Design optimisation for cold rolled steel beam sections with web and flange stiffeners
Journal article
Authors | Qadir, S., Nguyen, V.B. and Hajirasouliha, I. |
---|---|
Abstract | This paper presents the analysis and design optimisation of the cold rolled steel sections for flexural strength considering the effect of cold working exerted on the section during the roll forming process. The sections included channel and zed shapes with complex longitudinal web and flange stiffeners. Nonlinear Finite Element (FE) modelling was developed to model the flexural strength of the channel and zed beams and validated against the four-point bending experiments for these sections. The material properties of steel at the section’s flat parts, corners, and stiffener bends were obtained from tensile tests and were incorporated into the FE simulations to account for the true material properties at these regions due to the cold working during the roll forming process. The strength enhancement at the section corners and stiffener bends obtained from tensile tests were also compared with the predicted values from design standards. The section strength was then optimised using FE modelling results based on the Design Of Experiments (DOE) and response surface methodology. Optimal designs for the channel and zed sections with maximum strength in distortional buckling could be obtained while changing the stiffeners’ position, shape, sizes, and considering true material properties at section corners and stiffener bends. It revealed that, for the two sets of channel and zed sections with the depths of 145 mm and 170 mm, the optimal designs provided up to 43% and 39% increase in flexural strength for the channel and zed sections, respectively; however, when the true material properties at the section corner and the stiffener’s bend regions was included, the increase in flexural strength increased up to 50% and 41%, respectively. Including flange stiffeners to the sections with longitudinal web stiffeners generally increased further the section strength. However, the levels of increase were largely dependent on the section depths and material properties. |
Keywords | Cold working effect; Material testing; Flexural testing; Cold rolled sections; Complex stiffeners; Finite Element modelling; Design optimisation |
Year | 2024 |
Journal | Journal of Constructional Steel Research |
Journal citation | 213, pp. 1-19 |
Publisher | Elsevier |
ISSN | 1873-5983 |
Digital Object Identifier (DOI) | https://doi.org/10.1016/j.jcsr.2023.108375 |
Web address (URL) | https://www.sciencedirect.com/science/article/pii/S0143974X23006028 |
Accepted author manuscript | License File Access Level Open |
Publisher's version | License File Access Level Open |
Output status | Published |
Publication dates | |
Online | 12 Dec 2023 |
Publication process dates | |
Accepted | 23 Nov 2023 |
Deposited | 18 Dec 2023 |
https://repository.derby.ac.uk/item/q3q21/design-optimisation-for-cold-rolled-steel-beam-sections-with-web-and-flange-stiffeners
Download files
Accepted author manuscript
![]() | Design optimisation for cold rolled steel beam sections_R1.docx | |
License: CC BY 4.0 | ||
File access level: Open |
Publisher's version
Nguyen 2024 JCSR 108375.pdf | ||
License: CC BY 4.0 | ||
File access level: Open |
79
total views36
total downloads10
views this month8
downloads this month
Export as
Related outputs
Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects
Sangar Qadir, Nguyen, V.B., Iman Hajirasouliha and Martin English 2023. Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects. 9th International Conference on Thin-Walled Structures . Conference Proceedings of the 9th International Conference on Thin-Walled Structures .Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling
Nguyen, T.T.T., Nguyen, V.B. and Thai, M.Q. 2023. Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling. Buildings. 13 (1), pp. 1-31. https://doi.org/10.3390/buildings13010216Towards optimal strength design of cold roll formed steel structural members considering manufacturing process effects
Qadir, Sangar 2022. Towards optimal strength design of cold roll formed steel structural members considering manufacturing process effects. Thesis https://doi.org/10.48773/92v63Shape optimisation of cold roll formed sections considering effects of cold working
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Ceranic, Boris, Tracada, Eleni and English, Martin 2021. Shape optimisation of cold roll formed sections considering effects of cold working. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2021.108576
Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Cartwright, Brian and English, Martin 2020. Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2020.107020
Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation
Phuong Ngo, Chau, Nguyen, Van Bac, Nguyen, Thanh Phong, Bay Pham, Ngoc, Le, Van Phuc and Hung Nguyen, Van 2020. Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation. Journal of Construction Research. https://doi.org/10.30564/jcr.v1i2.1283
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
Malikan, Mohammad and Nguyen, Van Bac 2019. Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/ab15ff
A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law.
Malikan, Mohammad and Nguyen, Van Bac 2018. A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law. World Journal of Engineering. https://doi.org/10.1108/WJE-11-2017-0357
Effects of cold roll dimpling process on mechanical properties of dimpled steel.
Nguyen, Van Bac and English, Martin 2017. Effects of cold roll dimpling process on mechanical properties of dimpled steel. Procedia Engineering. https://doi.org/10.1016/j.proeng.2017.10.885Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory.
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/aad144Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2018.06.001Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory.
Malikan, Mohammad and Nguyen, Van Bac 2018. Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2018.04.018Design of new cold rolled purlins by experimental testing and Direct Strength Method
Nguyen, Van Bac, Pham, Cao Hung, Cartwright, Brian and English, Martin 2017. Design of new cold rolled purlins by experimental testing and Direct Strength Method. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2017.05.011
Dimpling process in cold roll metal forming by finite element modelling and experimental validation
Nguyen, Van Bac, Wang, Chang, Mynors, Diane, English, Martin and Castellucci, Michael 2014. Dimpling process in cold roll metal forming by finite element modelling and experimental validation. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2014.03.001
Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls
Nguyen, Van Bac, Arjunan, Arun, Wang, Chang, Mynors, Diane, Morgan, Tertia and English, Martin 2014. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls. Journal of Sound and Vibration. https://doi.org/10.1016/j.jsv.2014.06.032
Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis
Nguyen, Van Bac, Morgan, Tertia, English, Martin and Castellucci, Michael 2015. Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis. Building Acoustics.