Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery

Journal article


Lees, K., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R. and Lenton, T. M. 2020. Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Science of The Total Environment. 761, pp. 1-12. https://doi.org/10.1016/j.scitotenv.2020.143312
AuthorsLees, K., Artz, R. R. E., Chandler, D., Aspinall, T., Boulton, C. A., Buxton, J., Cowie, N. R. and Lenton, T. M.
Abstract

Peatland areas provide a range of ecosystem services, including biodiversity, carbon storage, clean water, and flood mitigation, but many areas of peatland in the UK have been degraded through human land use including drainage. Here, we explore whether remote sensing can be used to monitor peatland resilience to drought. We take resilience to mean the rate at which a system recovers from perturbation; here measured literally as a recovery timescale of a soil surface moisture proxy from drought lowering. Our objectives were (1) to assess the reliability of Sentinel-1 Synthetic Aperture Radar (SAR) backscatter as a proxy for water table depth (WTD); (2) to develop a method using SAR to estimate below-ground (hydrological) resilience of peatlands; and (3) to apply the developed method to different sites and consider the links between resilience and land management. Our inferences of WTD from Sentinel-1 SAR data gave results with an average Pearson's correlation of 0.77 when compared to measured WTD values. The 2018 summer drought was used to assess resilience across three different UK peatland areas (Dartmoor, the Peak District, and the Flow Country) by considering the timescale of the soil moisture proxy recovery. Results show clear areas of lower resilience within all three study sites, which often correspond to areas of high drainage and may be particularly vulnerable to increasing drought severity/events under climate change. This method is applicable to monitoring peatland resilience elsewhere over larger scales, and could be used to target restoration work towards the most vulnerable areas.

KeywordsPeatland ; biodiversity; resilience to drought
Year2020
JournalScience of The Total Environment
Journal citation761, pp. 1-12
PublisherElsevier
ISSN0048-9697
Digital Object Identifier (DOI)https://doi.org/10.1016/j.scitotenv.2020.143312
Web address (URL)http://dx.doi.org/10.1016/j.scitotenv.2020.143312
https://ore.exeter.ac.uk/repository/handle/10871/123898
Output statusPublished
Publication dates04 Nov 2020
Publication process dates
Accepted16 Oct 2020
Deposited11 Aug 2022
Permalink -

https://repository.derby.ac.uk/item/98252/using-remote-sensing-to-assess-peatland-resilience-by-estimating-soil-surface-moisture-and-drought-recovery

  • 40
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales
Lees, K., Rachel Carmenta, Ian Condliffe, Anne Gray, Lyndon Marquis and Timothy M. Lenton 2023. Protecting peatlands requires understanding stakeholder perceptions and relational values: A case study of peatlands in the Yorkshire Dales. Ambio. pp. 1-15. https://doi.org/10.1007/s13280-023-01850-3
A resilience sensing system for the biosphere
Lenton, T. M., Buxton, J. E., Armstrong McKay, D. I., Abrams, J. F., Boulton, C. A., Lees, K. J., Powell, T. W. R., Boers, N., Cunliffe, A. M. and Dakos, V. 2022. A resilience sensing system for the biosphere. Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1857), pp. 1-19. https://doi.org/10.1098/rstb.2021.0383
Community-driven tree planting greens the neighbouring landscape
Buxton, J., Powell, T., Ambler, J., Boulton, C., Nicholson, A., Arthur, R., Lees, K., Williams, H. and Lenton, T. M. 2021. Community-driven tree planting greens the neighbouring landscape. Scientific Reports. 11 (1), pp. 1-9. https://doi.org/10.1038/s41598-021-96973-6
Quantitatively monitoring the resilience of patterned vegetation in the Sahel
Buxton, Joshua E., Abrams, Jesse F., Boulton, Chris A., Barlow, Nick, Rangel Smith, Camila, Van Stroud, Samuel, Lees, K. and Lenton, Timothy M. 2021. Quantitatively monitoring the resilience of patterned vegetation in the Sahel. Global Change Biology. 28 (2), pp. 1-17. https://doi.org/10.1111/gcb.15939
Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator
Lees, K., Buxton, J., Boulton C. A., Abrams, J. F. and Lenton, T. M. 2021. Using satellite data to assess management frequency and rate of regeneration on heather moorlands in England as a resilience indicator. Environmental Research Communications. 3, pp. 1-17. https://doi.org/10.1088/2515-7620/ac1a5f
Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale
Lees, K., Khomik, M., Quaife, T., Clark, J.M., Hill, T., Klein, D., Ritson, J. and Artz, R.R. 2020. Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale. Science of The Total Environment. 766, pp. 1-11.. https://doi.org/10.1016/j.scitotenv.2020.142613
Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation
Lees, K., Artz, Rebekka R. E., Khomik, Myroslava, Clark, Joanna M., Ritson, Jonathan, Hancock, Mark H., Cowie, Neil R. and Quaife, Tristan 2020. Using Spectral Indices to Estimate Water Content and GPP in Sphagnum Moss and Other Peatland Vegetation. IEEE Transactions on Geoscience and Remote Sensing. 58 (7), pp. 4547 - 4557. https://doi.org/10.1109/tgrs.2019.2961479
A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years
Lees, K., Quaife, T., Artz, R.R.E., Khomik, M., Sottocornola, M., Kiely, G., Hambley, G., Hill, T., Saunders, M., Cowie, N.R. and Ritson, J. 2019. A model of gross primary productivity based on satellite data suggests formerly afforested peatlands undergoing restoration regain full photosynthesis capacity after five to ten years. Journal of Environmental Management. 246, pp. 594-604. https://doi.org/10.1016/j.jenvman.2019.03.040
Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought
Lees, K., Clark, Joanna M., Quaife, Tristan, Khomik, Myroslava and Artz, Rebekka R. E. 2019. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought. Ecohydrology. 12 (6), pp. 1-38. https://doi.org/10.1002/eco.2123
Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review
Lees, K., Quaife, T., Artz, R. R. E, Khomik, M. and Clark, J. M. 2017. Potential for using remote sensing to estimate carbon fluxes across northern peatlands – A review. Science of The Total Environment. 615, pp. 857-874. https://doi.org/10.1016/j.scitotenv.2017.09.103