Web-building spiders attract prey by storing decaying matter.
Journal article
Authors | Bjorkman-Chiswell, Bojun T., Kulinski, Melissa M., Muscat, Robert L., Nguyen, Kim A., Norton, Briony, A., Symonds, Matthew R. E., Westhorpe, Gina E. and Elgar, Mark A. |
---|---|
Abstract | The orb-weaving spider Nephila edulis incorporates into its web a band of decaying animal and plant matter. While earlier studies demonstrate that larger spiders utilise these debris bands as caches of food, the presence of plant matter suggests additional functions. When organic and plastic items were placed in the webs of N. edulis, some of the former but none of the latter were incorporated into the debris band. Using an Y-maze olfactometer, we show that sheep blowflies Lucilia cuprina are attracted to recently collected debris bands, but that this attraction does not persist over time. These data reveal an entirely novel foraging strategy, in which a sit-and-wait predator attracts insect prey by utilising the odours of decaying organic material. The spider’s habit of replenishing the debris band may be necessary to maintain its efficacy for attracting prey. |
Keywords | Odour; Food cache; Spiders; Prey; Insects |
Year | 2004 |
Journal | Naturwissenschaften |
Publisher | Springer |
ISSN | 00281042 |
14321904 | |
Digital Object Identifier (DOI) | https://doi.org/10.1007/s00114-004-0524-x |
Web address (URL) | http://hdl.handle.net/10545/622984 |
hdl:10545/622984 | |
Publication dates | 01 May 2004 |
Publication process dates | |
Deposited | 14 Sep 2018, 09:19 |
Rights | Archived with thanks to Naturwissenschaften |
Contributors | University of Melbourne and James Cook University |
File | File Access Level Open |
https://repository.derby.ac.uk/item/953vv/web-building-spiders-attract-prey-by-storing-decaying-matter
Download files
74
total views0
total downloads1
views this month0
downloads this month
Export as
Related outputs
Biodiversity and environmental stressors along urban walking routes
Norton, B., Mears, M., Warren, P. H., Siriwardena, G. M., Plummer, K. E., Turner, T., Hancock, S., Grafius, D. R. and Evans, K. L. 2023. Biodiversity and environmental stressors along urban walking routes. Urban Forestry and Urban Greening. 85, pp. 1-12. https://doi.org//10.1016/j.ufug.2023.127951
Definitions of biodiversity from urban gardeners
Norton, Briony, A., Shang, Bowen, Sheffield, David and Ramsey, Andrew 2021. Definitions of biodiversity from urban gardeners. Journal of Urban Ecology. https://doi.org/10.1093/jue/juab005Effect of Nature Walks on Depression and Anxiety: A Systematic Review
Yasuhiro Kotera, Melinda Lyons, Katia Correa Vione and Briony Norton 2021. Effect of Nature Walks on Depression and Anxiety: A Systematic Review. Sustainability. 13 (7), pp. 1-17. https://doi.org/10.3390/su13074015
Estimating food production in an urban landscape
Grafius, Darren R., Edmondson, Jill L., Norton, Briony A., Clark, Rachel, Mears, Meghann, Leake, Jonathan R., Corstanje, Ron, Harris, Jim A. and Warren, Philip H. 2020. Estimating food production in an urban landscape. Scientific Reports. 10 (1). https://doi.org/10.1038/s41598-020-62126-4
Green roof and ground-level invertebrate communities are similar and are driven by building height and landscape context
Dromgold, Jacinda R, Threlfall, Caragh G, Norton, Briony, A. and Williams, Nicholas S G 2020. Green roof and ground-level invertebrate communities are similar and are driven by building height and landscape context. Journal of Urban Ecology. 6 (1). https://doi.org/10.1093/jue/juz024
Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity
Norton, Briony, A., Bending, Gary, D., Clark, Rachel, Corstanje, Ron, Dunnett, Nigel, Evans, Karl, L., Grafius, Darren, R., Gravestock, Emily, Grice, Samuel, M., Harris, Jim, A., Hilton, Sally, Lim, Edward, Mercer, Theresa, G., Pawlett, Mark, Prescott, Oliver, L., Richards, J. Paul, Southon, Georgina, E. and Warren, Philip, H. 2019. Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity. Ecological Applications. https://doi.org/10.1002/eap.1946
Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity.
Corstanje, Ron, Warren, Philip H., Evans, Karl L., Siriwardena, Gavin M., Pescott, Oliver L., Plummer, Kate E., Mears, Meghann, Zawadzka, Joanna, Richards, J. Paul, Harris, Jim A., Norton, Briony, A. and Darren R., Grafius 2019. Using GIS-linked Bayesian Belief Networks as a tool for modelling urban biodiversity. Landscape and Urban Planning. 189, pp. 382-395. https://doi.org/10.1016/j.landurbplan.2019.05.012
The effect of urban ground covers on arthropods: An experiment.
Norton, Briony, A., Thomson, Linda J., Williams, Nicholas S. G. and McDonnell, Mark J. 2013. The effect of urban ground covers on arthropods: An experiment. Urban Ecosystems. https://doi.org/10.1007/s11252-013-0297-0
Disturbance affects spatial patterning and stand structure of a tropical rainforest tree.
Webber, Bruce L., Norton, Briony, A. and Woodrow, Ian E. 2010. Disturbance affects spatial patterning and stand structure of a tropical rainforest tree. Austral Ecology. https://doi.org/10.1111/j.1442-9993.2009.02054.x
A global synthesis of plant extinction rates in urban areas.
Hahs, Amy K., McDonnell, Mark J., McCarthy, Michael A., Vesk, Peter A., Corlett, Richard T., Norton, Briony, A., Clemants, Steven E., Duncan, Richard P., Thompson, Ken, Schwartz, Mark W. and Williams, Nicholas S. G. 2009. A global synthesis of plant extinction rates in urban areas. Ecology Letters. https://doi.org/10.1111/j.1461-0248.2009.01372.x
Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes.
Norton, Briony, A., Coutts, Andrew M., Livesley, Stephen J., Harris, Richard J., Hunter, Annie M. and Williams, Nicholas S. G. 2014. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2014.10.018A conceptual framework for predicting the effects of urban environments on floras.
Williams, Nicholas S. G., Schwartz, Mark W., Vesk, Peter A., McCarthy, Michael A., Hahs, Amy K., Clemants, Steven E., Corlett, Richard T., Duncan, Richard P., Norton, Briony, A., Thompson, Ken and McDonnell, Mark J. 2009. A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology. https://doi.org/10.1111/j.1365-2745.2008.01460.x