Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation

Journal article


Lees, K., Artz, Rebekka R. E., Khomik, Myroslava, Clark, Joanna M., Ritson, Jonathan, Hancock, Mark H., Cowie, Neil R. and Quaife, Tristan 2020. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Transactions on Geoscience and Remote Sensing. 58 (7), pp. 4547 - 4557. https://doi.org/10.1109/tgrs.2019.2961479
AuthorsLees, K., Artz, Rebekka R. E., Khomik, Myroslava, Clark, Joanna M., Ritson, Jonathan, Hancock, Mark H., Cowie, Neil R. and Quaife, Tristan
Abstract

Peatlands provide important ecosystem services including carbon storage and biodiversity conservation. Remote sensing shows potential for monitoring peatlands, but most off-the-shelf data products are developed for unsaturated environments and it is unclear how well they can perform in peatland ecosystems. Sphagnum moss is an important peatland genus with specific characteristics which can affect spectral reflectance, and we hypothesized that the prevalence of Sphagnum in a peatland could affect the spectral signature of the area. This article combines results from both laboratory and field experiments to assess the relationship between spectral indices and the moisture content and gross primary productivity (GPP) of peatland (blanket bog) vegetation species. The aim was to consider how well the selected indices perform under a range of conditions, and whether Sphagnum has a significant impact on the relationships tested. We found that both water indices tested [normalized difference water index (NDWI) and floating water band index (fWBI)] were sensitive to the water content changes in Sphagnum moss in the laboratory, and there was little difference between them. Most of the vegetation indices tested [the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), structure insensitive pigment index (SIPI), and chlorophyll index (CIm)] were found to have a strong relationship with GPP both in the laboratory and in the field. The NDVI and EVI are useful for large-scale estimation of GPP, but are sensitive to the proportion of Sphagnum present. The CIm is less affected by different species proportions and might therefore be the best to use in areas where vegetation species cover is unknown. The photochemical reflectance index (PRI) is shown to be best suited to small-scale studies of single species.

KeywordsPeatlands; ecosystem; Sphagnum moss
Year2020
JournalIEEE Transactions on Geoscience and Remote Sensing
Journal citation58 (7), pp. 4547 - 4557
PublisherIEEE
Digital Object Identifier (DOI)https://doi.org/10.1109/tgrs.2019.2961479
Web address (URL)https://doi.org/10.1109/TGRS.2019.2961479
https://centaur.reading.ac.uk/88076/
Output statusPublished
Publication dates28 Jan 2020
Publication process dates
Accepted2019
Deposited11 Aug 2022
Permalink -

https://repository.derby.ac.uk/item/9824v/using-spectral-indices-to-estimate-water-content-and-gpp-in-sphagnum-moss-and-other-peatland-vegetation

  • 23
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales
Lees, K., Rachel Carmenta, Ian Condliffe, Anne Gray, Lyndon Marquis and Timothy M. Lenton 2023. Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales. Ambio. pp. 1-15. https://doi.org/10.1007/s13280-023-01850-3
A resilience sensing system for the biosphere
Lenton, T. M., Buxton, J. E., Armstrong McKay, D. I., Abrams, J. F., Boulton, C. A., Lees, K. J., Powell, T. W. R., Boers, N., Cunliffe, A. M. and Dakos, V. 2022. A resilience sensing system for the biosphere. Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1857), pp. 1-19. https://doi.org/10.1098/rstb.2021.0383
Community-driven tree planting greens the neighbouring landscape
Buxton, J., Powell, T., Ambler, J., Boulton, C., Nicholson, A., Arthur, R., Lees, K., Williams, H. and Lenton, T. M. 2021. Community-driven tree planting greens the neighbouring landscape. Scientific Reports. 11 (1), pp. 1-9. https://doi.org/10.1038/s41598-021-96973-6
Quantitatively monitoring the resilience of patterned vegetation in the Sahel
Buxton, Joshua E., Abrams, Jesse F., Boulton, Chris A., Barlow, Nick, Rangel Smith, Camila, Van Stroud, Samuel, Lees, K. and Lenton, Timothy M. 2021. Quantitatively monitoring the resilience of patterned vegetation in the Sahel. Global Change Biology. 28 (2), pp. 1-17. https://doi.org/10.1111/gcb.15939
Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator
Lees, K., Buxton, J., Boulton C. A., Abrams, J. F. and Lenton, T. M. 2021. Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator. Environmental Research Communications. 3, pp. 1-17. https://doi.org/10.1088/2515-7620/ac1a5f
Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery
Lees, K., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R. and Lenton, T. M. 2020. Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment. 761, pp. 1-12. https://doi.org/10.1016/j.scitotenv.2020.143312
Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale
Lees, K., Khomik, M., Quaife, T., Clark, J.M., Hill, T., Klein, D., Ritson, J. and Artz, R.R. 2020. Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale. Science of The Total Environment. 766, pp. 1-11.. https://doi.org/10.1016/j.scitotenv.2020.142613
A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years
Lees, K., Quaife, T., Artz, R.R.E., Khomik, M., Sottocornola, M., Kiely, G., Hambley, G., Hill, T., Saunders, M., Cowie, N.R. and Ritson, J. 2019. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of Environmental Management. 246, pp. 594-604. https://doi.org/10.1016/j.jenvman.2019.03.040
Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought
Lees, K., Clark, Joanna M., Quaife, Tristan, Khomik, Myroslava and Artz, Rebekka R. E. 2019. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought. Ecohydrology. 12 (6), pp. 1-38. https://doi.org/10.1002/eco.2123
Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review
Lees, K., Quaife, T., Artz, R. R. E, Khomik, M. and Clark, J. M. 2017. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review. Science of The Total Environment. 615, pp. 857-874. https://doi.org/10.1016/j.scitotenv.2017.09.103