Urban meadows as an alternative to short mown grassland: effects of composition and height on biodiversity
Journal article
Authors | Norton, Briony, A., Bending, Gary, D., Clark, Rachel, Corstanje, Ron, Dunnett, Nigel, Evans, Karl, L., Grafius, Darren, R., Gravestock, Emily, Grice, Samuel, M., Harris, Jim, A., Hilton, Sally, Lim, Edward, Mercer, Theresa, G., Pawlett, Mark, Prescott, Oliver, L., Richards, J. Paul, Southon, Georgina, E. and Warren, Philip, H. |
---|---|
Abstract | There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0–10 cm), but in deeper soils (11–20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents’ site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits. |
Keywords | beetles; carbon; conservation planning; green infrastructure; microbial diversity; nitrogen; overwintering; plant richness; urban ecology; urban parks |
Year | 2019 |
Journal | Ecological Applications |
Publisher | Ecological Society of America |
ISSN | 10510761 |
Digital Object Identifier (DOI) | https://doi.org/10.1002/eap.1946 |
Web address (URL) | http://hdl.handle.net/10545/624029 |
http://creativecommons.org/licenses/by-nc-sa/3.0/us/ | |
hdl:10545/624029 | |
Publication dates | 22 Jul 2019 |
Publication process dates | |
Deposited | 26 Jul 2019, 09:53 |
Accepted | 26 Mar 2019 |
Rights | Attribution-NonCommercial-ShareAlike 3.0 United States |
Contributors | University of Derby, University of Sheffield, University of Warwick, Cranfield University, UWE, University of Lincoln and Centre for Ecology and Hydrology |
File | File Access Level Open |
File | File Access Level Open |
File | File Access Level Open |
https://repository.derby.ac.uk/item/93q04/urban-meadows-as-an-alternative-to-short-mown-grassland-effects-of-composition-and-height-on-biodiversity
Download files
40
total views15
total downloads1
views this month0
downloads this month