TSCH schedules assessment
Conference item
van der Lee, Tim, Liotta, Antonio and Exarchakos, Georgios 2017. TSCH schedules assessment. IEEE. https://doi.org/10.1109/ICNSC.2017.8000175
Authors | van der Lee, Tim, Liotta, Antonio and Exarchakos, Georgios |
---|---|
Year | 2017 |
Journal | Networking, Sensing and Control (ICNSC), 2017 IEEE 14th International Conference on |
Publisher | IEEE |
Digital Object Identifier (DOI) | https://doi.org/10.1109/ICNSC.2017.8000175 |
Web address (URL) | http://hdl.handle.net/10545/622675 |
hdl:10545/622675 | |
Publication dates | 2017 |
Publication process dates | |
Deposited | 25 Apr 2018, 09:20 |
Permalink -
https://repository.derby.ac.uk/item/949w2/tsch-schedules-assessment
50
total views0
total downloads2
views this month0
downloads this month
Export as
Related outputs
Critical Comparison of Data Imputation Techniques at IoT Edge
Erhan, L., Di Mauro, M., Bagdasar, O. and Liotta, A. David Camacho, Prof. Domenico Rosaci, Prof. Giuseppe M. L. Sarné and Mario Versaci (ed.) 2022. Critical Comparison of Data Imputation Techniques at IoT Edge. Springer.
Mobility Analysis during the 2020 Pandemic in a Touristic city: the Case of Cagliari
Ferrara, Enrico, Uras, Marco, Atzori, Luigi, Bagdasar, Ovidiu and Liotta, Antonio 2021. Mobility Analysis during the 2020 Pandemic in a Touristic city: the Case of Cagliari. IEEE. https://doi.org/10.1109/ieeeconf49204.2021.9604867
Relations Between Entropy and Accuracy Trends in Complex Artificial Neural Networks
Cavallaro, Lucia, Grassia, Marco, Fiumara, Giacomo, Mangioni, Giuseppe, De Meo, Pasquale, Carchiolo, Vincenza, Bagdasar, Ovidiu and Liotta, Antonio 2022. Relations Between Entropy and Accuracy Trends in Complex Artificial Neural Networks. in: Complex Networks & Their Applications X Springer.
Social network analysis: the use of graph distances to compare artificial and criminal networks
Ficara, Annamaria, Curreri, Francesco, Cavallaro, Lucia, De Meo, Pasquale, Fiumara, Giacomo, Bagdasar, Ovidiu and Liotta, Antonio 2021. Social network analysis: the use of graph distances to compare artificial and criminal networks. Journal of Smart Environments and Green Computing. https://doi.org/10.20517/jsegc.2021.08
Criminal networks analysis in missing data scenarios through graph distances
Ficara, A., Cavallaro, L., Curreri, F., Fiumara, G., de Meo, P., Bagdasar, O., Song, W. and Liotta, A. 2021. Criminal networks analysis in missing data scenarios through graph distances. Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0255067
Graph and network theory for the analysis of criminal networks
Cavallaro, L., Bagdasar, O., de Meo, P., Liotta, A. and Fiumara, G. 2021. Graph and network theory for the analysis of criminal networks. Springer, Cham. https://doi.org/10.1007/978-3-030-67197-6_8Graph Comparison and Artificial Models for Simulating Real Criminal Networks
Cavallaro, L., Ficara, A., Curreri, F., Fiumara, G., De Meo, P., Bagdasar, O. and Liotta, A. Prof. Rosa M. Benito, Prof. Chantal Cherifi, Prof. Hocine Cherifi, Prof. Esteban Moro, Prof. Luis Mateus Rocha and Prof. Marta Sales-Pardo (ed.) Graph Comparison and Artificial Models for Simulating Real Criminal Networks.Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study
Erhan, Laura, Di Mauro, Mario, Anjum, Ashiq, Bagdasar, Ovidiu, Song, Wei and Liotta, Antonio 2021. Embedded Data Imputation for Environmental Intelligent Sensing: A Case Study. Sensors. 21 (23), p. 7774. https://doi.org/10.3390/s21237774
Smart anomaly detection in sensor systems: A multi-perspective review
Erhan, L., Ndubuaku, M., Di Mauro, M., Song, W., Chen, M., Fortino, G., Bagdasar, O. and Liotta, A. 2020. Smart anomaly detection in sensor systems: A multi-perspective review. Elsevier. https://doi.org/10.1016/j.inffus.2020.10.001
WiFi probes sniffing: an artificial intelligence based approach for MAC addresses de-randomization
Uras, Marco, Cossu, Raimondo, Ferrara, Enrico, Bagdasar, Ovidiu, Liotta, Antonio and Atzori, Luigi 2020. WiFi probes sniffing: an artificial intelligence based approach for MAC addresses de-randomization. IEEE. https://doi.org/10.1109/camad50429.2020.9209257