Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling

Journal article


Nguyen, T.T.T., Nguyen, V.B. and Thai, M.Q. 2023. Flexural Strength of Partially Concrete-Filled Steel Tubes Subjected to Lateral Loads by Experimental Testing and Finite Element Modelling. Buildings. 13 (1), pp. 1-31. https://doi.org/10.3390/buildings13010216
AuthorsNguyen, T.T.T., Nguyen, V.B. and Thai, M.Q.
Abstract

In this paper, the flexural strength and buckling of the partially concrete-filled steel tubes (PCFST) under laterally repeated loads was investigated through three-point bending test configuration. Three-dimensional Finite Element (FE) models of the bending tests of the PCFST were developed, in which the concrete filling was modelled using elastic-plastic-fracture model capturing crack development and the tube steel was modelled using elastic-plasticity model. The bond between concrete and tube was considered as frictional touching contact. The validation showed the FE results including the ultimate flexural load and buckling failure mode of the steel tube were in excellent agreement with the experimental ones. A parametric study was then conducted using the verified FE models to investigate the effects of the tube diameter-to-thickness ratio, the concrete filling length ratio, the compressive strength of concrete, and the tube steel’s yield and tensile strengths on the PCFST’s ultimate flexural strength. Based on this study, buckling modes, the optimal concrete filling lengths, and the confined compressive strengths of concrete were determined considering the effects of all these parameters. The confined compressive stresses and strains in concrete predicted by the FE models were evaluated against those determined by theoretical models. The results revealed that the effects of concrete compressive strength to the PCFST’s flexural capacity was insignificant while increasing the tube diameter-to-thickness ratio or the tube steel’s yield and tensile strengths could significantly increase the PCFST’s flexural capacity and the confined compressive strength of concrete; and there was an optimal length of concrete filling at about 66% of the tube length. It demonstrated that the Finite Element analysis can therefore be used as a powerful method to the analysis and design the PCFST columns under lateral loads.

Keywordspartially concrete-filled steel column; flexural strength; three-point bending test; lateral loading; confined concrete; Finite Element analysis
Year2023
JournalBuildings
Journal citation13 (1), pp. 1-31
PublisherMDPI
ISSN2075-5309
Digital Object Identifier (DOI)https://doi.org/10.3390/buildings13010216
Web address (URL)https://www.mdpi.com/2075-5309/13/1/216
Accepted author manuscript
File Access Level
Open
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online12 Jan 2023
Publication process dates
Accepted03 Jan 2023
Deposited11 Jul 2023
Permalink -

https://repository.derby.ac.uk/item/9y34w/flexural-strength-of-partially-concrete-filled-steel-tubes-subjected-to-lateral-loads-by-experimental-testing-and-finite-element-modelling

Download files


Accepted author manuscript

Publisher's version
buildings-13-00216-v2.pdf
License: CC BY 4.0
File access level: Open

  • 32
    total views
  • 73
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Design optimisation for cold rolled steel beam sections with web and flange stiffeners
Qadir, S., Nguyen, V.B. and Hajirasouliha, I. 2024. Design optimisation for cold rolled steel beam sections with web and flange stiffeners. Journal of Constructional Steel Research. 213, pp. 1-19. https://doi.org/10.1016/j.jcsr.2023.108375
Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects
Sangar Qadir, Nguyen, V.B., Iman Hajirasouliha and Martin English 2023. Design optimisation for cold rolled steel beam sections with complex stiffeners considering cold working effects. 9th International Conference on Thin-Walled Structures . Conference Proceedings of the 9th International Conference on Thin-Walled Structures .
Shape optimisation of cold roll formed sections considering effects of cold working
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Ceranic, Boris, Tracada, Eleni and English, Martin 2021. Shape optimisation of cold roll formed sections considering effects of cold working. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2021.108576
Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects
Qadir, Sangar, Nguyen, Van Bac, Hajirasouliha, Iman, Cartwright, Brian and English, Martin 2020. Optimal design of cold roll formed steel channel sections under bending considering both geometry and cold work effects. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2020.107020
Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation
Phuong Ngo, Chau, Nguyen, Van Bac, Nguyen, Thanh Phong, Bay Pham, Ngoc, Le, Van Phuc and Hung Nguyen, Van 2020. Rutting resistance of asphalt pavement mixes by Finite Element modelling and optimisation. Journal of Construction Research. https://doi.org/10.30564/jcr.v1i2.1283
Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory
Malikan, Mohammad and Nguyen, Van Bac 2019. Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/ab15ff
A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law.
Malikan, Mohammad and Nguyen, Van Bac 2018. A novel one variable first-order shear deformation theory for biaxial buckling of a size-dependent plate based on the Eringen's nonlocal differential law. World Journal of Engineering. https://doi.org/10.1108/WJE-11-2017-0357
Effects of cold roll dimpling process on mechanical properties of dimpled steel.
Nguyen, Van Bac and English, Martin 2017. Effects of cold roll dimpling process on mechanical properties of dimpled steel. Procedia Engineering. https://doi.org/10.1016/j.proeng.2017.10.885
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory.
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express. https://doi.org/10.1088/2053-1591/aad144
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
Malikan, Mohammad, Nguyen, Van Bac and Tornabene, Francesco 2018. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal. https://doi.org/10.1016/j.jestch.2018.06.001
Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory.
Malikan, Mohammad and Nguyen, Van Bac 2018. Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures. https://doi.org/10.1016/j.physe.2018.04.018
Design of new cold rolled purlins by experimental testing and Direct Strength Method
Nguyen, Van Bac, Pham, Cao Hung, Cartwright, Brian and English, Martin 2017. Design of new cold rolled purlins by experimental testing and Direct Strength Method. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2017.05.011
Dimpling process in cold roll metal forming by finite element modelling and experimental validation
Nguyen, Van Bac, Wang, Chang, Mynors, Diane, English, Martin and Castellucci, Michael 2014. Dimpling process in cold roll metal forming by finite element modelling and experimental validation. Journal of Manufacturing Processes. https://doi.org/10.1016/j.jmapro.2014.03.001
Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls
Nguyen, Van Bac, Arjunan, Arun, Wang, Chang, Mynors, Diane, Morgan, Tertia and English, Martin 2014. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls. Journal of Sound and Vibration. https://doi.org/10.1016/j.jsv.2014.06.032
Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis
Nguyen, Van Bac, Morgan, Tertia, English, Martin and Castellucci, Michael 2015. Vibro-acoustic performance of different steel studs in double-leaf walls by Finite Element analysis. Building Acoustics.
Analysis and design of cold-formed dimpled steel columns using Finite Element techniques
Nguyen, Van Bac, Mynors, Diane, Wang, Chang, Castellucci, Michael and English, Martin 2015. Analysis and design of cold-formed dimpled steel columns using Finite Element techniques. Finite Elements in Analysis and Design. https://doi.org/10.1016/j.finel.2015.09.007
Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns
Liang, Ce, Wang, Chang, Nguyen, Van Bac, English, Martin and Mynors, Diane 2016. Experimental and numerical study on crashworthiness of cold-formed dimpled steel columns. Thin-Walled Structures. https://doi.org/10.1016/j.tws.2016.12.020