Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition

Journal article


Li, Y., Balakrishnan, Vijaya Kumar . K., Rowse, M., Wu, C, G., Bravos, A. P., Yadav, VK, Ivarsson, Y., Strack, S., Novikova, I. V. and Xing, Y. 2022. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition. Elife. 11, pp. 1-26. https://doi.org/10.7554/eLife.79736
AuthorsLi, Y., Balakrishnan, Vijaya Kumar . K., Rowse, M., Wu, C, G., Bravos, A. P., Yadav, VK, Ivarsson, Y., Strack, S., Novikova, I. V. and Xing, Y.
Abstract

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme–PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.

KeywordsPhosphatases; Motifs; Protein interactions; cell signaling
Year2022
JournalElife
Journal citation11, pp. 1-26
PublishereLife Sciences Publications
ISSN 2050-084X
Digital Object Identifier (DOI)https://doi.org/10.7554/eLife.79736
Web address (URL)https://elifesciences.org/articles/79736
Publisher's version
License
File Access Level
Open
Output statusPublished
Publication dates
Online04 Aug 2022
Publication process dates
Accepted03 Aug 2022
Deposited16 Dec 2022
Permalink -

https://repository.derby.ac.uk/item/9vqy4/coupling-to-short-linear-motifs-creates-versatile-pme-1-activities-in-pp2a-holoenzyme-demethylation-and-inhibition

Download files


Publisher's version
VY2.pdf
License: CC0
File access level: Open

  • 26
    total views
  • 14
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Production of nano-protein particles in living cells
Yadav, V.K., Yadav, K. and Yang H. 2024. Production of nano-protein particles in living cells. Chemical Engineering Research and Design. 207, pp. 345-349. https://doi.org/10.1016/j.cherd.2024.06.007
Elucidation of Short linear motif based interactions and dynamics of the ezrin, radixin, moesin and merlin FERM domains
Muhammad Ali, Alisa Khramushin, Yadav, V., Ora Schueler-Furman and Ylva Ivarsson 2023. Elucidation of Short linear motif based interactions and dynamics of the ezrin, radixin, moesin and merlin FERM domains. Biochemistry. Vol 62 (Issue 11), p. 1594–1607. https://doi.org/10.1021/acs.biochem.3c00096
Elucidation of Short Linear Motif-Based Interactions of the FERM Domains of Ezrin, Radixin, Moesin, and Merlin
Ali, M., Khramushin, A., Yadav, V.K., Schueler-Furman, O. and Ivarsson, Y. 2023. Elucidation of Short Linear Motif-Based Interactions of the FERM Domains of Ezrin, Radixin, Moesin, and Merlin. Biochemistry. pp. 1-14. https://doi.org/10.1021/acs.biochem.3c00096
Polypeptides that interact with peptide tags at loops or termini and uses thereof
Yadav, V. 2022. Polypeptides that interact with peptide tags at loops or termini and uses thereof. WO2022214795A1
Advanced downstream purification of high value biopharmaceuticals
Yadav, VK 2022. Advanced downstream purification of high value biopharmaceuticals. HVB/BBNet ECR Workshop.
Positive and negative effects of graphite flake and monolayer graphene oxide templates on protein crystallization
Lin, Z., Tian, W., Yadav, V. K. and Yang, H. 2022. Positive and negative effects of graphite flake and monolayer graphene oxide templates on protein crystallization. Particuology. pp. 1-8. https://doi.org/10.1016/j.partic.2022.10.014
DogCatcher allows loop-friendly protein-protein ligation
Heeble, A. H., Yadav, VK, Ferla, M. P., Bauer, C. C., Chuntharpursat-Bon, C., Huang, J., Bon, R. S. and Howarth, M. 2022. DogCatcher allows loop-friendly protein-protein ligation. Cell Chemical Biology. 29 (2), p. 339–350. https://doi.org/10.1016/j.chembiol.2021.07.005
Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling.
Yadav, V. 2020. Systematic Discovery of Short Linear Motifs Decodes Calcineurin Phosphatase Signaling. Molecular cell. Vol 79 (Issue 2), pp. 342-358. https://doi.org/10.1016/j.molcel.2020.06.029
Synthetic toolbox adapted from bacterial superglues to staple proteins in modular assemblies
Yadav, V. 2019. Synthetic toolbox adapted from bacterial superglues to staple proteins in modular assemblies. Protein Engineering II: from new new molecules to new processes. York, UK 15 - 17 Jul 2019 Fluidic Analytics.
Orthogonal toolbox of bacterial superglues for covalent interactions
Yadav, V. 2019. Orthogonal toolbox of bacterial superglues for covalent interactions. Synthetic Biology UK 2019. University of Warwick 09 - 10 Dec 2019 Biochemical society.
PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis.
Yadav, V. 2017. PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis. Cell discovery. Vol 3 (2017, Article: 17027). https://doi.org/10.1038/celldisc.2017.27
Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome.
Yadav, V. 2016. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. The FEBS journal. Vol 284 (Issue 3), pp. 485-498. https://doi.org/10.1111/febs.13995
Systematic discovery of Short Linear Motifs decodes hippo pathway signalling
Yadav, V. 2016. Systematic discovery of Short Linear Motifs decodes hippo pathway signalling. The modularity of signalling proteins and networks, EMBO workshop. Seefeld in Tirol, Austria 20 - 25 Sep 2016 EMBO Workshop.
Structural and binding studies of SAP-1 protein with heparin.
Yadav, V. 2014. Structural and binding studies of SAP-1 protein with heparin. Chemical biology & drug design. Vol 85 (Issue 3), pp. 404 - 410. https://doi.org/10.1111/cbdd.12420