Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale

Journal article


Lees, K., Khomik, M., Quaife, T., Clark, J.M., Hill, T., Klein, D., Ritson, J. and Artz, R.R. 2020. Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale. Science of The Total Environment. 766, pp. 1-11.. https://doi.org/10.1016/j.scitotenv.2020.142613
AuthorsLees, K., Khomik, M., Quaife, T., Clark, J.M., Hill, T., Klein, D., Ritson, J. and Artz, R.R.
Abstract

Estimates of peatland carbon fluxes based on remote sensing data are a useful addition to monitoring methods in these remote and precious ecosystems, but there are questions as to whether large-scale estimates are reliable given the small-scale heterogeneity of many peatlands. Our objective was to consider the reliability of models based on Earth Observations for estimating ecosystem photosynthesis at different scales using the Forsinard Flows RSPB reserve in Northern Scotland as our study site. Three sites across the reserve were monitored during the growing season of 2017. One site is near-natural blanket bog, and the other two are at different stages of the restoration process after removal of commercial conifer forestry. At each site we measured small (flux chamber) and landscape scale (eddy covariance) CO2 fluxes, small scale spectral data using a handheld spectrometer, and obtained corresponding satellite data from MODIS. The variables influencing GPP at small scale, including microforms and dominant vegetation species, were assessed using exploratory factor analysis. A GPP model using land surface temperature and a measure of greenness from remote sensing data was tested and compared to chamber and eddy covariance CO2 fluxes; this model returned good results at all scales (Pearson's correlations of 0.57 to 0.71 at small scale, 0.76 to 0.86 at large scale). We found that the effect of microtopography on GPP fluxes at the study sites was spatially and temporally inconsistent, although connected to water content and vegetation species. The GPP fluxes measured using EC were larger than those using chambers at all sites, and the reliability of the TG model at different scales was dependent on the measurement methods used for calibration and validation. This suggests that GPP measurements from remote sensing are robust at all scales, but that the methods used for calibration and validation will impact accuracy.

Keywordspeatland carbon fluxes; remote sensing data; ecosystems
Year2020
JournalScience of The Total Environment
Journal citation766, pp. 1-11.
PublisherElsevier
ISSN0048-9697
Digital Object Identifier (DOI)https://doi.org/10.1016/j.scitotenv.2020.142613
Web address (URL)http://dx.doi.org/10.1016/j.scitotenv.2020.142613
https://centaur.reading.ac.uk/93388/
Output statusPublished
Publication dates01 Oct 2020
Publication process dates
Accepted19 Sep 2020
Deposited11 Aug 2022
Permalink -

https://repository.derby.ac.uk/item/98251/assessing-the-reliability-of-peatland-gpp-measurements-by-remote-sensing-from-plot-to-landscape-scale

  • 25
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales
Lees, K., Rachel Carmenta, Ian Condliffe, Anne Gray, Lyndon Marquis and Timothy M. Lenton 2023. Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales. Ambio. pp. 1-15. https://doi.org/10.1007/s13280-023-01850-3
A resilience sensing system for the biosphere
Lenton, T. M., Buxton, J. E., Armstrong McKay, D. I., Abrams, J. F., Boulton, C. A., Lees, K. J., Powell, T. W. R., Boers, N., Cunliffe, A. M. and Dakos, V. 2022. A resilience sensing system for the biosphere. Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1857), pp. 1-19. https://doi.org/10.1098/rstb.2021.0383
Community-driven tree planting greens the neighbouring landscape
Buxton, J., Powell, T., Ambler, J., Boulton, C., Nicholson, A., Arthur, R., Lees, K., Williams, H. and Lenton, T. M. 2021. Community-driven tree planting greens the neighbouring landscape. Scientific Reports. 11 (1), pp. 1-9. https://doi.org/10.1038/s41598-021-96973-6
Quantitatively monitoring the resilience of patterned vegetation in the Sahel
Buxton, Joshua E., Abrams, Jesse F., Boulton, Chris A., Barlow, Nick, Rangel Smith, Camila, Van Stroud, Samuel, Lees, K. and Lenton, Timothy M. 2021. Quantitatively monitoring the resilience of patterned vegetation in the Sahel. Global Change Biology. 28 (2), pp. 1-17. https://doi.org/10.1111/gcb.15939
Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator
Lees, K., Buxton, J., Boulton C. A., Abrams, J. F. and Lenton, T. M. 2021. Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator. Environmental Research Communications. 3, pp. 1-17. https://doi.org/10.1088/2515-7620/ac1a5f
Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery
Lees, K., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R. and Lenton, T. M. 2020. Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment. 761, pp. 1-12. https://doi.org/10.1016/j.scitotenv.2020.143312
Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation
Lees, K., Artz, Rebekka R. E., Khomik, Myroslava, Clark, Joanna M., Ritson, Jonathan, Hancock, Mark H., Cowie, Neil R. and Quaife, Tristan 2020. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Transactions on Geoscience and Remote Sensing. 58 (7), pp. 4547 - 4557. https://doi.org/10.1109/tgrs.2019.2961479
A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years
Lees, K., Quaife, T., Artz, R.R.E., Khomik, M., Sottocornola, M., Kiely, G., Hambley, G., Hill, T., Saunders, M., Cowie, N.R. and Ritson, J. 2019. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of Environmental Management. 246, pp. 594-604. https://doi.org/10.1016/j.jenvman.2019.03.040
Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought
Lees, K., Clark, Joanna M., Quaife, Tristan, Khomik, Myroslava and Artz, Rebekka R. E. 2019. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought. Ecohydrology. 12 (6), pp. 1-38. https://doi.org/10.1002/eco.2123
Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review
Lees, K., Quaife, T., Artz, R. R. E, Khomik, M. and Clark, J. M. 2017. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review. Science of The Total Environment. 615, pp. 857-874. https://doi.org/10.1016/j.scitotenv.2017.09.103