DogCatcher allows loop-friendly protein-protein ligation

Journal article


Heeble, A. H., Yadav, VK, Ferla, M. P., Bauer, C. C., Chuntharpursat-Bon, C., Huang, J., Bon, R. S. and Howarth, M. 2022. DogCatcher allows loop-friendly protein-protein ligation. Cell Chemical Biology. 29 (2), p. 339–350. https://doi.org/10.1016/j.chembiol.2021.07.005
AuthorsHeeble, A. H., Yadav, VK, Ferla, M. P., Bauer, C. C., Chuntharpursat-Bon, C., Huang, J., Bon, R. S. and Howarth, M.
Abstract

There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster
than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini.DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures.

KeywordsProtein engineering; isopeptide bond; covalent labeling; Ligation
Year2022
JournalCell Chemical Biology
Journal citation29 (2), p. 339–350
PublisherElsevier
ISSN2451-9448
Digital Object Identifier (DOI)https://doi.org/10.1016/j.chembiol.2021.07.005
Web address (URL)https://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(21)00315-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2451945621003159%3Fshowall%3Dtrue
https://pubmed.ncbi.nlm.nih.gov/34324879/
Accepted author manuscript
File Access Level
Open
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online28 Jul 2021
Publication process dates
Deposited16 Dec 2022
Permalink -

https://repository.derby.ac.uk/item/9vqy3/dogcatcher-allows-loop-friendly-protein-protein-ligation

Download files


Publisher's version
VY1.pdf
License: CC BY 4.0
File access level: Open

  • 22
    total views
  • 16
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Production of nano-protein particles in living cells
Yadav, V.K., Yadav, K. and Yang H. 2024. Production of nano-protein particles in living cells. Chemical Engineering Research and Design. 207, pp. 345-349. https://doi.org/10.1016/j.cherd.2024.06.007
Elucidation of Short linear motif based interactions and dynamics of the ezrin, radixin, moesin and merlin FERM domains
Muhammad Ali, Alisa Khramushin, Yadav, V., Ora Schueler-Furman and Ylva Ivarsson 2023. Elucidation of Short linear motif based interactions and dynamics of the ezrin, radixin, moesin and merlin FERM domains. Biochemistry. Vol 62 (Issue 11), p. 1594–1607. https://doi.org/10.1021/acs.biochem.3c00096
Elucidation of Short Linear Motif-Based Interactions of the FERM Domains of Ezrin, Radixin, Moesin, and Merlin
Ali, M., Khramushin, A., Yadav, V.K., Schueler-Furman, O. and Ivarsson, Y. 2023. Elucidation of Short Linear Motif-Based Interactions of the FERM Domains of Ezrin, Radixin, Moesin, and Merlin. Biochemistry. pp. 1-14. https://doi.org/10.1021/acs.biochem.3c00096
Polypeptides that interact with peptide tags at loops or termini and uses thereof
Yadav, V. 2022. Polypeptides that interact with peptide tags at loops or termini and uses thereof. WO2022214795A1
Advanced downstream purification of high value biopharmaceuticals
Yadav, VK 2022. Advanced downstream purification of high value biopharmaceuticals. HVB/BBNet ECR Workshop.
Positive and negative effects of graphite flake and monolayer graphene oxide templates on protein crystallization
Lin, Z., Tian, W., Yadav, V. K. and Yang, H. 2022. Positive and negative effects of graphite flake and monolayer graphene oxide templates on protein crystallization. Particuology. pp. 1-8. https://doi.org/10.1016/j.partic.2022.10.014
Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition
Li, Y., Balakrishnan, Vijaya Kumar . K., Rowse, M., Wu, C, G., Bravos, A. P., Yadav, VK, Ivarsson, Y., Strack, S., Novikova, I. V. and Xing, Y. 2022. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. Elife. 11, pp. 1-26. https://doi.org/10.7554/eLife.79736
Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling.
Yadav, V. 2020. Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Molecular cell. Vol 79 (Issue 2), pp. 342-358. https://doi.org/10.1016/j.molcel.2020.06.029
Synthetic toolbox adapted from bacterial superglues to staple proteins in modular assemblies
Yadav, V. 2019. Synthetic toolbox adapted from bacterial superglues to staple proteins in modular assemblies. Protein Engineering II: from new new molecules to new processes. York, UK 15 - 17 Jul 2019 Fluidic Analytics.
Orthogonal toolbox of bacterial superglues for covalent interactions
Yadav, V. 2019. Orthogonal toolbox of bacterial superglues for covalent interactions. Synthetic Biology UK 2019. University of Warwick 09 - 10 Dec 2019 Biochemical society.
PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis.
Yadav, V. 2017. PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis. Cell discovery. Vol 3 (2017, Article: 17027). https://doi.org/10.1038/celldisc.2017.27
Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome.
Yadav, V. 2016. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. The FEBS journal. Vol 284 (Issue 3), pp. 485-498. https://doi.org/10.1111/febs.13995
Systematic discovery of Short Linear Motifs decodes hippo pathway signalling
Yadav, V. 2016. Systematic discovery of Short Linear Motifs decodes hippo pathway signalling. The modularity of signalling proteins and networks, EMBO workshop. Seefeld in Tirol, Austria 20 - 25 Sep 2016 EMBO Workshop.
Structural and binding studies of SAP-1 protein with heparin.
Yadav, V. 2014. Structural and binding studies of SAP-1 protein with heparin. Chemical biology & drug design. Vol 85 (Issue 3), pp. 404 - 410. https://doi.org/10.1111/cbdd.12420