartwright, Brian and English, Martin 2017. Design of new cold rolled purlins by experimental testing and Direct Strength Method. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2017.05.011
Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls
Nguyen, Van Bac, Arjunan, Arun, Wang, Chang, Mynors, Diane, Morgan, Tertia and English, Martin 2014. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls. Journal of Sound and Vibration. https://doi.org/10.1016/j.jsv.2014.06.032
Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis
Nguyen, Van Bac, Morgan, Tertia, English, Martin and Castellucci, Michael 2015. Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis. Building Acoustics.
Analysis and design of cold-formed dimpled steel columns using Finite Element techniques
Nguyen, Van Bac, Mynors, Diane, Wang, Chang, Castellucci, Michael and English, Martin 2015. Analysis and design of cold-formed dimpled steel columns using Finite Element techniques. Finite Elements in Analysis and Design. https://doi.org/10.1016/j.finel.2015.09.007
Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns
Liang, Ce, Wang, Chang, Nguyen, Van Bac, English, Martin and Mynors, Diane 2016. Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2016.12.020