Critical Comparison of Data Imputation Techniques at IoT Edge
Book
Erhan, L., Di Mauro, M., Bagdasar, O. and Liotta, A. David Camacho, Prof. Domenico Rosaci, Prof. Giuseppe M. L. Sarné and Mario Versaci (ed.) 2022. Critical Comparison of Data Imputation Techniques at IoT Edge. Springer.
Authors | Erhan, L., Di Mauro, M., Bagdasar, O. and Liotta, A. |
---|---|
Editors | David Camacho, Prof. Domenico Rosaci, Prof. Giuseppe M. L. Sarné and Mario Versaci |
Abstract | The advances within the Internet of Things and sensor systems put the focus on the improvement of the data reliability as close to the edge as possible. This work investigates how well-established techniques can be used for the imputation of contaminated data. We look at the performance of four algorithms for different contamination rates and error bursts of variable length. Furthermore, the algorithms are also evaluated on a constrained environment to showcase the behavior of data imputation methods at the edge of an IoT-based system. |
Keywords | Internet of things; sensor systems; contaminated data; algorithms |
ISBN | 978-3-030-96627-0 |
978-3-030-96626-3 | |
ISSN | 1860-9503 |
Digital Object Identifier (DOI) | https://doi.org/10.1007/978-3-030-96627-0_4 |
Web address (URL) | http://www.scopus.com/inward/record.url?eid=2-s2.0-85130280244&partnerID=MN8TOARS |
https://link.springer.com/book/10.1007/978-3-030-96627-0 | |
Output status | Published |
Publication dates | 07 May 2022 |
Publication process dates | |
Deposited | 25 May 2023 |
Year | 2022 |
Publisher | Springer |
Edition | 1 |
Series | Studies in Computational Intelligence |
Journal | Studies in Computational Intelligence |
Permalink -
https://repository.derby.ac.uk/item/9yyw2/critical-comparison-of-data-imputation-techniques-at-iot-edge
38
total views0
total downloads1
views this month0
downloads this month