Dense melt residues drive mid-ocean-ridge “hotspots”

Book chapter


Phethean, Jordan, Papadopoulou, Martha and Peace, Alexander L. 2022. Dense melt residues drive mid-ocean-ridge “hotspots”. in: In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science Geological Society of America.
AuthorsPhethean, Jordan, Papadopoulou, Martha and Peace, Alexander L.
Abstract

The geodynamic origin of melting anomalies found at the surface, often referred to as “hotspots,” is classically attributed to a mantle plume process. The distribu- tion of hotspots along mid-ocean-ridge spreading systems around the globe, however, questions the universal validity of this concept. Here, the preferential association of hotspots with slow- to intermediate-spreading centers and not fast-spreading centers, an observation contrary to the expected effect of ridge suction forces on upwelling mantle plumes, is explained by a new mechanism for producing melting anomalies at shallow (<2.3 GPa) depths. By combining the effects of both chemical and ther- mal density changes during partial melting of the mantle (using appropriate latent heat and depth-dependent thermal expansivity parameters), we find that mantle resi- dues experience an overall instantaneous increase in density when melting occurs at <2.3 GPa. This controversial finding is due to thermal contraction of material during melting, which outweighs the chemical buoyancy due to melting at shallow pressures (where thermal expansivities are highest). These dense mantle residues are likely to locally sink beneath spreading centers if ridge suction forces are modest, thus driving an increase in the flow of fertile mantle through the melting window and increasing magmatic production. This leads us to question our understanding of sub–spreading center dynamics, where we now suggest a portion of locally inverted mantle flow results in hotspots. Such inverted flow presents an alternative mecha- nism to upwelling hot mantle plumes for the generation of excess melt at near-ridge hotspots, i.e., dense downwelling of mantle residue locally increasing the flow of fertile mantle through the melting window. Near-ridge hotspots, therefore, may not require the elevated temperatures commonly invoked to account for excess melting. The pro- posed mechanism also satisfies counterintuitive observations of ridge-bound hotspots at slow- to intermediate-spreading centers, yet not at fast-spreading centers, where large dynamic ridge suction forces likely overwhelm density-driven downwelling.

KeywordsMantle dynamics; Hotspot; Atlantic Ocean; Dense residue
Year2022
Book titleIn the Footsteps of Warren B. Hamilton: New Ideas in Earth Science
PublisherGeological Society of America
ISBN9780813795539
Digital Object Identifier (DOI)https://doi.org/10.1130/2021.2553(30)
Web address (URL)http://hdl.handle.net/10545/626298
http://creativecommons.org/publicdomain/zero/1.0/
hdl:10545/626298
File
File Access Level
Open
File
File Access Level
Open
File
File Access Level
Open
Publication dates27 Jan 2022
Publication process dates
Deposited17 Feb 2022, 10:09
Accepted10 Jun 2021
Rights

CC0 1.0 Universal

ContributorsUniversity of Derby, University of Leicester and McMaster University, Hamilton, Ontario L8S 4K1, Canada
Permalink -

https://repository.derby.ac.uk/item/94z36/dense-melt-residues-drive-mid-ocean-ridge-hotspots

Download files


File
license.txt
File access level: Open

license_rdf
File access level: Open

  • 62
    total views
  • 32
    total downloads
  • 0
    views this month
  • 1
    downloads this month

Export as

Related outputs

(D)rifting in the 21st century: key processes, natural hazards, and geo-resources
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Phethean, J., Sascha Brune and Anne C. Glerum 2024. (D)rifting in the 21st century: key processes, natural hazards, and geo-resources. Solid Earth. 15 (8), p. 989–1028. https://doi.org/10.5194/se-15-989-2024
Central Afar: An analogue for oceanic plateau development
Rime, V., Keir, D., Phethean, J., Kidane, T. and Foubert, A. 2024. Central Afar: An analogue for oceanic plateau development. Geology. pp. 1-6. https://doi.org/10.1130/G52330.1
The Davis Strait proto-microcontinent: The role of plate tectonic reorganization in continental cleaving
Luke Longley, Jordan Phethean and Schiffer, C. 2024. The Davis Strait proto-microcontinent: The role of plate tectonic reorganization in continental cleaving. Gondwana Research. 113, pp. 14-29. https://doi.org/10.1016/j.gr.2024.05.001
Halokinetically overprinted tectonic inversion of the Penobscot 3D volume offshore Nova Scotia, Canada
Peace, A., Phethean, J., Jess, S. and Schiffer, .C 2024. Halokinetically overprinted tectonic inversion of the Penobscot 3D volume offshore Nova Scotia, Canada. Pure and Applied Geophysics. pp. 1-30. https://doi.org/10.1007/s00024-024-03462-8
Evaluation of shale oil and gas plays - Part I: Shale reservoir property modelling of the North Sea Kimmeridge Clay Formation
Phethean, J., Akinwumiju, A. and Satterfield, D. 2024. Evaluation of shale oil and gas plays - Part I: Shale reservoir property modelling of the North Sea Kimmeridge Clay Formation. Marine and Petroleum Geology. 164, pp. 1-14. https://doi.org/10.1016/j.marpetgeo.2024.106824
The African continental divide: Indian versus Atlantic Ocean spreading during Gondwana dispersal
Peace, Alexander L. and Phethean, Jordan 2022. The African continental divide: Indian versus Atlantic Ocean spreading during Gondwana dispersal. in: In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science Geological Society of America.
Evidence for basement reactivation during the opening of the Labrador sea from the Makkovik province, Labrador, Canada: insights from field data and numerical models
Peace, Alexander, Dempsey, Edward, Schiffer, Christian, Welford, J., McCaffrey, Ken, Imber, Jonathan and Phethean, Jordan 2018. Evidence for basement reactivation during the opening of the Labrador sea from the Makkovik province, Labrador, Canada: insights from field data and numerical models. Geosciences. 8 (8), p. 308. https://doi.org/10.3390/geosciences8080308
Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal
Phethean, Jordan, Kalnins, Lara M., van Hunen, Jeroen, Biffi, Paolo G., Davies, Richard J. and McCaffrey, Ken J.W. 2016. Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal. 17 (12), pp. 5036-5055. https://doi.org/10.1002/2016gc006624
The Jan Mayen microplate complex and the Wilson cycle
Schiffer, Christian, Peace, Alexander, Phethean, Jordan, Gernigon, Laurent, McCaffrey, Ken, Petersen, Kenni D. and Foulger, Gillian 2018. The Jan Mayen microplate complex and the Wilson cycle. Geological Society Special Publications. 470 (1), pp. 393-414. https://doi.org/10.1144/sp470.2
A review of Pangaea dispersal and large igneous provinces – In search of a causative mechanism
Peace, A.L., Phethean, Jordan, Franke, D., Foulger, G.R., Schiffer, C., Welford, J.K., McHone, G., Rocchi, S., Schnabel, M. and Doré, A.G. 2019. A review of Pangaea dispersal and large igneous provinces – In search of a causative mechanism. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2019.102902
An evaluation of Mesozoic rift-related magmatism on the margins of the Labrador Sea : implications for rifting and passive margin asymmetry.
Phethean, Jordan, Peace, Alexander, McCaffrey, Ken, Imber, Jonathan, Nowell, Geoff, Gerdes, Keith and Dempsey, Edward 2016. An evaluation of Mesozoic rift-related magmatism on the margins of the Labrador Sea : implications for rifting and passive margin asymmetry. Geosphere. https://doi.org/10.1130/GES01341.1
Analogue Modeling of Plate Rotation Effects in Transform Margins and Rift‐Transform Intersections
Farangitakis, Georgios-Pavlos, Sokoutis, D, McCaffrey, Kenneth, Willingshofer , Ernst, Kalnins, Lara, Phethean, Jordan, van Hunen, Jeroen and van steen, V 2019. Analogue Modeling of Plate Rotation Effects in Transform Margins and Rift‐Transform Intersections. Tectonics. 38 (3), pp. 823-841. https://doi.org/10.1029/2018TC005261